Своими руками сделать 1 фараду – Фонарик, который светит без батареек! ⚡️⚡️⚡️ Делаем вечный фонарик Фарадея своими руками 🔦🔦🔦 | КРОТ.NET — Еженедельный Журнал

Содержание

Вечный фонарик Фарадея без батареек

В нашем мире довольно много людей занимаются самодельными опытами в домашних лабораториях и мастерских. Для одних — это способ самоутвердиться, для других – стремление к развитию своих способностей. И что с того, если это будет эксперимент из наспех склеенных деталей. Главное, чтобы устройство или схема работали. Сегодня мы будем разбирать именно такое изобретение, сделанное практически на коленях. Однако в его основу положены незыблемые принципы и законы физики, которые невозможно отрицать.
Речь пойдет о фонарике, который работает без батареек. Возможно кто-то уже видел на просторах интернета простейший генератор Фарадея, который позволяет от нескольких движений проводника в обмотке зажечь небольшой светодиод. Сборки из практически мертвой батарейки, автотрансформатора и транзистора, которые способны при исходном напряжении в десятые доли вольта питать светодиод на 3V тоже уже не редкость.
Здесь же автор пошел немного дальше, модернизировав схему устройства, добавив выпрямитель, суперконденсатор (ионистор), сопротивление и полностью исключив источник питания. В итоге работа фонарика стала намного стабильнее и эффективнее. А если корпус несколько минут потрясти, его можно зарядить на длительное время работы светодиода. Как это работает? Давайте разбираться.
Вечный фонарик без батареек

Принцип работы


Устройство состоит из нескольких катушек индуктивности, которые можно собрать самому. Первичная катушка индуктивности служит фактически источником питания или полностью заменяет его привычный аналог – батарейку. За счет перемещения в ней стержня из постоянных магнитов, индуцируется электрический ток. Из-за колебательных движений в магнитном поле создаются электрические волны, исходящие от катушки с определенной частотой. Стабилизировать их и преобразовать в постоянный ток помогает выпрямитель или диодный мост.
Без накопительной емкости такое устройство пришлось бы постоянно трясти, поэтому следующим элементом в схеме выступает суперконденсатор, способный подзаряжаться по типу аккумулятора. Далее подключен повышающий трансформатор или преобразователь напряжения, который состоит из тороидальной ферритовой катушки и двух обмоток – базовой и коллекторной. Число витков может быть одинаковым, и обычно составляет 20-50. Трансформатор имеет среднюю точку соединения по противоположным концам обеих обмоток, и три выхода на транзистор. Автотрансформатор повышает мизерные импульсы тока в достаточные для работы светодиода, а для их контроля подключен биполярный транзистор. Подобная электрическая схема в разных источниках имеет различные названия: вор джоулей, блокинг-генератор, генератор Фарадея и т.д.
Вечный фонарик без батареек
Вечный фонарик без батареек

Необходимая база ресурсов для самоделки


Материалы:
  • ПВХ труба, диаметр 20 мм;
  • Медная проволока, диаметр – 0,5 мм;
  • Транзистор маломощный обратной проводимости;
  • Неодимовые магниты круглые, размер 15х3 мм;
  • Диодный мост или выпрямитель 2W10;
  • Резистор;
  • Суперконденсатор или ионистор 1F 5.5V
  • Кнопка-выключатель;
  • Светодиод белый или синий на 5V;
  • Прозрачный клей типа эпоксидной смолы;
  • Горячий клей;
  • Кусочки фанеры, вата;
  • Медная проводка в изоляции.

Инструменты:
  • Паяльник;
  • Пистолет для горячего клея;
  • Ножовка по металлу;
  • Напильник, наждачная бумага.

Процесс изготовления фонарика


Корпус фонарика будем делать из ПВХ трубы. Отмечаем отрезок длиной 16 см, и отрезаем его ножовкой по металлу.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
От центра отрезка отмечаем по 1,5 см в каждую стороны. Получается зона для обмотки шириной в 3 см.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Далее берем медный провод сечением 0,5 мм, оставляем один конец его длиной около 10-15 см, и наматываем проволоку на трубку-корпус фонарика по разметке вручную. Мотать придется довольно много, более полутысячи витков. Первые несколько из них можно зафиксировать клеем. Начальный ряд катушки плотно прижимаем друг к другу, и делаем его строго последовательным.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
В максимальных точках обмотка должна быть приблизительно около половины сантиметра толщиной. Зачищаем оба конца проволоки наждачной бумагой для надежной спайки.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Подвижный магнитный сердечник катушки может быть, как цельным, так и собранным по частям. Неодимовые магниты подбираются по внутреннему диаметру ПВХ трубки. Опытным путем набирается необходимая длина магнитного стержня, через колебания которого и будет создаваться электрический ток.
Вечный фонарик без батареек
Вечный фонарик без батареек
Автор использовал десять магнитов толщиной 3 мм, чтобы набрать длину максимально рациональную для таких колебаний, и одновременно равную ширине обмотки.
Вечный фонарик без батареек
Вечный фонарик без батареек[center]
По шкале осциллографа можно увидеть разницу между потенциалами, получаемыми от колебаний одного и десяти магнитов. Автор получил от колебаний магнитного стержня напряжение в 4,5V. На ней также ясно видна цикличность синусоиды в интервалах изменяющейся частотности.
Вечный фонарик без батареек
Вечный фонарик без батареек
На этом этапе, по примеру автора, можно подключить напрямую к выходящим концам катушки светодиод, и проверить ее работоспособность. Как видно на фото, светодиод реагирует на перемещение магнитного стержня, и создаваемый им самим импульсный ток.
Вечный фонарик без батареек
Вечный фонарик без батареек
Теперь необходимо заглушить оба конца трубки, чтобы не придерживать их руками во время тряски. Для этого той же ножовкой выпиливаем из фанеры несколько пятачков, обрабатываем грани напильником, прокладываем ваткой с тыльной стороны для смягчения и сажаем их на клей, чтобы не вываливались.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Настала очередь подключить выпрямитель. Схема, отображенная на фото, показывает какие два его контакта из четырех подключить к катушке. Такой диодный мост способен принимать переменный ток, и выдавать постоянный строго в одном направлении.
Вечный фонарик без батареек
Вечный фонарик без батареек
Повышающий автотрансформатор поможет преобразовать низкие спонтанные импульсы от первичной катушки в достаточное напряжение для работы светодиода за счет самоиндукции одной из обмоток – коллекторной. Так как она связана с базовой обмоткой, постоянный и стабильный электрический ток будет подаваться на суперконденсатор в достаточном количестве. Резистор же ограничит превышение допустимых номиналов. Конденсатор достаточной емкости также подобран автором опытным путем с помощью замеров исходящих сигналов осциллографом.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Замыкает эту схему биполярный транзистор обратной проводимости, который и управляет поступающим электрическим током к светодиоду. Собрать схему можно без платы, поскольку деталей не так много. Кнопку выключатель монтируем на один из контактов, идущий от автотрансформатора.
Вечный фонарик без батареек
Вечный фонарик без батареек
Свою импровизированную конструкцию фонарика автор предпочел собрать на горячий клей, одновременно улучшив изоляцию контактных групп. Кнопка выключатель расположилась сбоку на корпусе фонарика. Основные же элементы схемы один на другой автор наклеил с одного из торцов. Замыкающим элементом остается светодиод, который можно облагородить защитным стеклом или отражателем.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Несмотря на неказистый внешний вид устройства, подходящий разве что для лабораторно-экспериментальной самоделки, такой фонарик вполне работоспособен и при случае не даст пропасть темноте. Собрать такую схему несложно в домашних условиях и при минимальных затратах. А полное отсутствие элементов питания делает его действительно полезным устройством для различных аварийных ситуаций.
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек
Вечный фонарик без батареек

Смотрите видео


Фонарик Фарадея из шприца своими руками


Привет всем любителям самоделок. В повседневной жизни осветительные приборы играют большую роль, а в тех местах, где нет электросети или возможности зарядить аккумулятор фонаря приходится искать альтернативу, но так или иначе подсветить себе путь в погреб ночью в походе за огурчиками можно при помощи данной самоделки, о которой и пойдет речь в этой статье. Речь пойдет о фонарике Фарадея, который работает независимо от того, есть ли электросеть в помещении или нет, также не зависит от аккумуляторов и батареек, что существенно экономит, как деньги, так и время на ту же зарядку устройства.

Перед прочтением статьи, я рекомендую посмотреть данный ролик, где показан принцип работы данной самоделки, а также ее сборка.

Для того, чтобы сделать самодельный фонарик Фарадея, понадобится:
* Медицинский шприц 20 мл
* Проволока
* Электродрель
* Клей «секунда» моментальный
* Неодимовые магниты
* Изолента
* Светодиоды
* Паяльник, припой, флюс
* Пара проводов
* Картон

Вот и все, что нужно для сборки данной самоделки.



Шаг первый.
Корпусом нашей самоделки будет медицинский шприц, на него необходимо установить два кольца из картона. Сделать кольца из картона достаточно просто, обводим любую круглую вещь или же при помощи циркуля размечаем окружность на картоне и вырезаем, внутренний диаметр должен совпадать с диаметром шприца, таких кольца понадобится два.

Расстояние между данными картонными перегородками должно быть равно длине неодимовых магнитов или же близко к этому. Фиксируем данные кольца на супер клей.

Шаг второй.
Главным элементом данной самоделки является катушка, ее необходимо сделать, намотав проволоку на шприц , не заходя за кольца.


С этой задачей хорошо справляется электродрель, устанавливаем шприц в ее зажимной патрон при помощи винта, который заранее продет в носик шприца и затянут гайкой с внешней стороны, и наматываем около тысячи витков, после чего фиксируем второй вывод катушки супер клеем.

Шаг третий.
Для того, чтобы неодимовые магниты не стучали об стенки корпуса, устанавливаем резиновую прокладку от его же штока или так можно сказать, поршня.

Теперь фиксируем выводы и зачищаем их скальпелем, залуживаем, предварительно нанеся немного флюса на оголенный конец проволоки.

К данным выводам припаиваем два провода и фиксируем к шприцу при помощи изоленты.

Шаг четвертый.
Для того, чтобы фонарик заработал, нужно припаять светодиоды, в данном случае эти три светодиода, распаянных на плате. Припаиваем их к проводам, идущим от катушки и помещаем в шприц неодимовые магниты. В итоге при возвратно-поступательных движениях шприца в катушке возникает ЭДС, за счет того, что магниты двигаются относительно катушки, что в свою очередь вырабатывает ток, который и питает три светодиода.

На этом у меня все, данная самоделка готова, но ее доработки также имеют место быть, чтобы ток сохранялся и свечение не было таким дерганным нужно установить ионистор на выводы катушки или же емкий электролитический конденсатор, который плавно будет накапливать и также плавно отдавать энергию светодиодам.


Всем спасибо за внимание, всем творческих успехов. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Cамодельный ионистор — суперконденсатор делаем своими руками.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты. 

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

 На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!


http://techclan.planeta2.org/photo/samodelnyj_ionistor/12-0-529

Самодельный ионистор На р

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Существует много интересных проектов электрических самоделок, для реализации которых требуется преобразить низкое постоянное напряжение в высоковольтное переменное. Это может понадобиться при сборке самодельной плазменной лампы, или просто для зрелищной демонстрации бьющей искры. Самым простым решением для преобразования напряжения от обычного блока питания на 12 В 1,5 А в 10000 -30000 В является использования автомобильной катушки зажигания. Ее применение позволяет собрать схему для генерации высоковольтного напряжения буквально за считанные минуты.
Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Материалы:


  • автомобильная катушка зажигания;
  • электромагнитное реле;
  • конденсатор 1мкФ 250 В;
  • источник питания 12 В;
  • провода, лучше автомобильные.

Схема преобразователя


Важным условием для преображения напряжения 12 В в высоковольтное, является подача на катушку зажигания пульсирующего тока. Однако блок питания или аккумулятор дают постоянный ток, поэтому между источником электричества и катушкой требуется наличие реле. Электромагнитное реле воспринимает постоянный ток, и выпускает его короткими вспышками, за которыми следует кратковременная пауза. В результате катушка получает от реле уже пульсирующий ток, что ей и нужно.
Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле
Простейшая схема получения высоковольтного напряжения подразумевает просто подачу по проводам питания от источника на реле, и через него непосредственно далее на катушку. Однако принцип работы реле заключается в разрывании контактов, что сопровождается образованием искры в его корпусе. В таком режиме оно быстро выходит со строя. Его контакты обгорают и перестают работать. Чтобы частично снизить силу искры внутри корпуса реле, необходимо добавить в схему конденсатор 1 мкФ 250 В, как указано на схеме. Он просто припаивается обычным припоем.
Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле
Конденсатор устанавливается между общим контактом питания реле и нормально замкнутым контактом. Сделав подключение таким образом, при условии прозрачного корпуса реле, можно визуально увидеть, что при подаче напряжения от блока питания размер побочного искрения снижается. При этом параметры высоковольтного тока на выходе вторичной обмотки катушки не пострадают.
Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле
Наличие конденсатора без изоляции на реле не несет опасности, поскольку 10000В образуются непосредственно внутри катушки зажигания. Таким образом, доработанное реле не нуждается в особом отношении.

Смотрите видео


Как сделать простейший «вечный фонарик» или генератор Фарадея своими руками!


Всем привет! Сегодняшняя самоделка по большей части посвящена новичкам в мире физики и электроники. Сегодня я покажу простейший способ как сделать «вечный фонарик» а именно генератор Фарадея. «Вечный» он потому что он может работать без каких либо источников энергии, вроде батареек и аккумуляторов.

И так для него нам понадобится:
-медный провод сечением 0,1-0,5 мм
-неодимовые магниты
-пвх труба длинной 10-15 см и шириной 2 см
-картон
-низковольтный светодиод
-конденсатор на 10000пф по желанию

Из инструментов нам понадобится:
-паяльник
-клеевой пистолет
-ножницы


И так первым делом нужно вырезать из картона две шайбочки, в диаметре на 4-5мм больше чем диаметр трубы:

Теперь прикладываем к центру нашу трубу, обводим и вырезаем так как показано на фото (кружочки которые мы вырезали не выкидываем, они нам потом понадобятся):

Надеваем наши шайбочки на трубу так как показано на фото и приклеиваем термо клеем:

Теперь берем медную проволоку и мотаем 250-360 витков (не обязательно виток к витку)

Берём кружочки которые мы оставили и приклеиваем одну из них на конец трубы, другой конец пока оставляем открытым:


Припаиваем светодиод к концам проволоки (полярность здесь не имеет значения), также можно поставить конденсатор на 100000пф и выпрямляющий диод, но так как самоделка для начинающих я решил обойтись без них.


Берём 4 соединённых неодимовых магнита и кидаем их в трубу, после чего заклеиваем кругляшком который мы оставили:


Туда же приклеиваем светодиод, без каких либо отражающих бортиков:

С боку одной из шайб делаем надрезы, продеваем проволоку, и закрепляем её на трубе:


Ну вот и всё! Генератор Фарадея готов и осталось только его протестировать. Для того чтобы он заработал нужно делать поступательный движения, так чтобы неодимовый магнитик стал двигаться вверх вниз по направлению трубы, видео с испытаниями и инструкцией по изготовлению представлено ниже, приятного просмотра



Всем спасибо за внимание! Надеюсь эта самоделка поможет новичкам в понимание индукции и магнетизма. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Ионисторы или суперконденсаторы большой мощности: как сделать своими руками

Человечество с каждым днём всё более нуждается в качественных источниках резервного питания. Аккумуляторы – довольно сложные в обслуживании приборы и ограниченные в объёме электрического заряда. Требовался мощный накопитель электроэнергии. Такой прибор был изобретён. Ионистор – что это такое? Это суперконденсатор (Supercapacitor), электролит которого может состоять, как из органических, так и неорганических веществ. По функциональным возможностям ионистор можно определить не только как конденсатор, но и как химический источник тока.

Ионисторы

Ионисторы

Концепция

Ионистор большой ёмкости – это конденсатор, объём которого может составлять несколько фарад напряжением от 2 до 10 вольт. Накопителем заряда является двойной электрический слой (ДЭС) на линии соприкосновения электрода и электролита. Если обычные ёмкости измеряются в микро,- и пикофарадах, то становится понятно, что эти ионисторы являются суперконденсаторами. Концепция ионистора построена на том, что за счёт тонкости ДЭС и большой поверхности пористых обкладок и электродов удаётся достичь колоссального объёма заряда.

История изобретения ионистора

Американской компанией Дженерал Электрик в 1957 году был запатентован простой ионистор с ДЭС, электроды которого были сделаны из активированного угля. Теоретически предполагалось накопление энергии в порах поверхности электродов.

Уже в 1966 году компанией Стандарт Ойл Огайо был получен патент на компонент, который обеспечивал накопление энергии в ДЭС. Потерпев убытки, связанные с низкой реализацией ёмких конденсаторов, фирма передала права на изготовление этих устройств компании Nec. Новый владелец лицензии сумел значительно увеличить спрос на свою продукцию под названием суперконденсатор (Supercapacitor). Устройство значительно понизило энергозависимость электронной памяти, что стимулировало развитие компьютерных технологий.

1978 год ознаменовался появлением на рынке электротехники Золотого конденсатора (Gold Cap) ведущей японской электрокомпании Панасоник. Это уже было устройство более высокого качества. Ионисторы нашли своё применение в системах питания электронной памяти.

В том же году первое упоминание о том, что такое ионисторы в СССР, было опубликовано в пятом номере журнала «Радио». В статье был описан первый советский ионистор КИ1-1. Его устройство предполагало предельный объём заряда до 50 фарад. Недостатком суперконденсатора было его высокое внутреннее сопротивление (ВС), что препятствовало полноценной отдаче электрической энергии.

Суперконденсаторы с малым ВС появились только в 1982 году. Новая конструкция была разработана специалистами компании PRI для особо мощных схем, где применяют ионистор «PRI Ultracapacitor».

Важно! Прогресс в совершенствовании суперконденсаторов приведёт к тому, что ионисторы полностью заменят традиционные аккумуляторы.

Разновидности суперконденсаторов

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты h3SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.
Устройство ионистора

Устройство ионистора

Сравнение положительных и отрицательных сторон

Ионисторы стали использовать не только, как преобразователи параметров электрической цепи, но и как поставщики электроэнергии. Они стали широко применяться вместо одноразовых аккумуляторных элементов питания в электронных системах хранения информации.

Обратите внимание! Несмотря на превосходные технические характеристики ионисторов, ими ещё нельзя полноценно заменить аккумулятор на автомобиле.

По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества.

Недостатки

  1. Массовое внедрение ионисторов тормозит их высокая стоимость.
  2. Зависимость напряжения от уровня зарядки конденсатора.
  3. В момент короткого замыкания возникает риск выгорания электродов в ионисторах большой ёмкости при крайне низком ВС.
  4. Высокий показатель саморазряда суперконденсаторов ёмкостью в несколько фарад.
  5. Небольшая скорость отдачи энергии, в отличие от обычных конденсаторов.

Достоинства

  1. Возможность устанавливать максимально большой ток зарядки и получать разряд той же величины.
  2. Высокая стойкость к деградации. Многочисленные исследования показали, что даже после 100 тыс. циклов заряда-разрядки у ионисторов не наблюдалось ухудшение характеристик.
  3. Оптимальное внутреннее сопротивление не допускает быстрый саморазряд, не приводит к перегреву устройства и его разрушению.
  4. В среднем ионистор может прослужить около 40 тыс. часов при минимальном снижении ёмкости.
  5. Ионистор обладает небольшим весом, в отличие от электролитических конденсаторов аналогичной ёмкости.
  6. Ионистор отлично функционирует и в мороз, и в жаркое время года.
  7. Достаточная механическая прочность позволяет устройству переносить значительные нагрузки.

Материалы изготовления

Электроды традиционно изготавливают из активированного угля. В некоторых случаях используют вспененный металл. Именно эти материалы обладают повышенной пористостью, что необходимо для получения больших площадей поверхности. Это особенность позволяет хранить энергию в больших объёмах.

Плотность энергии

Ионисторы не отличаются повышенной плотностью энергии. У ионистора весом 500 граммов плотность энергии равна 20 кДж/кг. Это почти в 8 раз меньше показателя обычного кислотного аккумулятора. Однако этот параметр суперконденсаторов в несколько десятков раз превышает показатель простых конденсаторов.

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Автомобильный ионистор

Автомобильный ионистор

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Суперконденсатор с АКБ для облегчённого пуска двигателя

Суперконденсатор с АКБ для облегчённого пуска двигателя

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Ионистор для бесперебойного питания ПК

Ионистор для бесперебойного питания ПК

Перспективы развития

Специалисты предсказывают повсеместную замену традиционного общественного транспорта на гибридные модели. Троллейбусы смогут преодолевать трудные участки дороги без троллей с использованием питания бортовых ионисторов. Учёные во всём мире ведут поиски новых материалов для изготовления сверхмощных суперконденсаторов.

Обозначение ионистора на схеме

Суперконденсаторы на схемах обозначают в виде прямоугольников или треугольников, в поле которых присутствуют две латинские литеры IC.

Обозначение ионистора на схеме

Обозначение ионистора на схеме

Ионистор своими руками

Для изготовления суперконденсатора своими руками потребуются:

  • фольга, можно взять вкладку из пачки сигарет, она будет диэлектриком;
  • таблетка активированного угля, это будет электрод;
  • клей ПВА в качестве электролита.

Изготавливают простейший ионистор своими руками следующим образом:

  1. Мелко размолотый уголь перемешивают с клеем ПВА.
  2. Кистью наносят смесь на один отрезок фольги.
  3. После каждой просушки наносят следующий клеевой слой. Трех слоев вполне достаточно для изготовления ионистора.
  4. На высушенную поверхность накладывают второй отрезок фольги после обработки клеем ПВА.
  5. Приложив с двух сторон модели проводки от батарейки, заряжают самодельный ионистор.
Самодельный ионистор

Самодельный ионистор

Продемонстрировать возможности самоделки можно, услышав сигнал подсоединённого маломощного динамика, или, если применить его для свечения светодиода.

Частота, с которой создаются новые модели суперконденсаторов, настолько большая, что порой трудно запоминать новые названия. Специалисты ожидают скорого появления высоковольтных иониксов, которые совершат технологическую революцию во всех сферах деятельности человека.

Видео

Вечный фонарик или фонарик Фарадея

Вечный фонарик или фонарик Фарадея так называют фонарик с источником альтернативного питания. То есть данный фонарь не требует батареек или зарядки аккумулятора. Что бы его «зажечь» необходимо его потрясти. В самом фонарике стоит генератор и аккумуляторная батарея.

Давайте сначала познакомимся с заводским фонарем:

Я постарался максимально разрисовать конструкцию. Суть в том, что цилиндрический постоянный магнит свободно болтается в трубке — корпусе между резиновыми упорами или пружинками (где как) . А в цетре трубки намотана катушка. При тряске магнит бегает вверх вниз внутри катушки, создавая в ней при этом переменное электричество.

Далее это электричество поступает на диодный мостик и превращается в постоянное и заряжает аккумуляторы напряжением 3 вольта.

Посмотрим без корпуса.

Мы видим соленоид, цилиндрический магнит, ограничители, небольшую плату с диодами, переключателем и аккумуляторы. Ах да и светодиод на плате. 

Трясем фонарик, включаем. Работает ! 

А вот наш опытный образец:

Коробочка из под Тик-так. Трубка на которую намотана катушка — корпус от шариковой ручки. Пару магнитиков от жесткого диска, есть там такие. Да, вместо аккумуляторов использованы конденсаторы. Белый светодиод. пару диодов. 

Схема. 

Есть особенность намотки катушки. Как Вы, наверное, заметили из схемы — катушка состоит из двух обмоток, общая длина катушки 40 мм. Делим мысленно попала. На первой половине наматываем 600 витков самого тонкого провода диаметром примерно 0,08мм. И на второй половине 600 витков. Вот и всё — двух секционная катушка готова. Далее по схеме.

Не забудте про ограничители, чтоб магнитики отталкивались и шустренько скакали.

А вот мой более мощный образец. Тут уже использована катушка с большим числом витов и трех секционный магнит.

Желаю удачных самоделок !

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *