Зарядное для пальчиковых аккумуляторов своими руками: 403 — Доступ запрещён – 75 фото как сделать зарядку в домашних условиях

Содержание

Зарядное устройство для аккумуляторных батареек своими руками

Можно конечно купить и отличное готовое устройство смотри фотку выше, но если тратить на это кровные рублики совсем не хочется, то можно собрать и своими руками. Причем схема ЗУ для пальчиковых батареек очень простая и практически не нуждается в наладке и регулировке

Зарядное устройство для аккумуляторных батареек своими руками

Зарядное устройство для аккумуляторных батареек своими руками

Для наших целей нам подойдет почти любой блок питания рассчитанный на напряжение 5-20 вольт. Возьмем за прототип радиолюбительской разработки схему простейшего из них.

Зарядное устройство для аккумуляторных батареек своими руками

Схема состоит из следующих радиокомпонентов: сопротивления R1, двух светодиодов и штепсельного гнезда. Светодиоды рекомендуется использовать разных цветов. Параллельно одному из них припаиваем выводы для параллельного подключения аккумулятора. Свечение светодиода в соответствии с законом Ома зависит от степени разряда, при полном разряде светодиод гореть не будет). В процессе зарядки свечение светодиода увеличивается. Одинаковое свечение обоих светодиодов говорит о окончании процесса заряда. Номинал сопротивления R1 подбираем в соответствии с рабочим током светодиода из справочника. Например рабочему току светодиода, который равен 20 мА, и напряжению блока питания

Зарядное устройство для аккумуляторных батареек своими руками

Эти конструкции позваляют заряжать портативных Ni-Mn и Ni-Cd аккумуляторы с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью первой схемы можно заряжать один аккумулятор током на 100 мА, вторая схема позволяет заряжать уже две батареи стандарта AA или AAA

Зарядное устройство для аккумуляторных батареек своими руками

Батарейный отсек был позаимствован из старой детской игрушки. О его переделке расскажу чуть подробней. Дело в том, что обычно плюсы и минусы клемм питания установлены противоположно. Но нам надо, что бы в верхней части были две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю перенёс наверх, а общую минусовую вырезал из пивной банки, припаяв пружинки. Для пайки использовал паяльную кислоту, по окончанию пайки поверхность обязательно хорошо промыть в проточной воде.

Зарядное устройство для аккумуляторных батареек своими руками

Так как различные пальчиковые аккумуляторы обладают разной емкостью, необходимо разное время для зарядки этих батарей. Аккумуляторы емкостью 1400 мА/ч потребуется заряжать около 14 часов, а для батарей 700 мА/ч потребуется около 7 часов.

Зарядное устройство для аккумуляторных батареек своими руками

За основу взят обычный стабилизатор тока. Конструкция позволяет изменять зарядный ток с помощью переменного сопротивления в от 10 до 500 мА.

Зарядное устройство для аккумуляторных батареек своими руками

Для правильной зарядки батареи напряжение на выходе схемы должно быть на 25 % больше напряжения заряжаемого аккумулятора

Зарядное устройство для аккумуляторных батареек своими руками

Зарядное устройство для аккумуляторных батареек своими руками

Эта радиолюбительская самоделка зарядного устройства используется для зарядки двух никель-кадмиевых аккумуляторов постоянным током. Схема ЗУ имеет два режима работы, автоматическое отключение и генерация звукового сигнала по окончанию процесса зарядки.

Зарядное устройство для аккумуляторных батареек своими рукамиФонарики, цифровые плееры, диктофоны, электронные часы, игрушки, пульты дистанционного управления и портативная медицинская техника — работу всех этих и многих других устройств обеспечивают источники питания.

Устроены источники питания предельно просто: два электрода — отрицательный анод и положительный катод — погружены в емкость с электролитом и упакованы в металлический корпус.

При замыкании контактов начинается движение электронов от одного электрода к другому, возникает электрический ток. Со временем запас активного вещества на аноде истощается, электронов становится меньше. С другой стороны, снижается способность электролита проводить ток. Вот почему батарейка разряжается.

Классификация батареек

Элементы питания различаются по форме и по внутреннему составу, точнее, по типу химической реакции, которая приводит к образованию электрического тока.

Виды батареек по форме

  1. Зарядное устройство для аккумуляторных батареек своими рукамиНаиболее привычны нам «пальчиковые» (маркировка АА) и «мизинчиковые» (маркировка ААА). Они имеют цилиндрическую форму и питают большинство типов электронной техники.
  2. Элементы формата «бочонок» (маркировки C и D) тоже производят в форме цилиндра, только размеры их побольше, что обеспечивает больший запас мощности. Такие источники применяют, например, в туристических фонарях, радиоприемниках, проигрывателях и магнитофонах.
  3. Прямоугольные гальванические элементы, именуемые в народе «крона» — по названию известного бренда.
  4. Дисковые батарейки (CR) — так назывемые «таблетки», используются в наручных часах, лазерных указках, игрушках

Рабочее напряжение цилиндрических элементов питания — 1,6 Вольта. А «крона» обеспечивает напряжение целых 9 вольт.

По типу химической реакции

  • Солевые. Отличаются малой мощностью, можно хранить от 1 года до 3 лет.
  • Щелочные или «алкалиновые». Название происходит от импортной маркировки Alkaline. Они способны справиться с более мощной нагрузкой. Срок хранения — от 3 до 5 лет.
  • Литиевые. Лучше всех справляются с высокой нагрузкой. Срок хранения — от 5 до 7 лет.

Какие батарейки можно заряжать в зарядном устройстве

Зарядное устройство для аккумуляторных батареек своими рукамиХимические процессы, протекающие в обычном гальваническом элементе, необратимы. Исчерпав свой ресурс, он перестает вырабатывать электрический ток. Определить их просто: обычно на корпусе такого элемента питания присутствует надпись «do not recharge» — «перезарядке не подлежит». Продлить ему жизнь можно единственным способом — попытаться поместить в менее энергоемкое устройство. Так, например, батарейки, которые не подходят для радиоуправляемой машинки, могут подойти для работы пульта от телевизора.

Единственный тип батареек, которые можно правильно перезаряжать большое число раз — это аккумуляторные. Их можно отличить по маркировке rechargeable battery. Рабочее напряжение аккумуляторных батареек ниже, чем у обычных — 1.2 Вольта. Аккумуляторные элементы питания дороже обычных: чем больше их мощность и количество циклов перезарядки, тем выше цена. Кроме того, вам потребуется специальное зарядное устройство, которое приобретается отдельно. Часто такие зарядные устройства снабжены индикатором, который покажет, насколько зарядился аккумулятор. Время зарядки аккумуляторных батареек составляет 8—12 часов.

Подзарядка в домашних условиях

Возникает вопрос: можно ли заряжать алкалиновые батарейки в зарядном устройстве? Существует сравнительно безопасный способ зарядить алкалиновый элемент питания, но эффективность его под вопросом. Для этой экстренной меры вам потребуется зарядное устройство на 4 аккумулятора. В первые три отсека слева направо вставляем разряженнные алкалиновые элементы, которые будут заряжаться. А в четвертый (тот что справа) — аккумулятор. Длительность «лечения» — от 5 до 10 минут. После этого алкалиновые элементы снова можно использовать, но не долго.

Зарядное устройство для аккумуляторных батареек своими рукамиЭнтузиастами придуманы многочисленные способы, как зарядить пальчиковую батарейку в домашних условиях. Конечно, это не полноценная подзарядка. Ведь сами химические реакции внутри такого источника питания необратимы. Например, если аккуратно помять элемент питания плоскогубцами или постучать им о любую твердую поверхность, это позволит слегка реанимировать электролит и извлечь несколько дополнительных процентов мощности. Только не повредите корпус, иначе электролит вытечет, и источник питания не будет работать.

Нагревать разряженные гальванические элементы нельзя — высока опасность взрыва.

Если вы хотите, чтобы гальванические элементы прослужили дольше, не используйте их на морозе: они быстро теряют заряд. Обращайте внимание на дату выпуска: батарейки имеют свойство саморазряжаться. Не стоит использовать различные типы батареек одновременно, а также старые с более свежими. Это также уменьшает их срок службы.

  • Зарядное устройство для аккумуляторных батареек своими рукамиСамоделкин 24 марта 2013
  • Самодельные зарядные и АКБ

Зарядное устройство для аккумуляторных батареек своими руками

Уже более 4-х лет верой и правдой мне служит самодельное зарядное устройство для заряда аккумуляторов «аа» и «ааа» (Ni-Mh, Ni-Ca) с функцией разряда акб до фиксированного значения напряжения (1 Вольт) . Блок разряда аккумуляторов создавался для возможности проведения КТЦ (Контрольно-тренировочный цикл), говоря проще: для восстановления емкости аккумуляторовпотрепанных неправильными китайскими зарядниками с формулой последовательного заряда 2-х или 4-х акб. Как известно, такой способ заряда укорачивает жизнь аккумуляторам, если вовремя их не реставрировать.
Зарядное устройство для аккумуляторных батареек своими руками
Зарядное устройство для аккумуляторных батареек своими руками
Зарядное устройство для аккумуляторных батареек своими руками
Зарядное устройство для аккумуляторных батареек своими руками

Технические характеристики зарядного устройства:

  • Количество независимых каналов заряда: 4
  • Количество независимых каналов разряда: 4
  • Ток заряда: 250 (мА)
  • Ток разряда 140 (мА)
  • Напряжение отключения разряда 1 (В)
  • Индикация: светодиодная

Собиралось зарядное не на выставку, а что называется из подручных средств, то есть утилизировалось окружающее добро, которое и выкинуть жалко и хранить особо не зачем.

Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов:

  • Корпус от CD-Rom
  • Силовой трансформатор от магнитолы (перемотанный)
  • Полевые транзисторы с материнских плат и плат HDD
  • Прочие компоненты или покупались или выкусывались:)

Как уже отмечалось, зарядка состоит из нескольких узлов, которые могут жить абсолютно автономно друг от друга. То есть, одновременно можно работать с 8 аккумуляторами: от 1 до 4 заряжать + от 1 до 4 разряжать. На фото видно, что кассеты для аккумуляторов, установлены под форм-фактор «АА» в простонародье «пальчиковых аккумуляторов», если необходимо работать с «мини-пальчиковыми акб» «ААА» достаточно подложить под минусовую клему гайку небольшого калибра. При желании можно продублировать держателями под размер «ааа». Наличие акб в держателе индицируется светодиодом (отслеживается прохождение тока).

Блок заряда

Зарядное устройство для аккумуляторных батареек своими руками

Заряд осуществляется стабилизированным током, у каждого канала свой стабилизатор тока. Для того, что бы ток заряда был неизменным при подключении как 1 так и 2,3,4 аккумуляторов, перед стабилизаторами тока установлен параметрический стабилизатор напряжения. Естественно, кпд этого стабилизатора не на высоте и потребуется установить все транзисторы на теплоотвод. Заранее планируйте вентиляцию корпуса и размеры радиатора, учитывая то что в закрытом корпусе температура на радиаторе будет выше чем в разобранном состоянии. Можно модернизировать схему, введя возможность выбора тока заряда. Для этого схему необходимо дополнить одним переключателем и одним резистором на каждый канал, который будет увеличивать ток базы транзистора и соответственно повышать ток заряда проходящий через транзистор в аккумулятор. В моем случае блок заряда собран навесным монтажом.

Блок разряда акб

Зарядное устройство для аккумуляторных батареек своими руками
Блок разряда более сложен и требует точности в подборе компонентов. В основе лежит компаратор типа lm393, lm339 или lp239 функцией которого является подача сигнала «логической единицы», либо «ноля» на затвор полевого транзистора. При открытии полевого транзистора он подключает к аккумулятору нагрузку в виде резистора значение которого определяет ток разряда. При снижении напряжения на аккумуляторе до установленного порога отключения 1 (Вольт). Компаратор захлопывается и устанавливает на своем выходе логический ноль. Транзистор выходит из насыщения и отключает нагрузку от аккумулятора. Компаратор имеет гистерезис, который обуславливает повторное подключение нагрузки не при напряжении 1,01 (В) а при 1,1-1,15 (В). Смоделировать действие компаратора вы сможете скачав модель разрядного устройства для Proteus. Подобрав значения резисторов вы сможете перестроить устройство на нужное вам напряжение. Например: подняв порог отключения до 3 Вольт можно сделать разрядное для li-on и Li-Po аккумуляторов.
Вы можете скачать плату разрядного устройства в формате Sprint Layout она проектировалась для применения компаратора lm393 в DIP-корпусе. Питание компараторов должно осуществляться от стабилизированного источника напряжением 5 вольт, его роль выполняет TL-431 усиленный транзистором.

Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов

Сергей Чернов, Самара
km450 (At) mail. ru

Oпубликовано множество схем устройств для зарядки никель-кадмиевых пальчиковых (Ni-Cd) аккумуляторов. Но когда возникла необходимость собрать зарядку для себя, ничего на свой вкус не нашел. Можно конечно купить готовое, но это не для радиолюбителя. Пришлось разработать свое. Предлагаемое устройство предназначено для заряда пальчиковых аккумуляторов всех типов, работает в автоматическом режиме, простое в повторении, имеет малые размеры и не содержит дефицитных деталей. Внешний вид конструкции показан на Рис.1. Устройство доступно для повторения начинающими радиолюбителями.

Рис. 1.

Устройство содержит два идентичных канала заряда аккумуляторов, поскольку проектировалось конкретно под своми нужды. Один расчитан на заряд двух аккумуляторов типа «АА» емкостью до 2600 ма/ч, другой трех типа «ААА» емкостью до 900 ма/ч. Принципиальная схема представлена на Рис.2. Питание устройства осущесвляется от сети 220в через малогабаритный трансформатор Т1 и выпрямитель VD1, напряжение на выходе которого при полной нагрузке составляет около 9 вольт. Индикация работы осуществляется двумя двухцветными светодиодами, красное свечение которых сигнализирует о процессе заряда, зеленое - о его окончании.

Рис. 2. Принципиальная схема

На микросхеме DA4 TL431 (аналог LM431) собран прецизионный источник опорного напряжения, на микросхемах DA1 и DA2 LM317T стабилизатор зарядного тока, величина которого определяется емкостью аккумулятора и составляет от нее десятую часть. Схема управления и индикации собрана на DA3 LM393, состоящей из двух компараторов с открытым коллектором, ключей для управления стабилизаторами зарядного тока на транзисторах VT1, VT2, индикатором работы на транзисторах VT3, VT4 и двухцветных светодиодах VD6, VD7.

Описание работы.

При подключении разряженных аккумуляторов напряжение на прямых входах компараторов ниже, чем опорное на инверстных. На выходах компараторов соответственно присутствует нулевой потенциал, что приводит к открытию транзисторов VT1 и VT2. Включаются стабилизаторы тока, величина которого определяется резисторами R29-R32. Величина сопротивления резистора в омах, согласно спецификации производителя, расчитывается по формуле 1.25v/Ia. На плате предусмотрено место под два резистора для удобства подбора. R32 у меня отсутствует, не пригодился. Транзисторы VT3 и VT4 закрыты, светодиоды VD6, VD7 светятся красным цветом.

По окончании заряда транзисторы VT1 и VT2 закрываютя, заряд аккумуляторов прекращается. Транзисторы VT3 и VT4 открываются, светодиоды светятся зеленым цветом. Далее аккумуляторы находятся под небольшим током порядка 1 ма, который практически совершенно безопасен для них но необходим для устойчивой работы компараторов, и в таком состоянии могут оставаться длительное время.

Компараторы имеют небольшой гистерезис порядка 10 мв, определяемый резисторами R16, R17, R19 и R20. По два резистора заложено для удобства подбора и резервирования иместа на плате при ее разводке. Практически хватило по одному на компаратор. При проектировании использовалась программа PCAD 4.5.

Детали и налаживание.

Трансформатор собран на сердечнике размерами 40*32*18 мм. Первичная обмотка содержит 4020 витков провода диаметром 0.08мм, вторичная обмотка намотана проводом диаметром 0.38мм и содержит 198 витков. Резисторы RP1 и RP2 проволочные многооборотные типа СП5-1. Транзисторы VT1 и VT2 составные, можно заменить обычными средней мощности. Надо только подобрать коэффициент усиления побольше и может быть придется уменьшить сопротивление резисторов R4 и R7 до 1ком. Также необходимо учесть их цоколевку приразводке. Транзисторы VT1 и VT2 любые маломощные, так же как и диоды VD2-VD5. Светодиоды любые двухцветные на свой вкус. Резистор R1 номиналом 10-30 ом выполняет роль предохранителя, поскольку потребляемый ток от сети порядка 15-20 ма, и на такой ток предохранителя не нашлось. Резисторы применены типа МЛТ-0.05, можно использовать и МЛТ-0.125, установив их вертикально. R29-R32 типа МЛТ-0.25. Налаживание заключается в установке напряжения на инвестных входах компараторов равным напряжению полностью заряженных аккумуляторов. В литературе часто встречается величина этого напряжения равной 1.48 вольта. Мне этого достичь не удалось. То ли тестер такой, то ли аккумуляторы. Я делал следующим образом. Разрядил аккумуляторы до 1 вольта (на 1 элемент), затем заряжал их в течении 12-14 часов. Этого достаточно для полного заряда. Далее замерил реальное напряжение и установил порог срабатывания компараторов на 5-10 мв ниже замеренного. У меня оно составило 1.44в на элемент.

Микросхемы DA1 и DA2 установлены на небольших радиаторах, на плате они показаны прямоугольниками, и впаяны проводами.

Корпус конструкции расчитан на установку сразу в розетку, выполнен из листового полистирола и склеен дихлорэтаном. Для охлаждения деталей в корпусе высверлены отвестия.

На Рис.3 показано расположение деталей на плате, на Рис.4 печатная плата со стороны деталей, на Рис.5 — с обратной стороны.

Рис. 3 Расположение деталей на плате Рис. 4 Рисунок печатной платы со стороны деталей Рис. 5 Рисунок печатной платы с обратной стороны

Чернов С.В

Схема советской зарядки АА-аккумуляторов Электроника-ЗУ04

Изучим устройство зарядки «Электроника ЗУ-04», внутри которой реализована схема питания с гасящим конденсатором.

Советское зарядное устройство Электроника-ЗУ04 на 1-4 АА-аккумулятора

Устройство имеет странную разборную конструкцию с отделяемой вилкой на пружинках:

Все детали Электроника-ЗУ04, вилка на пружинках вставляется отдельно

Заряжать можно от 1 до 4-х аккумуляторов, вставляя их в любые слоты

Это связано с тем, что схема питания с гасящим конденсатором означает наличие на всех контактах и заряжаемых аккумуляторах напряжения 220 вольт, так что аккумуляторы нужно тщательно упаковать-изолировать, прежде чем втыкать всё это в электросеть. Весь корпус усеян рельефными надписями:

Две половинки корпуса Электроника ЗУ-04

Надписи: 220В 50Гц ~; Перед эксплуатацией изучить паспорт !!!; Перед снятием крышки следует вынуть вилку из розетки сети питания; ЗУ04, 1.2В; Макс ток заряда 90мА

Вывинчиваем два винтика, созерцаем нутро:

Навесной монтаж внутри зарядки Электроника-ЗУ04. Используемые радиодетали

Детали внутри. Навесной монтаж… [Увеличить правую часть с детальками]

Сделана зарядка в 90-х, поэтому нет надписей типа «цена» и ОТК, а есть знак «Росстандарт». Но, т. к. это модель 1990 года, то советская. Хотя на предыдущей картинке видна надпись «ток заряда 90мА», верить нужно последней — 110 мА (просто есть версия на 90 мА; видать, на сборке-производстве перепутали). Наблюдаемое реализует следующую схему: Схема советского зарядного устройства Электроника-ЗУ04 с гасящим конденсатором

Схема электрическая принципиальная «Электроника» ЗУ-04

Результаты измерений. На выходе диодного моста напряжение 22 вольта, напряжение на стабилитронах 3.8 В (хотя надписи 3V0 на них означают, что они должны стабилизировать на 3.0 В). Через светодиод HL1 течёт ток 55 мА и напряжение на нём 2.7 В (он вообще ненормальный: у него «+» на толстом контакте, на котором рефлектор с излучающий переходом находятся). Напряжение на резисторе 120 Ом (1 Вт) — 7 В, следовательно ток через него течёт 55 мА. Итого: 55 через светодиод + 55 через этот резистор = 110 мА.

Зарядка пашет на все свои 110 мА даже без аккумуляторов: этот ток проходит последовательно через все стабилитроны, резисторы, светодиод (светится) — так что энергия бессмысленно выделяется на них. Но если поставить аккумулятор, то соответствующий стабилитрон отключится (т.к. напряжение на нём станет меньше его 3.0 вольт) и ток потечёт в этом месте через аккумулятор.

Конденсаторы К73-17 в количестве 2-х штук… Почему два? Издержки советских производственных технологий: у этой зарядки есть версии 90мА и 75мА, соответственно, в них устанавливали по одному конденсатору этих  номиналов.

Схема электрическая от производителя (скан внезапно найденной инструкции; заявленные тут детали вообще не соответствуют реальным на схеме выше):

Схема зарядки Электроника ЗУ-04 из инструкции к ней

Полезные ссылки

  1. Питание светодиодов от сети ~220V — схема с гасящим конденсатором
  2. Устройство зарядки АА- и ААА-NiMH аккумуляторов Energizer  — разборка, схема

5 / 5 ( 14 голосов )

Зарядное устройство от телефона для «пальчиковых» аккумуляторов — Меандр — занимательная электроника

Стоимость «сухих бата­реек» сейчас уже доста­точно высока, и вполне сравнима со стоимостью аккумуляторов. Но акку­муляторы можно заря­жать.

В большинстве уст­ройств, питающихся от «сухих элементов» напря­жением 1,5В (или батарей из них) можно использо­вать «аккумуляторные элементы» соответству­ющего типоразмера, номинальным напря­жением 1,2В. Это никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккумуляторы, которые предусматривают многократную переза­рядку при помощи зарядного устройства При правильной эксплуатации число циклов перезарядки для NiCd аккуму­ляторов — 500… 1000, а для NiMH — несколько тысяч. Нормой считается заряд аккумулятора током равным 0,05-0,1 от номинальной емкости в течение 12 часов. Конечно можно заряжать и большим током, но это может привести к сокра­щению ресурса аккумулятора или даже его повреждения.

В продаже не часто встречаются заряд­ные устройства для таких аккумуляторов, но очень много недорогих универсальных зарядных устройств для сотовых теле­фонов, с выходным напряжением 5В. Здесь описывается несложная схема приставки к такому зарядному устройству чтобы с его помощью можно было заряжать никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккуму­ляторы емкостью 600 мА·ч, 1500 мА·ч и 2500 мА·ч (или промежуточные по значе­нию).

Схема показана на рисунке 1. Напряжение 5В поступает от стандартного универсального зарядного устройства для стового телефона через соответствующий разъем Х1 типа USB. Светодиод HL1 служит для индикации включенного состо­яния, потому что корпуса-вилки зарядных устройств, из-за своей облегченной конструкции, не всегда надежно держатся в штепсельных розетках, и на самих зарядных устройствах не всегда есть индикаторные светодиоды включенного состояния.

Рис. 1

На микросхеме А1 сделан стабилизатор тока, протекающего через заряжаемый аккумулятор GB1. В зависимости от емкости аккумулятора переключателем S1 переключаются резисторы R1, R2, R3, которыми регулируется величина стаби­лизации тока. Положения переключателя подписаны величинами номинальной емкости аккумуляторов. Если аккумуля­тор другой емкости нужно переключатель установить в наиболее близкое значение

Можно заряжать как один аккумулятор, так и батарею из двух, последовательно включенных.

Вместо микросхемы КР142ЕН12 можно применить зарубежный аналог — LM317.

Чтобы не допустить перезарядки акку­мулятора можно ограничить время заряд­ки. На рисунке 2 показана схема заряд­ной приставки со встроенным таймером на популярной микросхеме CD4060В.

Рис. 2

Ключом, включающим зарядку аккуму­лятора служит полевой ключевой тран­зистор VT2. В открытом состоянии сопро­тивление его канала в данной схеме можно с уверенностью считать равным нулю. Поэтому никакого влияния на ток зарядки, в открытом состоянии, он не оказывает.

Стартом для зарядки служит включение питания (подключение к универсальному зарядному устройству для сотового теле­фона). В этот момент цепь С1-R7 обну­ляет (или предварительно устанавливает в нуль) счетчик микросхемы D1. На её выходе, выводе 3, ноль. Транзистор VТ1 закрыт и на затвор VT2 поступает откры­вающее напряжение через резистор R6. VT2 открывается и подает ток на заряд­ную схему на А1.

Затем счетчик микросхемы D1 начинает счет импульсов от встроенного генерато­ра. RC-цепь встроенного генератора C2- R8-R9 подобрана таким образом, чтобы логическая единица на выводе 3 D1 появ­лялась примерно через 12 часов после включения. Как только это происходит диод VD1 останавливает счетчик в этом положении, транзистор VT1 открывается и напряжение на затворе VT2 падает. Что приводит к закрытию VT2. Зарядка пре­кращается, и светодиод HL1 гаснет.

Автор: Растоков П.
Источник: Радиоконструктор №3/2018


cxema.org — Зарядное устройство для АА и ААА аккумуляторов.

Зарядное устройство для АА и ААА аккумуляторов.

img1.jpgВ продолжение темы зарядных устройств, выполненных по максимально простым схемам, предлагаю довольно таки хорошо зарекомендовавшее себя схемное решение для зарядки аккумуляторов типа АА и ААА. 

В этой статье я предлагаю в очередной раз обратиться к операционному усилителю LM358, используемом в качестве компаратора. На рисунке (для удобства восприятия) представлен вариант зарядного для 2-ух аккумуляторов. Каждый заряжается отдельным каналом.

3569176021.png

Как видим, схема состоит из двух основных частей – стабилизатор напряжения и контроллер заряда аккумуляторов.

Кроме того, в схеме установлены два индикаторных светодиода для наглядности. Первый светодиод горит постоянно и подтверждает включение устройства, а второй светодиод является индикатором окончания заряда.

Стабилизатор напряжения LM 317, при входном напряжении от 6 до 30 в, имеет на выходе (при таких номиналах резисторов) стабильно 5,2-5,4 в, что, в свою очередь, и необходимо нам.

Работа компаратора заключается в сравнении напряжений между 3 и 2 выводами микросхемы. Пока аккумулятор разряжен, напряжение на выводе 3 выше, чем на выводе 2 и транзистор полностью открыт, и аккумулятор продолжает заряжаться. Как только происходит превышение напряжения на выводе 2 (по сравнению с выводом 3) транзистор плавно закрывается, что приводит к медленному ограничению тока зарядки аккумулятора. При этом гаснет светодиод, обозначающий окончание процесса заряда.

Расскажу немного об используемых компонентах. Ток зарядки определяется резистором (27 ом на схеме). Такой номинал соответствует максимальному току заряда в 100 ма (для увеличения тока – уменьшаем номинал). Так как резистор ощутимо греется, его мощность должна быть 1-2 вт.

При токе в 100 ма можно использовать транзистор кт 315. Однако, если Вы планируете повышать зарядный ток, то рекомендую заменить транзистор на более мощный – кт 815.

В схеме используется подстроечные резисторы. Для достижения точного срабатывания компаратора применяйте многооборотные. Это избавит Вашу конструкцию от неправильной работы.

Настройка схемы сводится к установке напряжения сравнения для компаратора. Для этого, вместо аккумулятора подключаем резистор номиналом в 91 ом и вольтметр. Вращая подстроечный резистор, выставляем 1,41 в на этом резисторе – это и будет конечное напряжение для зарядки аккумуляторов.

В качестве источника питания конструкции я использовал трансформатор (китайский) и диодный мост.

К сожалению, заявленные производителем характеристики трансформатора (0.6 а х 12в) не соответствовали действительности, поэтому мне пришлось сделать его перерасчет в on-line калькуляторе и перемотать вторичную обмотку.

Исходя их моих потребностей, печатная плата выполнена для 4-ех каналов зарядки, то есть для 4-ех аккумуляторов. Как всегда, использовал метод ЛУТ и травление в хлорном железе. 

После травления:

256800393.jpg

Первый тест схемы с полностью разряженными аккумуляторами:

841899833.jpg1972250089.jpg

Так как у меня не было подходящего корпуса, то я решил его изготовить самостоятельно. В качестве «рамы» использовал алюминиевый уголок, а «стенки» из хромированных латунных листов.

 1223560281.jpg3401489288.jpg

Верхняя, лицевая панель изготовлена из текстолита и покрыта несколькими слоями лака.

4158566968.jpg451328910.jpg663130686.jpg

Устройство достаточно простое. Применяемые детали можно найти почти в любом радио-магазине.

Скачать печатку в формате lay

С уважением к проекту VIP-CXEMA,

Автор — Иванов Максим Н., г. Вологда

Зарядка для пальчиковых аккумуляторов — Блоки питания

Стоимость «сухих бата­реек» сейчас уже доста­точно высока, и вполне сравнима со стоимостью аккумуляторов. Но акку­муляторы можно заря­жать.

В большинстве уст­ройств, питающихся от «сухих элементов» напря­жением 1,5В (или батарей из них) можно использо­вать «аккумуляторные элементы» соответству­ющего типоразмера, номинальным напря­жением 1,2В. Это никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккумуляторы, которые предусматривают многократную переза­рядку при помощи зарядного устройства При правильной эксплуатации число циклов перезарядки для NiCd аккуму­ляторов — 500… 1000, а для NiMH — несколько тысяч. Нормой считается заряд аккумулятора током равным 0,05-0,1 от номинальной емкости в течение 12 часов. Конечно можно заряжать и большим током, но это может привести к сокра­щению ресурса аккумулятора или даже его повреждения.

В продаже не часто встречаются заряд­ные устройства для таких аккумуляторов, но очень много недорогих универсальных зарядных устройств для сотовых теле­фонов, с выходным напряжением 5В. Здесь описывается несложная схема приставки к такому зарядному устройству чтобы с его помощью можно было заряжать никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккуму­ляторы емкостью 600 мА·ч, 1500 мА·ч и 2500 мА·ч (или промежуточные по значе­нию).

рис.1

Схема показана на рисунке 1. Напряжение 5В поступает от стандартного универсального зарядного устройства для сотового телефона через соответствующий разъем Х1 типа USB. Светодиод HL1 служит для индикации включенного состо­яния, потому что корпуса-вилки зарядных устройств, из-за своей облегченной конструкции, не всегда надежно держатся в штепсельных розетках, и на самих зарядных устройствах не всегда есть индикаторные светодиоды включенного состояния.

На микросхеме А1 сделан стабилизатор тока, протекающего через заряжаемый аккумулятор GB1. В зависимости от емкости аккумулятора переключателем S1 переключаются резисторы R1, R2, R3, которыми регулируется величина стаби­лизации тока. Положения переключателя подписаны величинами номинальной емкости аккумуляторов. Если аккумуля­тор другой емкости нужно переключатель установить в наиболее близкое значение

Можно заряжать как один аккумулятор, так и батарею из двух, последовательно включенных.

Вместо микросхемы КР142ЕН12 можно применить зарубежный аналог — LM317.

рис.2

Чтобы не допустить перезарядки акку­мулятора можно ограничить время заряд­ки. На рисунке 2 показана схема заряд­ной приставки со встроенным таймером на популярной микросхеме CD4060В.

Ключом, включающим зарядку аккуму­лятора служит полевой ключевой тран­зистор VT2. В открытом состоянии сопро­тивление его канала в данной схеме можно с уверенностью считать равным нулю. Поэтому никакого влияния на ток зарядки, в открытом состоянии, он не оказывает.

Стартом для зарядки служит включение питания (подключение к универсальному зарядному устройству для сотового теле­фона). В этот момент цепь С1-R7 обну­ляет (или предварительно устанавливает в нуль) счетчик микросхемы D1. На её выходе, выводе 3, ноль. Транзистор VТ1 закрыт и на затвор VT2 поступает откры­вающее напряжение через резистор R6. VT2 открывается и подает ток на заряд­ную схему на А1.

Затем счетчик микросхемы D1 начинает счет импульсов от встроенного генерато­ра. RC-цепь встроенного генератора C2- R8-R9 подобрана таким образом, чтобы логическая единица на выводе 3 D1 появ­лялась примерно через 12 часов после включения. Как только это происходит диод VD1 останавливает счетчик в этом положении, транзистор VT1 открывается и напряжение на затворе VT2 падает. Что приводит к закрытию VT2. Зарядка пре­кращается, и светодиод HL1 гаснет.

Автор: Растоков П.

Источник: журнал Радиоконструктор №3, 2018 стр.10


Поделитесь записью в своих социальных сетях!

При копировании материала обратная ссылка на наш сайт обязательна!


Схемы зарядных устройств для пальчиковых батареек

Можно конечно купить и отличное готовое устройство смотри фотку выше, но если тратить на это кровные рублики совсем не хочется, то можно собрать и своими руками. Причем схема ЗУ для пальчиковых батареек очень простая и практически не нуждается в наладке и регулировке

Для наших целей нам подойдет почти любой блок питания рассчитанный на напряжение 5-20 вольт. Возьмем за прототип радиолюбительской разработки схему простейшего из них.

Схема состоит из следующих радиокомпонентов: сопротивления R1, двух светодиодов и штепсельного гнезда. Светодиоды рекомендуется использовать разных цветов. Параллельно одному из них припаиваем выводы для параллельного подключения аккумулятора. Свечение светодиода в соответствии с законом Ома зависит от степени разряда, при полном разряде светодиод гореть не будет). В процессе зарядки свечение светодиода увеличивается. Одинаковое свечение обоих светодиодов говорит о окончании процесса заряда. Номинал сопротивления R1 подбираем в соответствии с рабочим током светодиода из справочника. Например рабочему току светодиода, который равен 20 мА, и напряжению блока питания

Эти конструкции позваляют заряжать портативных Ni-Mn и Ni-Cd аккумуляторы с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью первой схемы можно заряжать один аккумулятор током на 100 мА, вторая схема позволяет заряжать уже две батареи стандарта AA или AAA

Батарейный отсек был позаимствован из старой детской игрушки. О его переделке расскажу чуть подробней. Дело в том, что обычно плюсы и минусы клемм питания установлены противоположно. Но нам надо, что бы в верхней части были две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю перенёс наверх, а общую минусовую вырезал из пивной банки, припаяв пружинки. Для пайки использовал паяльную кислоту, по окончанию пайки поверхность обязательно хорошо промыть в проточной воде.

Так как различные пальчиковые аккумуляторы обладают разной емкостью, необходимо разное время для зарядки этих батарей. Аккумуляторы емкостью 1400 мА/ч потребуется заряжать около 14 часов, а для батарей 700 мА/ч потребуется около 7 часов.

За основу взят обычный стабилизатор тока. Конструкция позволяет изменять зарядный ток с помощью переменного сопротивления в от 10 до 500 мА.

Для правильной зарядки батареи напряжение на выходе схемы должно быть на 25 % больше напряжения заряжаемого аккумулятора

Эта радиолюбительская самоделка зарядного устройства используется для зарядки двух никель-кадмиевых аккумуляторов постоянным током. Схема ЗУ имеет два режима работы, автоматическое отключение и генерация звукового сигнала по окончанию процесса зарядки.

На одном из радиолюбительских сайтов увидел схему для зарядки портативных Ni-Mn и Ni-Cd аккумуляторов с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью этого устройства можно заряжать портативные аккумуляторные батарейки током примерно 100 мА. Схема несложная. Собрать её не составит труда даже начинающему радиолюбителю.

Конечно, можно купить готовое ЗУ. В продаже их сейчас великое множество и на любой вкус. Но их цена вряд ли удовлетворит начинающего радиолюбителя или того, кто способен сделать зарядное устройство своими руками.
Решил повторить эту схему, но сделать зарядное устройство для зарядки сразу двух аккумуляторов. Выдаваемый ток USB 2.0 составляет 500 mA. Так что можно смело подключить два аккумулятора. Доработанная схема выглядела так.

Так же хотелось, чтобы была возможность подключение внешнего источника питания напряжением 5 В .
Схема содержит всего восемь радиодеталей.

Из инструмента потребуется минимальный набор радиолюбителя: паяльник, припой, флюс, тестер, пинцет, отвёртки, нож. Перед пайкой радиодеталей их необходимо проверить на исправность. Для этого нам потребуется тестер. Резисторы проверить очень просто. Измеряем их сопротивление и сравниваем с номиналом. О том, как проверить диод и светодиод есть много статей в интернете.
Для корпуса использовал пластмассовый футляр размером 65*45*20 мм. Батарейный отсек вырезал из детской игрушки «Тетрис».

О переделке батарейного отсека расскажу подробней. Дело в том, что изначально
плюсы и минусы клемм питания батареек установлены противоположно. Но мне нужно было, что бы в верхней части отсека располагались две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю плюсовую клемму перенёс наверх, а общую минусовую вырезал из жести, припаяв оставшиеся пружины.

В качестве флюса при паянии пружин применял паяльную кислоту с соблюдением всех правил техники безопасности. Место пайки обязательно промыть в проточной воде до полного удаления следов кислоты. Провода от клемм подпаял и пропустил внутрь корпуса через просверленные отверстия.

Батарейный отсек закрепил на крышке футляра тремя маленькими шурупами.
Плату выпилил из старого модулятора игровой приставки «Денди». Удалил все ненужные детали и дорожки печатного монтажа. Оставил только гнездо питания. В качестве новых дорожек использовал толстый медный провод. В нижней крышке просверлил отверстия для вентиляции.

Готовая плата плотно села в корпус, поэтому я её закреплять не стал.

После установки всех радиодеталей на свои места проверяем правильность монтажа и очищаем плату от флюса.
Теперь займёмся распайкой шнура питания и установкой тока зарядки для каждого аккумулятора.
В качестве шнура питания использовал USB шнур от старой компьютерной мышки и кусок питающего провода со штекером от «Денди».

Шнуру питания нужно уделить особое внимание. Ни в коем случае нельзя перепутать «+» и «-». У меня на штекере «+» питания подключен к центральному контакту чёрным проводом с белой полосой. А «-» питания идёт по чёрному (без полосы) проводу на наружный контакт штекера. На USB шнуре «+» идёт на красный провод а «-» на чёрный. Спаиваем плюс с плюсом и минус с минусом. Места пайки тщательно изолируем. Далее проверяем шнур на короткое замыкание, подключив тестер в режиме измерения сопротивления к клеммам штекера. Тестер должен показать бесконечное сопротивление. Все надо тщательно перепроверить, что бы ни спалить USB-порт. Если всё нормально, подключаем наш шнур к USB-порту и проверяем напряжение на штекере. Тестер должен показать 5 вольт.

Последний этап настройки это установка зарядного тока. Для этого разрываем цепь диода VD1 и «+» аккумулятора. В разрыв подключаем тестер в режиме измерения тока включенного на предел 200 mA. Плюс тестера на диод, а минус к аккумулятору.

Вставляем аккумулятор на место, соблюдая полярность, и подаём питание. При этом должен загореться светодиод. Он сигнализирует о том, что аккумулятор подключен. Далее, изменяя сопротивление R1, устанавливаем требуемый ток заряда. В нашем случае он равен примерно 100 mA . При уменьшении сопротивления резистора R1 зарядный ток увеличивается, а при увеличении уменьшается.

То же самое делаем для второго аккумулятора. После этого скручиваем наш корпус и
зарядное устройство готово к использованию.
Поскольку различные пальчиковые аккумуляторы имеют разную
емкость, потребуется разное время для зарядки этих аккумуляторов. Аккумуляторы
емкостью 1400 мА/ч с напряжением 1,2 В потребуется заряжать с помощью данной
схемы примерно 14 часов, а аккумуляторы 700 мА/ч потребуется всего 7 часов.
У меня имеются аккумуляторы емкостью 2700 мА/ч. Но заряжать их 27 часов от USB-порта не хотелось. Поэтому я и сделал гнездо питания для внешнего источника питания 5 вольт 1А, который у меня лежал без дела.

Вот ещё несколько фото готового устройства.

Наклейки рисовал программой FrontDesigner 3.0. Затем распечатал на лазерном принтере. Вырезал ножницами, наклеил лицевой стороной на тонкий скотч шириной 20 мм. Лишний скотч обрезал. В качестве клея использовал клей-карандаш, предварительно смазав им и наклейку и место, куда она клеится. Насколько это надёжно, пока не знаю.
Теперь плюсы и минусы данной схемы.
Плюс в том, что схема не содержит дефицитных и дорогостоящих деталей и собирается буквально на коленке. Так же есть возможность запитать от USB-порта, что не мало важно для начинающих радиолюбителей. Не надо ломать голову, откуда запитать схему. Не смотря на то, что схема очень простая, данный способ зарядки используется во многих промышленных зарядных устройствах.
Так же можно немного усложнив схему реализовать переключение зарядного тока.

Подбором R1,R3 и R4 можно выставить зарядный ток для разных по ёмкости аккумуляторов, тем самым обеспечив рекомендуемый зарядный ток для данного аккумулятора, который обычно равен 0,1C (C-ёмкость аккумулятора).
Теперь минусы. Самый большой, это отсутствие стабилизации зарядного тока. То есть
При изменении входного напряжения будет изменятся зарядный ток. Так же при ошибке в монтаже или коротком замыкании схемы есть большая вероятность спалить USB-порт.

Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы «оживления» элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.

В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.

Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.

Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4. 2,45 В. При меньшем напряжении регенерация весьма затягивается и элементы после 8. 10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В. (Элемент с меньшим напряжением непригоден к регенерации.) Затем нагружают элемент на 1. 2 секунды резистором 10 Ом, и, если напряжение элемента упадет не более чем на 0,2 В, он пригоден к регенерации.

Электрическая схема зарядного устройства, приведенная на рис. 1 (предложил Б. И. Богомолов), рассчитана на зарядку одновременно шести элементов (G1. G6 типа 373, 316, 332, 343 и других аналогичных им).


Рис. 1

Самой ответственной деталью схемы является трансформатор Т1, так как напряжение во вторичной обмотке у него должно быть строго в пределах 2,4. 2,45 В независимо от количества подключенных к нему в качестве нагрузки регенерируемых элементов.

Если готового трансформатора с таким выходным напряжением найти не удастся, то можно приспособить уже имеющийся трансформатор мощностью не менее 3 Вт, намотав на нем дополнительно вторичную обмотку на нужное напряжение проводом марки ПЭЛ или ПЭВ диаметром 0,8. 1,2 мм. Соединительные провода между трансформатором и зарядными цепями должны быть возможно большего сечения.

Продолжительность регенерации 4. 5, а иногда и 8 часов. Периодически тот или иной элемент надо вынимать из блока и проверять его по методике, приведенной выше для диагностики элементов, а можно следить с помощью вольтметра за напряжением на заряжаемых элементах и, как только оно достигнет 1,8. 1,9 В, регенерацию прекратить, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают в случае нагрева какого-либо элемента.

Лучше всего восстанавливаются элементы, работающие в детских игрушках, если ставить их на регенерацию сразу же после разряда. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию. Несколько хуже ведут себя современные элементы в металлическом корпусе.

В любом случае, главное для регенерации не допускать глубокого разряда элемента и вовремя ставить его на подзарядку, так что не спешите выбрасывать отработанные гальванические элементы.

Вторая схема (рис. 2) использует тот же принцип подзарядки элементов пульсирующим ассимметричным электрическим током. Она предложена С. Глазовым и проще в изготовлении, так как позволяет использовать любой трансформатор с обмоткой, имеющей напряжение 6,3 В. Лампа накаливания HL1 (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи зарядки.


Рис. 2

Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов — двух кремниевых и одного германиевого — с допустимым током не менее 100 мА. Диоды VD2 и VD3 — любые кремниевые с тем же допустимым средним током, например КД102А, КД212А.

Емкость конденсатора С1 — от 3 до 5 мкФ на рабочее напряжение не менее 16В. Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 — 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.

Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В.

О степени заряженности элемента можно также судить по яркости свечения лампы HL1. До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.

При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300. 500 Ом. Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.


Рис.3

Если требуется восстановить заряд только у элементов питания серии СЦ, схему для регенерации можно упростить, исключив трансформатор (рис. 3).

Работает схема аналогично вышеприведенным. Зарядный ток (1зар) элемента G1 протекает через элементы VD1, R1 в момент положительной полуволны сетевого напряжения. Величина Iзар зависит от величины R1. В момент отрицательной полуволны диод VD1 закрыт и разряд идет по цепи VD2, R2. Соотношение Iзар и Iразр выбрано 10:1. У каждого типа элемента серии СЦ своя емкость, но известно, что величина зарядного тока должна составлять примерно десятую часть от электрической емкости элемента питания. Например, для СЦ-21 — емкость 38 мА-ч (Iзар=3,8 мА, Iразр=0,38 мА), для СЦ-59 — емкость 30 мА-ч (Iзар=3 мА, Iразр=0,3 мА). На схеме указаны номиналы резисторов для регенерации элементов СЦ-59 и СЦ-21, а для других типов их легко определить, воспользовавшись соотношениями: R1=220/2·lзap, R2=0,1·R1.

Установленный в схеме стабилитрон VD3 в работе зарядного устройства участия не принимает, но выполняет функцию защитного устройства от поражения электрическим током — при отключенном элементе G1 на контактах Х2, ХЗ напряжение не сможет возрасти больше, чем уровень стабилизации. Стабилитрон КС175 подойдет с любой последней буквой в обозначении или же может быть заменен двумя стабилитронами типа Д814А, включенными последовательно навстречу друг другу («плюс» к «плюсу»). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В.


Рис. 4

Время регенерации элементов составляет 6. 10 часов. Сразу после регенерации напряжение на элементе будет немного превышать паспортную величину, но через несколько часов установится номинальное — 1,5 В.

Восстанавливать таким образом элементы СЦ удается три-четыре раза, если их ставить вовремя на подзарядку, не допуская полного разряда (ниже 1В).

Аналогичный принцип работы имеет схема, показанная на рис. 4. Она в особых пояснениях не нуждается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *