Ремонт стабилизатора напряжения своими руками видео: Стабилизатор ремонт своими руками

Содержание

Ремонт стабилизатора напряжения Ресанта своими руками

Во многих квартирах в нашей стране можно встретить стабилизаторы напряжения фирмы Ресанта, что вполне объяснимо. Это обусловлено тем, что подобные агрегаты позволяют нормализовать работу всех электрических приборов, которые присутствуют дома. Иными словами, они позволяют сберечь довольно дорогостоящую технику в случае возникновения перегрузки в сети, либо при скачках напряжения, тем самым существенно продлевая эксплуатационный срок всего электрооборудования.

Однако, работа стабилизатора напряжения также сопряжена с риском возникновения определенных поломок, единственным выходом из которых является своевременный ремонт.

Причин этому может быть несколько — от неправильной эксплуатации до естественных причин поломки, т.е. продолжительного срока службы.

Чтобы этого избежать, необходимо в точности следовать инструкции, которая прилагается в комплекте, позволяющая существенно продлить службу агрегата в правильном режиме работы. Если же все-таки поломка случилась, то нужно знать, какими методами нужно правильно осуществлять ремонт своими руками, чтобы еще больше не усугубить ситуацию. В данной статье мы рассмотрим основные неисправности, а также способы их своевременного устранения.

На данном видео показан стабилизатор Ресанта с неисправностью

Принцип работы

Конструктивное строение стабилизатора напряжения Ресанта выглядит следующим образом:

  • трансформатор автоматического типа;
  • электронный блок;
  • вольтметр;
  • орган управления, который ответственен за запуск и отключение некоторых обмоток.

Данным производителем выпускается множество различных типов стабилизаторов, поэтому и данные органы подключения обмоток будут разниться. О всех этих нюансах мы поговорим чуть позже, во время рассмотрения процедуры ремонта.

В данной конструкции определяющим является электронный блок, который осуществляет общее управление всей системой агрегата. Он ответственен за работу вольтметра, а также к нему поступают сведения о мощности входного напряжения. Затем, блок сравнивает полученные значения с оптимальными, определяя следующее действие, т.е. нужно ли добавить несколько вольт или, напротив, отнять некое количество.

Далее, по цепочке, идет определение необходимых обмоток — какие их них нужно запустить, а какие отключить. Затем, электронный блок осуществляет одно из этих действий, после чего все электрические приборы, находящиеся в квартире, получают стабильный ток.

Безусловно, сам процесс стабилизации может быть немного разным, в зависимости от типа выпускаемого устройства.

Данное различие распространяется на виды обмоток, а также методы их запуска и отключения. На сегодняшний день, компания Ресанта выпускает два вида данных стабилизаторов:

  • Электромеханического типа.
  • Релейные.

Соответственно, ремонт их будет несколько иным.

Особенности работы электромеханического стабилизатора

Начнем свое рассмотрение со стабилизаторов электромеханического типа. В его конструкции присутствует сервопривод, который и осуществляет запуск и отключение обмоток в устройстве.

Сам сервопривод состоит из двигателя, на котором располагается электрический контакт (щетка). При движении якоря данного мотора, соответственно, крутится и эта щетка, постоянно контактируя обмотками из меди. Ширина данной щетки позволяет осуществлять полный обхват всей обмотки, что позволяет фазе не пропадать.

Чтобы щетка двигалась в заданном направлении с нужными характеристиками, в устройстве возникает напряжение ошибки. Затем, данное значение напряжения растет. Далее оно передается к двигателю, что и заставляет якорь вращаться в оптимальном направлении. Соответственно, щетка также движется, как и якорь, в том же заданном направлении. При этом осуществляется непосредственный контакт с обмотками.

Значение напряжения ошибки будет пропорциональным тому значению, формируемое разницей между реальным вольтовым значением на входе и тем значением, которое должно там быть. Данный сигнал может обладать одной из двух полярностей, каждая из которых задает определенное направление движения. Ниже приведена схема подобного стабилизатора напряжения:

Вне зависимости от конкретной модели, строение данного стабилизатора напряжения будет практически одинаковым. Отличаются они между собой разными значениями мощности и отдельными элементами цепи.

Особенности работы релейного стабилизатора

Все релейные стабилизаторы выравнивают значения тока путем скачков. Это объясняется тем, что реле осуществляет запуск или отключение витков, расположенных на второй обмотке. Электромеханический стабилизатор выполняет этот процесс более плавно, чем релейный.

Релейные агрегаты от Ресанта осуществляют подключение витков до тех пор, пока не найдут нужный. Все эти витки условно разделены на подгруппы, при чем от каждого витка есть вывод, на который и поступает ток при запуске устройства.

Схема всех релейных стабилизаторов данной марки показывает, что в её конструкции присутствует порядка четырех элементов реле. В отдельных случаях, это количество может ровняться пяти (модели СПН).

В случае релейных стабилизаторов, именно реле является наиболее уязвимым местом всего устройства. Это обуславливается тем, что оно находится в постоянном рабочем режиме, что существенно увеличивает риски выхода из строя.

Основные неисправности

Рассмотрев принципы работы обоих типов стабилизаторов напряжения, можно сделать вывод о том, что именно их основные составляющие части и являются наиболее часто ломающимися компонентами системы. Речь идет о сервоприводе в электромеханических приборах, а также о реле в релейных.

В первом случае, постоянное движение сервопривода приводит к периодическому трению витков катушки и щетки, что приводит к появлению излишнего перегрева данных комплектующих. Это также приводит к сильному износу и появлению искр от проводов меди.

Нужно также иметь в виду тот факт, что в сети периодически меняется значение тока, что провоцирует аналогичное изменение движения сервопривода. Подобная нестабильная работа может приводить к выходу из строя данного устройства.

 

Ремонт одной из неисправностей продемонстрирован на видео

Ремонт

Ремонт стабилизатора Ресанта можно условно разделить по типу поломок.

Сервопривод

Сначала рассмотрим ситуацию, когда вышел из строя двигатель сервопривода Ресанта. Выходов из данной проблемы два:

  • Купить новый двигатель, затем установить его в устройство.
  • Попытаться произвести ремонт поврежденного.

Если с первым случаем все понятно, то второй требует детального рассмотрения. Важно понимать, что в случае успешного проведения ремонтных работ, отреставрированный двигатель не сможет работать долгое время, т.е. это является временной мерой.

Все наши действия будут сводиться к следующему:

  • Отключаем двигатель с сервоприводом от общей конструкции. Затем подключаем его к источнику питания, обладающему достаточной мощностью.
  • Нужно осуществить подачу на выходы двигателя тока мощностью в 5 В. Показатель силы тока должен быть не менее 90 мА.
  • Осуществление данных манипуляций позволит нормализовать работу стабилизатора. Далее нужно подключить двигатель обратно к схеме.

Схема довольно проста: входной кабель подключается к входной клемме, нейтральный кабель подключается к нейтральной клемме. Те же самые манипуляции выполняются и для выходных кабелей. Кроме того, нужно не забыть о подключении заземляющего провода.

Реле

Выход из строя реле зачастую приводит и к поломке транзисторов. К примеру, в модели АСН-5000, располагаются транзисторы вида D882P. Схема приведена ниже:

Если эти транзисторы выходят из строя, то нужно приобретать на их место новые. Приобрести их можно довольно свободно, ведь во многих специализированных магазинах продается техника и комплектующие марки Ресанта.

Можно также попытаться произвести ремонт поврежденных частей:

  • Сначала нужно снять крышку реле. Далее снимаем подвижной контакт, освобождая его от пружины.
  • При помощи наждачной бумаги счищаем с контакта весь нагар. Осуществляем данную манипуляции для обоих контактов — верхнего и нижнего.
  • Затем смазываем контакты бензином, после чего собираем конструкцию реле.

Другие неисправности

Еще одной вероятной проблемой является неупорядоченное включение дисплея, а также включения самого реле. Причиной этому может быть резонатор XTA1, у которого может быть совершена некорректная пайка.

Ремонт заключается в следующем:

  • Выпаиваем с помощью паяльника данный резонатор.
  • C помощью наждачной бумаги счищаем выводы.
  • Запаиваем резонатор обратно.

Рассказ специалиста про ремонт Ресанта

Диагностика

Для совершения диагностики, нам понадобится прибор ЛАТР, т.е. лабораторный автотрансформатор регулируемого типа. Осуществляем подключение стабилизатора к данному устройству, при помощи которого нужно менять значения напряжения. Параллельно следим за работой стабилизатора Ресанта.

Вывод

Осуществление ремонтных работ, в данном случае, может производиться в домашних условиях. При этом, предполагается, что человек, осуществляющий данные манипуляции, будет хорошо знаком с подобной техникой, обладать навыками правильной пайки и некоторых знаний в электронике. Если человек этим не обладает, то целесообразнее будет обратиться к специалистам.

Подобных сервисных центров довольно много по Москве и Санкт-Петербургу. В частности, «Демал-Сервис», находящийся по адресу: г.Москва, ул. 1-я Владимирская, дом 41.

В Санкт-Петербурге находится сервисный центр самой компании, находящийся по адресу: ул. Черняковского, дом 15.

Как отремонтировать стабилизатор напряжения своими руками

О внутреннем устройстве и типах стабилизаторов

Из всех разновидностей стабилизаторов напряжения можно выделить три наиболее распространённых топологии с довольно специфичными принципами преобразования. Среди них нельзя однозначно выделить самую надёжную, слишком многое зависит от характера питания и типа нагрузки, а также от добротности исполнения прибора. В нашем обзоре мы рассмотрим сервоприводные, релейные и полупроводниковые преобразователи, особенности их работы и типовые неисправности.

В сервоприводном стабилизаторе основным функциональным органом служит линейный трансформатор со множеством выводов средних точек вторичной, а иногда и первичной обмотки — от 10 до 40 в зависимости от класса точности. Концы выводов собраны в коллекторную гребёнку, по которой перемещается токосъёмная каретка. В зависимости от действующего напряжения по линии питания, стабилизатор поправляет положение каретки, регулируя тем самым число задействованных витков и, соответственно, коэффициент трансформации. На выходе схемы может осуществляться более тонкая подстройка напряжения, например с помощью интегральных полупроводниковых стабилизаторов.

Релейные трансформаторы устроены похожим образом. Число выводов трансформатора у них меньше, вместо плавного регулирования тонкость подстройки достигается рекомбинацией включенных в работу обмоток. За оперативное переключение отвечают силовые реле со сложной конфигурацией релейной группы. Как и в предыдущем случае, на выходе могут стоять дополнительные фильтры, стабилизаторы и устройства защиты, тем не менее, основную работу выполняют трансформатор и релейная сборка под аналоговым управлением.

В основе электронных стабилизаторов напряжения может лежать два принципа преобразования. Первый — переключение обмоток трансформатора, но уже с помощью симметричных тиристоров, а не реле. Второй принцип — преобразование тока в постоянный, его накопление в буферных ёмкостях (конденсаторах), а затем обратное преобразование в «переменку» с чистой синусоидой посредством встроенного генератора. Схема на первый взгляд кажется достаточно сложной, но зато так обеспечивается беспрецедентно высокая точность стабилизации и качественная защита линии.

Конечно, есть и другие схемы стабилизаторов, в том числе и гибридные, но по причине узкоспециализированного применения или архаичности их мы рассматривать не будем. Каждое из трёх наиболее распространённых семейств обладает так называемыми детскими болезнями или врождёнными недостатками техники. И поэтому важнейшая задача перед отправкой прибора в сервисный центр — установить, не является ли поломка причиной несоблюдения норм ухода или заурядной для этого вида стабилизатора неисправностью.

Принцип работы и основные характеристики

Для поиска неисправностей инверторных сварочных аппаратов нужно ознакомиться с его структурной схемой. Она состоит из следующих элементов:

  1. Выпрямитель.
  2. Инвертор.
  3. Трансформатор.
  4. Выпрямитель высокочастотный.
  5. Схема управления и стабилизации (драйвер и плата управления).
  6. Регулятор тока сварки.

Благодаря такому устройству происходит снижение массы и габаритов. Использование импульсного трансформатора позволяет получать мощные токи во вторичной обмотке. Следовательно, сварочный инвертор представляет собой обыкновенный импульсный блок питания, как в компьютере, но с достаточно большой мощностью. С увеличением частоты происходит снижение массы и габаритов трансформатора (обратно пропорциональная зависимость). Для получения высокой частоты применяются мощные ключевые транзисторы.

Происходит переключение с частотой от 30 до 100 кГц (зависит от модели САИПА). Транзисторы только работают от постоянного напряжения (U), преобразуя его в ток высокой частоты. Получается постоянный ток из выпрямителя (выпрямление сетевого напряжения 50 Гц). Кроме того, в состав выпрямителя входит конденсаторный фильтр. При пропускании тока через диодный мост отсекаются отрицательные амплитуды переменного U (диод пропускает ток только в одном направлении). Положительные амплитуды не являются постоянными и получается постоянное U с заметными пульсациями, которые необходимо сглаживать при помощи конденсатора большой емкости.

В результате преобразований на выходе фильтра появляется U постоянного тока свыше 220 В. Диодный мост и фильтр образуют БП инвертора. Транзисторы подключаются к понижающему импульсному высокочастотному трансформатору, рабочие частоты которого составляют от 30 до 100 кГц (30000.100000 Гц), превышающие частоту питающей сети в 600 или 2000 раз. В результате этого происходит заметное уменьшение массы и габаритов.

Наиболее распространенными моделями являются ресанта САИ 220 (220а, 220к), а также и 190 (190а) модель. Сварочные инверторы обладают похожими характеристиками, отличающимися током сварки:

  1. Диапазоны сетевого напряжения: 145.270 В.
  2. Максимальная сила тока: до 35 А.
  3. Напряжение при холостом ходе: 75.85 В.
  4. Напряжение формирования дуги: 22.30 В.
  5. Диапазоны тока сварки: 5.270 А.
  6. Продолжительность нагрузки (ток максимальный): 4.8 мин.
  7. Максимальный диаметр (d) электрода: 5 мм.
  8. Масса: около 5 кг.

Особенности работы электромеханического прибора

Сначала мы рассмотрим электромеханический нормализатор. Устройство этого стабилизатора напряжения от компании «Ресанта» предусматривает наличие такого элемента как сервопривод. Собственно благодаря ему осуществляется переключение различных обмоток автоматического трансформатора.

Переключение этих обмоток осуществляется плавно и в результате обеспечивается точная регулировка напряжения на выходе.

Каким же образом происходит это плавная регулировка? Сервопривод представляет собой двигатель и щетку (электрический контакт), которая прикреплена к якорю двигателя. Когда этот якорь крутится, то движется и щетка. Она постоянно контактирует с медными обмотками трансформатора.

По сути дела она скользит по ним. Она имеет такую ширину, которая позволяет соединять две обмотки одновременно. В результате на выходе не пропадает фаза.

Для того, чтобы щетка двигалась в определенном направлении и на определенную величину, в нормализаторе создается напряжение ошибки. Далее благодаря операционному усилителю и транзисторному выходному каскаду (он представляет собой усилитель мощности) это напряжение усиливается.

После этого оно подается на двигатель и заставляет крутиться якорь в определенном направлении.

В таком направлении движется и щетка, которая контактирует с обмотками. Напряжение ошибки является пропорциональным величине, которая является разницей между количеством вольт на входе и необходимым количеством вольт.

Сигнал ошибки может иметь одну из двух полярностей и в результате каждая полярность заставляет ось двигателя крутиться в определенном направлении. Такими являются особенности работы электромеханического нормализатора.

Отметим, что очень многие люди покупают 10-киловольт-амперный электромеханический стабилизатор. Поэтому возможные неисправности и поломки этого типа стабилизатора напряжения от компании «Ресанта» будут рассмотрены на этой модели. Ниже приводится его электросхема.

Стоит обратить внимание на тот факт, что общее строение всех нормализаторов этого типа является похожим. Различия заключаются в отдельных элементах моделей с разными уровнями мощности.

Особенности работы релейного стабилизатора

Все релейные стабилизаторы выравнивают значения тока путем скачков. Это объясняется тем, что реле осуществляет запуск или отключение витков, расположенных на второй обмотке. Электромеханический стабилизатор выполняет этот процесс более плавно, чем релейный.

Релейные агрегаты от Ресанта осуществляют подключение витков до тех пор, пока не найдут нужный. Все эти витки условно разделены на подгруппы, при чем от каждого витка есть вывод, на который и поступает ток при запуске устройства.

Схема всех релейных стабилизаторов данной марки показывает, что в её конструкции присутствует порядка четырех элементов реле. В отдельных случаях, это количество может ровняться пяти (модели СПН).

В случае релейных стабилизаторов, именно реле является наиболее уязвимым местом всего устройства. Это обуславливается тем, что оно находится в постоянном рабочем режиме, что существенно увеличивает риски выхода из строя.

Составные части

Прежде, чем переходить к ремонту стабилизатора напряжения, сначала коротко рассмотрим, из чего состоит и как устроен наш ящик.

Итак, как я уже говорил в предыдущей статье про трехфазные стабилизаторы, трехфазный стабилизатор – это три однофазных. Так же обстоит дело и с Ресанта асн-20000/3-эм:

Видно, что этот стабилизатор состоит из трёх одинаковый частей – из трёх однофазных стабилизаторов, каждый из которых стабилизирует только свою фазу.  Это относится к таким распространенным однофазным моделям, как АСН 10000 1 эм и др.

То есть, даже если будет значительный перекос фазных напряжений на входе, то на выходе по всем фазам будет 220 В +-3%. Подробнее о параметрах таких стабилизаторов можно почитать в инструкции, которую можно будет скачать в конце статьи.

А если перекос фаз произошёл в результате обрыва нуля, о последствиях этого можно прочитать здесь. Трехфазный стабилизатор до определённой степени исправит ситуацию, а если не справится – отключится и спасёт потребителя.

Автотрансформатор

Сердце электромеханического трансформатора – это повышающий автотрансформатор. Это “сердце” бьётся в такт с изменением напряжения на входе стабилизатора, пытаясь выровнять его до нормы.

Почему используется повышающий, а не понижающий автотрансформатор? Потому что стабилизаторам чаще всего приходится иметь дело с пониженным входным напряжением. Но это не значит конечно, что он не может понизить завышенное входное напряжение. Впрочем, принципы работы автотрансформатора здесь описывать не буду.

Рассмотрим устройство стабилизатора на следующей фотографии:

Первое, что надо усвоить – автотрансформатор состоит из двух равноценных частей, соединенных параллельно для увеличения мощности. Соответственно, есть две обмотки, по ним ездят две щётки (на фото щётку не видно, она указана стрелкой).

Поскольку щётка – это контакт, причём довольно плохой, то она греется. Это нормально, но для её охлаждения предусмотрен радиатор. В радиаторе щётки закреплен термодатчик, который при превышении допустимой температуры (105°С) размыкает контрольную цепь и отключает нагрузку от выхода стабилизатора.

Двигатель перемещает щётки по поверхности обмотки, подстраивая напряжение. На конце хода щёток, соответствующему наименьшему напряжению (140 В) установлены концевые выключатели, останавливающие двигатель. Это наиболее сложный режим работы, поскольку выходная мощность стабилизатора при этом падает. Если напряжение понижается и дальше, то автотрансформатор уже не справляется, и весь стабилизатор отключается. Это происходит за счет размыкания контактов реле KL (см. принципиальную схему ниже).

На корпусе трансформатора закреплен (приклеен) термодатчик, которой при перегреве выше 125 °С размыкает контрольную цепь, предохраняя от дальнейшего теплового разрушения.

Оба типа датчиков – самовосстанавливающиеся. То есть, при остывании контрольная цепь собирается, и стабилизатор снова готов к работе.

Электронная плата

Что же заставляет двигаться двигатель автотрансформатора? Это электронная схема, которая измеряет входное фазное напряжение, и выдает напряжение на серводвигатель, который двигает щётку автотрансформатора, изменяя напряжение на выходе до нужного уровня:

На приведенном фото видны последствия устранения частой неисправности – пробой биполярных силовых транзисторов, через которые управляется двигатель. С ними заодно выгорают и резисторы, которые исходно имеют мощность 2Вт, но заменены на 5Вт. Но по неисправностям и ремонту – в конце статьи.

Пускатель контрольной цепи

Этот пускатель необходим для защиты (отключения) стабилизатора и нагрузки в случае неготовности, неисправности или перегрева.

Основные неисправности

Стабилизаторы напряжения от латвийской компании Ресанта зарекомендовали себя как достаточно надежные и высокотехнологичные. Однако и они могут ломаться. В силу особенностей конструкции релейных и электромеханических устройств бывают характерные поломки, которые требуют замены поврежденных элементов и восстановления работоспособности оборудования.

У электромеханических стабилизаторов может сломаться привод, на который в процессе эксплуатации устройства приходится повышенная нагрузка. В электросетях, где отмечаются частые скачки напряжения, электродвигатель может сломаться уже через год после начала использования оборудования.

В трансформаторных установках слабым местом является реле, которое может перегореть, что приводит к проблемам с контактом подвижной щётки. Ремонт будет заключаться в замене повреждённых обмоток и реле, а также восстановлении трансформатора.

Гул и щелчки

Если стабилизатор напряжения сильно гудит, нужно проверить, чтобы питающее напряжение не было выше или ниже допустимых диапазонов. Диапазон регулировки в большинстве случае лежит в пределах 100-250 Вольт.

Внимание! Даже при исправном состоянии автотрансформатор равномерно и не слишком громко гудит. Также гул издаёт сервопривод при перемещении щеточного узла. Релейные стабилизаторы напряжения во время работы издают щелчки. Это нормально, реле (черные прямоугольники на рисунке ниже) переключают отводы от обмоток для регулировки выходного напряжения.

Если устройство громко трещит – это может свидетельствовать об искрении щетки в сервоприводных моделях, проблемах с реле и плохом контакте внутренней проводки устройства.

Выключается под нагрузкой

Стабилизатор напряжения не держит нагрузку – такая проблема случается по ряду причин. Первая среди них – это повышенная нагрузка (мощность потребителей). Если вы не меняли подключаемые устройства, значит проблема в стабилизаторе. Если он отключается не мгновенно, а через какое-то время работы, то виной этому может быть перегрев или межвитковые замыкания автотрансформатора.

Что делать: разберите прибор и произведите внешний осмотр обмоток автотрансформатора, если он не слишком сильно запылён, то проверьте, нет ли следов локальных перегревов. Если пыли много – вычистите её

Если следы перегрева и гари есть – повреждена изоляция обмоток. Это и есть межвитковое замыкание, тогда как отремонтировать стабилизатор в этом случае? Нужно перемотать либо заменить автотрансформатор на аналогичный или больший по мощности. Но стоимость такого ремонта может быть сопоставимой с покупкой нового стабилизатора напряжения.

Важно! У сервоприводных моделей ряд неисправностей может быть вызван износом щетки и загрязнением токоведущих частей графитовой стружкой. В процессе работы щетка стирается, засыпая графитом автотрансформатор. Из-за чего могут возникать замыкания между токосъемниками участками витков и перегрев. В этом случае нужно смести графит и вычистить его между витками. Убедитесь, что обмотки уложены ровно, нет обрывов. Контактную поверхность зачистите обычным канцелярским ластиком до блеска, особенно наиболее его используемый сектор.

На выходе нет 220 Вольт

Неисправность проявляется в том, что стабилизатор не выдает напряжение 220 Вольт. Это не обязательно говорит о внутренних проблемах, причина может быть в напряжении сети – оно слишком низкое, и устройство просто не вытягивает. Если питание находится в рабочем диапазоне стабилизатора, тогда приступим к ремонту.

Что делать: в сервоприводных моделях поломка может быть вызвана износом щеточного механизма или самого сервопривода. Он может не доходить до конца обмотки или щетка может не контактировать с соответствующим её сектором. В простейшем случае может быть просто загрязнена графитом. Чтобы отремонтировать его, нужно почистить поверхность контактов до металлического блеска. Иногда нужно заменить щетку.

Интересно! Бывает и так, что из-за загрязнений рабочего сектора щеточного узла графитом часто напряжение не поднимается выше определенного значения.

В релейных СН это чаще всего говорит о том, что неисправно одно или несколько электромагнитных реле или каскад управления ими. Обычно он строится на транзисторе. Реле могут иметь различное напряжение катушки, часто это 12 Вольт.

Что делать: для проверки подайте напряжение на катушку и прозвоните силовые контакты. Они должны замыкать и размыкаться, реле при этом щелкает. Если этого не происходит – либо прилипли контакты (чаще), либо сгорела катушка реле (реже). Если реле исправно – проверьте транзистор, он не должен быть пробит, а переходы эмиттер-база и коллектор-база должны прозваниваться в одну сторону, как диод. Транзисторы используйте любые маломощные аналогичной проводимости.

В симисторных и тиристорных СН диагностика поломки аналогична – нужно прозвонить на пробой полупроводниковый силовой ключ и если он вышел из строя заменить аналогичным или более мощным.

Плохая стабилизация напряжения

Если напряжение стабилизируется слишком большими шагами, а раньше всё было плавно, то поломка близка к предыдущей – вышел из строя коммутационный прибор на одной или нескольких ступенях регулировки. Алгоритм проверки неисправности стабилизатора напряжения и их устранение описаны в предыдущем пункте.

Внимание! В характеристиках каждого из стабилизаторов описан либо шаг регулировки, либо границы каждой из ступеней, а также точность поддержания номинального напряжения на выходе.

В сервоприводных стабилизаторах такое встречается при поломке в механизме редуктора двигателя, а также при загрязнениях обмоток, как это было в случаях описанных выше. Неисправности редуктора могут сопровождаться неравномерным жужжанием или потрескиванием – это проскакивают шестерни.

Что делать: нужно разобрать механизм и если все детали в норме, заменить смазку.

Еще стоит отметить, что у сервоприводных СН стабилизация может отсутствовать, работать неверно из-за выхода из строя полупроводниковых ключей управления двигателем. Тогда бегунок со щеткой перемещается в одно из крайних положений или вообще не сдвигается с места.

Электронные ступенчатые стабилизаторы напряжения

Электронные ступенчатые стабилизаторы по принципу работы аналогичны релейным. Уязвимость в виде реле устранена путем их замены на современные полупроводниковые ключи – тиристоры. Тем не менее, даже качественные тиристоры могут выйти из строя. Если срабатывает защита на стабилизаторе и отбивает автомат, то проблема очевидна – пробой тиристора. Тиристоры по сроку службы никак не ограничены, но определенный процент может выйти из строя раньше, чем хотелось бы. В отличие от реле, полупроводниковые ключи не ремонтопригодны и требуют замены.

Релейные стабилизаторы напряжения

Релейные стабилизаторы без преувеличения очень хороши. Сочетание демократичной цены и неплохих характеристик видится пользователем очень привлекательным. Тем не менее, у релейной конструкции есть компромиссное решение, наиболее часто являющееся причиной возникновения неисправности. Конечно же, речь идет об электромагнитных реле, которые осуществляют коммутацию той или иной ступени стабилизации. И хотя ресурс реле достигает 100 тысяч коммутаций, неисправность может случиться значительно раньше.

Распространенной причиной обращений в сервис является залипание реле. Данная неисправность лечится банальной чисткой контактов реле, однако так делать ни в коем случае не стоит. Будучи поврежденными в процессе чистки, контакты быстро придут в негодность и потребуют повторить обслуживание. Единственным верным решением является замена реле. Тем более, их стоимость очень низка и экономия в данном случае попросту неуместна.

Электронные бесступенчатые стабилизаторы напряжения

Неисправности стабилизатора напряжения данного типа, в принципе, не отличаются от электронных ступенчатых аналогов. Тут тоже самым надежным и одновременно самым уязвимым элементом являются полупроводниковые ключи. Правда, тут можно говорить не о тиристорах, а о транзисторах, хотя и то и другое является разновидностью полупроводниковых ключей. Они очень надежны, но как и любой силовой компонент могут получить пробой или сгореть.

Не включается или выбивает автомат после отчета таймера

Большинство стабилизаторов после включения входят в рабочий режим не сразу, а после временной задержки. Но после отчета обратного таймера пуска не происходит, при этом на дисплее-индикаторе выдает букву Н. Пример ремонта устройства с такой неисправностью рассмотрен в следующих видео:

К сведению код ошибки «Н» говорит о завышенном напряжении сети и срабатывании защиты. Это действительно для приборов фирмы «Ресанта», «Luxeon» и некоторых других.

Интересно: буква «H» — значит «Высокое» или «High», а L – «низкое», «Low». Резистор, замену которого вы видели на видео, отвечает за пороги срабатывания по верхнему и нижнему уровню напряжения. Из-за неверного сопротивления плата стабилизации не справляется со своей работой и уходит в защиту.

Такие симптомы или другой код неисправности может сопровождаться выбиванием автомата питающего сам стабилизатор после отчета таймера задержки включения. В этом случае проблема решается заменой реле, при залипании которых может возникать повышенное потребление тока.

Причины поломок

Большинство стабилизаторов имеет в своём составе движущиеся детали. Такие компоненты постоянно находятся в движении и под действием электрического тока. Нередко им приходится испытывать существенные нагрев и вибрацию. Такой режим работы со временем приводит к их усиленному износу и, как следствие, отказу.

В случае с реле его контакты могут начать греться, что вызовет их обгорание и нарушение работоспособности. Механические приводы постоянно подвижны, поэтому их элементы способны расшатываться, а контакт щётки с обмотками ухудшаться.

Неправильная установка способна повредить стабилизатор. Он просто-напросто перегреется от недостатка охлаждающего воздуха. После чего устройство либо выдаст сигнал ошибки и перестанет включаться, либо получит несовместимые с работой повреждения.

Важно! Не стоит блокировать отверстия для вентиляции стабилизатора. Между ними и ближайшим объектом должно сохраняться расстояние хотя бы в 100-150 мм.

Диагностика повреждений

Ремонт стабилизаторов напряжения начинается с оценки его целесообразности. Если вольтаж на выходе аппарата равен нулю, то это ещё не значит, что проблема именно в нём. Возможно напряжение не приходит на сам стабилизатор, поэтому первым делом нужно убедиться в его наличии на входных клеммах. Сделать это можно с помощью любого вольтметра или лампочки на 220 В.

Если проблема не в этом, то следует снять крышку стабилизатора. Сначала строго обязательно нужно отключить входные автоматы и убедиться, что на прибор не приходит напряжение. Затем следует осмотреть стабилизатор на предмет обгорания дорожек платы управления, потемнения проводов, реле и их контактов или разрушения графитовых щёток.

Нелишним будет принюхаться. Если чувствуется запах гари, то следует по возможности выяснить его источник. Часто именно это становится прямым указанием на причину поломки.

Ремонт оборудования

Отсутствие проблем при эксплуатации стабилизаторов напряжения будет зависеть и от качества их ремонта. Самостоятельно проводить такую работу или доверять ее сомительным мастерам не стоит. Экономить на ремонте не следует — это позволит гарантировать в дальнейшем отсутствие проблем со стабилизаторами Ресанта.

В мастерских для диагностики поломок и ремонта техники используется специальный прибор ЛАТР — лабораторный автотрансформатор регулируемого тока. К тестеру подключается вышедший из строя стабилизатор, на выпрямитель подают напряжение, что позволяет определить поломки оборудования.

Ремонт релейных приборов

Ремонт Ресанта аппаратов часто связан с заменой реле. В устройствах от этого производителя их обычно 4 или 5. Восстановление аппаратов такого типа усугубляется тем, что в маломощных стабилизаторах корпус реле изготовлен из непрозрачного пластика. Поэтому нельзя визуально определить, в каком состоянии находятся его контакты. Также маломощные реле неразборные, с них нельзя просто так снять крышку.

Дополнительная информация. То, что реле щёлкает как положено, ещё не означает, что оно исправно. Механическая часть этого компонента может быть в порядки, но он всё равно не будет выполнять свою функцию из-за нагара на контактах.

Второй неблагоприятный фактор заключается в том, что большую часть времени входное напряжение стабилизатора находится в узком диапазоне. Поэтому в основном срабатывают одни и те же реле. Чаще всего они располагаются рядом и подвержены наиболее частым отказам.

Неисправное реле может выдать себя оплавлением корпуса, характерным запахом гари или изменением цвета. Технически его можно попытаться разобрать, почистить контакты и отремонтировать. Но нет гарантий, что после ремонта оно долго прослужит. Поэтому при таких неисправностях реле лучше всего заменить аналогичным или более мощным.

Методика проверки стабилизатора

Явный признак неисправности любого стабилизирующего аппарата – это отсутствие на его выходных клеммах напряжения, в то время как на входных оно присутствует. В таком случае устройство автоматически признаётся сломанным и нуждающимся в ремонте.

Более подробную диагностику может провести только квалифицированный специалист в условиях электротехнической лаборатории. Чтобы убедиться в правильности стабилизации, необходимо одновременно контролировать измерительными приборами вольтаж на входе и выходе прибора. Напряжение на нагрузке, независимо от питающего, должно лежать в узком диапазоне – 220-230 В. Т.е., сколько бы вольт ни приходило на вход стабилизатора, на выходе вольтаж должен оставаться неизменным. Причём это справедливо как для работы аппарата в режиме холостого хода, так и с подключением потребителя.

220 В на выходе стабилизатора

Повреждения реле

У транзисторных модификаций Ресанта часто ломается реле, что ограничивает функционал устройства или полностью выводит его из строя. Ремонт реле будет напрямую зависеть от характера поломки. В большинстве случаев требуется определить вышедшие из строя транзисторы и заменить их на новые.

Ремонт стабилизатора напряжения Ресанта своими руками выполняется следующим образом:

  • Снимают крышку реле, демонтируют подвижный контакт и освобождают фиксирующие пружины.
  • С помощью мелкой наждаки аккуратно зачищают верхний и нижний контакт.
  • Соединения и контакты аккуратно смазываются бензином.
  • Конструкция реле собирается в обратной последовательности.

Такой ремонт возможен в тех случаях, когда отмечается окисление контактов реле. Всю работу можно выполнить самостоятельно, без использования вольтметров и другого профессионального оборудования.

Другие неисправности релейных приборов

Стоит отметить, что поломка реле может быть не единственной неисправностью, которая возникает в релейном нормализаторе от латвийской компании. В некоторых случаях в стабилизаторе СПН-9000 наблюдался периодический дефект.

Внешним признаком этого дефекта являлось хаотическое отображение сегментов дисплея, которые включались. В это же время наблюдалась хаотическое включение реле.

Причина этого кроется в холодной пайке кварцевого резонатора ХТА1, который имеет рабочую частоту 8 мегагерц. Такая пайка вызывает неправильную работу микроконтроллера U2.

Для решения проблемы нужно выпаять этот резонатор, почистить его выводы с помощью нулевой наждачной бумаги, провести качественную подпайку и поставить обратно.

Специалисты также рекомендуют проверить электролитические конденсаторы, которые находятся на плате контроллера. Это необходимо сделать по той причине, что фирма использует конденсаторы от производителя JAKEC. Эти конденсаторы не характеризуются высоким качеством. Во время их проверки проводят измерение емкости и ESR.

Ремонт электронной платы

Двигатель может не крутиться и потому, что на него не приходит питание. Питание идёт с платы управления, от биполярных транзисторов. Используется пара комплементарных транзисторов TIP41C и TIP42C, поскольку питание схемы двухполярное. Транзисторы надо менять парой, даже если один и будет целый. И только одного производителя.

Также в той же цепи выгорают резисторы 10 Ом (это следствие пробоя транзисторов). Ничто не мешает при замене резисторов увеличить их мощность до 3 или 5 Вт, повысив надежность работы.

Ремонт серводвигателя

Другая поломка – неисправность серводвигателя, когда он перестаёт двигать щётку. Двигатель надо снять, прочистить, продуть, смазать. Поскольку используется двигатель постоянного тока с щётками, то можно попробовать покрутить его в холостую в обе стороны от источника постоянного тока напряжением около 5 В.

Таким образом можно, не разбирая его, немного почистить его щётки, ведь двигатель в работе крутится (точнее, поворачивается) только на угол до 180 градусов.

Сервопривод аппарата и его ремонт

Одной из частых причин выхода из строя электромеханических стабилизаторов является поломка сервопривода. Он представляет собой небольшой электрический двигатель. Задача привода – перемещать щёточный механизм по обмотке трансформатора.

Проблема заключается в том, что новый мотор стоит сравнительно больших денег, поэтому экономически целесообразнее починить имеющийся. В случае механических проблем, таких как заклинивание вала привода, разрушение каких-либо элементов крепления, их можно устранить простыми слесарными работами. Т.е. понадобится протянуть крепежи, перебрать мотор, возможно, заменить втулки или подшипники.

В случае перегорания обмотки привода её можно перемотать. Однако процесс этот трудоёмкий и требует участия электрообмотчика (профессия) с опытом ремонта подобных двигателей.

Ремонт силовой части

К силовой части относятся автотрансформаторы (про них я уже сказал предостаточно). А также – контактор и вводной автомат, у которых горят контакты и клеммы. Из надо периодически протягивать, чистить, а при необходимости – менять.

Ремонт платы управления

Диагностика и ремонт управляющей платы требуют хотя бы минимальных знаний в электронике. Нужно убедиться, что на все узлы схемы поступает питание. Проверить напряжение на коллекторах выходных транзисторов и на операционном усилителе. Микросхема ha17324a в стабилизаторе напряжения встречается наиболее часто. Она и есть вышеописанный ОУ, на котором следует проверить питание. Затем плата исследуется на наличие вздутых или потёкших конденсаторов (электролитов), пробитых диодов, резисторов в обрыве, сгоревших предохранителей и банально отвалившихся деталей.

Особо тщательно осматриваются места пайки компонентов, ведь там возможны трещины. Крупные детали нужно пошевелить рукой, чтобы убедиться, что они надёжно впаяны в плату. Данные проблемы являются наиболее распространённой причиной поломки любого электронного устройства, их нужно искать в первую очередь.

Дополнительная информация. Для точной проверки транзистора его следует выпаять из платы. В противном случае возможен некорректный результат.

Для человека, владеющего знаниями и опытом по ремонту электрики и электроники, наладка стабилизатора напряжения не составит особой сложности. Такая работа в большинстве случаев считается оправданной. Покупка нового устройства обойдётся в разы дороже, чем приобретение деталей для его ремонта.

Другие неисправности

Еще одной вероятной проблемой является неупорядоченное включение дисплея, а также включения самого реле. Причиной этому может быть резонатор XTA1, у которого может быть совершена некорректная пайка.

Ремонт заключается в следующем:

  • Выпаиваем с помощью паяльника данный резонатор.
  • C помощью наждачной бумаги счищаем выводы.
  • Запаиваем резонатор обратно.

Общие рекомендации

Радиоэлектронные компоненты встречаются не только в инверторных стабилизаторах, они могут применяться в контрольно-измерительных цепях или устройствах индикации и самодиагностики. В основном это касается пассивных элементов и микросхем с низкой степенью интеграции: операционных усилителей, логических элементов, совмещённых транзисторов, стабилизаторов тока и напряжения.

Выход из строя этих элементов наиболее часто можно определить чисто по внешним признакам: сгоревшие транзисторы и диоды имеют треснувший корпус, резисторы — следы подгара лакового покрытия, конденсаторы попросту раздувает. Поэтому пристальный внешний осмотр печатной платы — первый этап определения неисправности.

Если визуально причины поломки определить не удаётся, должна производиться последовательность контрольных замеров. Сначала проверяется проводимость и качество диэлектрической изоляции схемы в отключенном состоянии. После этого при подаче питания измеряются напряжения в ключевых точках: на клеммах подключения, после предохранителя, на фильтрах и стабилизаторах, обмотках трансформатора, основных узлах схемы управления. Если описанные методы диагностики не дают результата, лучше обратиться в сервисный центр, ведь даже простая поломка может быть весьма специфичной, при том, что любительских познаний в электротехнике и домашних условий для её устранения оказывается недостаточно.

Источники

  • https://www.rmnt.ru/story/electrical/remont-stabilizatorov-naprjazhenija-svoimi-rukami.1512624/
  • https://obrabotkametalla.info/svarit/remont-resanta-sai-190-svoimi-rukami
  • http://electricadom.com/remont-stabilizatorov-resanta-tonkosti-i-rekomendacii.html
  • https://generatorexperts.ru/elektrogeneratory/remontiruem-resanta.html
  • https://SamElectric.ru/powersupply/ustrojstvo-i-remont-elektromehanicheskogo-stabilizatora.html
  • https://rusenergetics.ru/remont/remont-rele-stabilizatorov
  • https://samelectrik.ru/kakie-byvayut-neispravnosti-stabilizatorov-napryazheniya.html
  • https://VoltMarket.ua/neispravnosti-stabilizatora-napryazheniya
  • https://amperof.ru/remont/stabilizatorov-napryazheniya.html

[свернуть]

Как отремонтировать стабилизатор напряжения своими руками

Стабилизаторы напряжения играют роль защитников бытовых электроприборов от неисправностей сети. Они спасают технику от кратковременных и продолжительных превышений уровня напряжения, а также от его просадок. Стабилизатор сам ничем не защищён от неисправности, поэтому временами выходит из строя.

Стабилизатор напряжения

Основные неисправности стабилизаторов

Причины неисправностей стабилизаторов напряжения условно можно разделить на две категории:

  • заводские дефекты и недостатки конструкции;
  • неправильная установка и эксплуатация стабилизатора.

Неисправностей, связанных с встроенными недочётами конструкции, несколько больше, чем с неправильной установкой. Но именно монтаж с нарушением требований чаще всего выводит стабилизатор из строя.

Любой из таких приборов пропускает через себя существенные токи в десятки ампер. Поэтому все они подвержены чрезмерному выделению тепловой энергии и нуждаются в хорошем и непрерывном охлаждении. О том, как установить стабилизатор правильно, тем самым продлив ему жизнь, можно почитать в его описании.

Ещё один вредоносный фактор – это наличие в устройстве стабилизатора (не каждого) большого количества подвижных элементов. К ним относятся электромеханические реле и сервоприводы. Механика не обладает повышенной надёжностью, поэтому очень часто именно она выводит прибор из строя.

Реле в стабилизаторе

Причины поломок

Большинство стабилизаторов имеет в своём составе движущиеся детали. Такие компоненты постоянно находятся в движении и под действием электрического тока. Нередко им приходится испытывать существенные нагрев и вибрацию. Такой режим работы со временем приводит к их усиленному износу и, как следствие, отказу.

В случае с реле его контакты могут начать греться, что вызовет их обгорание и нарушение работоспособности. Механические приводы постоянно подвижны, поэтому их элементы способны расшатываться, а контакт щётки с обмотками ухудшаться.

Неправильная установка способна повредить стабилизатор. Он просто-напросто перегреется от недостатка охлаждающего воздуха. После чего устройство либо выдаст сигнал ошибки и перестанет включаться, либо получит несовместимые с работой повреждения.

Важно! Не стоит блокировать отверстия для вентиляции стабилизатора. Между ними и ближайшим объектом должно сохраняться расстояние хотя бы в 100-150 мм.

Индикатор температуры

Диагностика повреждений

Ремонт стабилизаторов напряжения начинается с оценки его целесообразности. Если вольтаж на выходе аппарата равен нулю, то это ещё не значит, что проблема именно в нём. Возможно напряжение не приходит на сам стабилизатор, поэтому первым делом нужно убедиться в его наличии на входных клеммах. Сделать это можно с помощью любого вольтметра или лампочки на 220 В.

Если проблема не в этом, то следует снять крышку стабилизатора. Сначала строго обязательно нужно отключить входные автоматы и убедиться, что на прибор не приходит напряжение. Затем следует осмотреть стабилизатор на предмет обгорания дорожек платы управления, потемнения проводов, реле и их контактов или разрушения графитовых щёток.

Сгоревшая дорожка

Нелишним будет принюхаться. Если чувствуется запах гари, то следует по возможности выяснить его источник. Часто именно это становится прямым указанием на причину поломки.

Неисправности электромеханических стабилизаторов напряжения

Наиболее распространённая причина поломки электромеханических стабилизаторов заключается в выходе из строя щёточного механизма или сервопривода. Реже встречаются проблемы с управляющей платой, хоть они и свойственны для всех стабилизирующих аппаратов.

Сердцем электромеханического стабилизатора является тороидальный трансформатор с оголённой в одном месте обмоткой. По этому проводящему участку движется с сильным трением графитовая щётка. Через неё же протекают силовые токи потребителя. В результате щёточный узел подвержен как механическому, так и тепловому износу. В случае разрушения он подлежит замене.

Графитовые щётки

Сама механика также может дать сбой. Крепежи щётки, винты и её держатель со временем разбалтываются. В случае обнаружения люфта их следует протянуть. После необходимо убедиться в равномерности прижима щёточного узла к обмотке трансформатора.

Ремонт релейных приборов

Ремонт Ресанта аппаратов часто связан с заменой реле. В устройствах от этого производителя их обычно 4 или 5. Восстановление аппаратов такого типа усугубляется тем, что в маломощных стабилизаторах корпус реле изготовлен из непрозрачного пластика. Поэтому нельзя визуально определить, в каком состоянии находятся его контакты. Также маломощные реле неразборные, с них нельзя просто так снять крышку.

Дополнительная информация. То, что реле щёлкает как положено, ещё не означает, что оно исправно. Механическая часть этого компонента может быть в порядки, но он всё равно не будет выполнять свою функцию из-за нагара на контактах.

Второй неблагоприятный фактор заключается в том, что большую часть времени входное напряжение стабилизатора находится в узком диапазоне. Поэтому в основном срабатывают одни и те же реле. Чаще всего они располагаются рядом и подвержены наиболее частым отказам.

Неисправное реле может выдать себя оплавлением корпуса, характерным запахом гари или изменением цвета. Технически его можно попытаться разобрать, почистить контакты и отремонтировать. Но нет гарантий, что после ремонта оно долго прослужит. Поэтому при таких неисправностях реле лучше всего заменить аналогичным или более мощным.

Контакты реле

Методика проверки стабилизатора

Явный признак неисправности любого стабилизирующего аппарата – это отсутствие на его выходных клеммах напряжения, в то время как на входных оно присутствует. В таком случае устройство автоматически признаётся сломанным и нуждающимся в ремонте.

Более подробную диагностику может провести только квалифицированный специалист в условиях электротехнической лаборатории. Чтобы убедиться в правильности стабилизации, необходимо одновременно контролировать измерительными приборами вольтаж на входе и выходе прибора. Напряжение на нагрузке, независимо от питающего, должно лежать в узком диапазоне – 220-230 В. Т.е., сколько бы вольт ни приходило на вход стабилизатора, на выходе вольтаж должен оставаться неизменным. Причём это справедливо как для работы аппарата в режиме холостого хода, так и с подключением потребителя.

220 В на выходе стабилизатора

Сервопривод аппарата и его ремонт

Одной из частых причин выхода из строя электромеханических стабилизаторов является поломка сервопривода. Он представляет собой небольшой электрический двигатель. Задача привода – перемещать щёточный механизм по обмотке трансформатора.

Проблема заключается в том, что новый мотор стоит сравнительно больших денег, поэтому экономически целесообразнее починить имеющийся. В случае механических проблем, таких как заклинивание вала привода, разрушение каких-либо элементов крепления, их можно устранить простыми слесарными работами. Т.е. понадобится протянуть крепежи, перебрать мотор, возможно, заменить втулки или подшипники.

В случае перегорания обмотки привода её можно перемотать. Однако процесс этот трудоёмкий и требует участия электрообмотчика (профессия) с опытом ремонта подобных двигателей.

Повреждения реле

Если на стадии диагностики стабилизатора напряжения была выявлена неисправность реле, то лучшее, что можно сделать, – заменить новым. Так будет гораздо надёжнее. Однако, если принято решение ремонтировать реле, то делать это нужно по следующему алгоритму:

  1. Необходимо прозвонить мультиметром катушку реле. Если она в обрыве, то её нужно перемотать (здесь опять нужен электрообмотчик).
  2. Если катушка исправна, то реле следует разобрать. Делать это нужно крайне осторожно, чтобы не повредить его содержимое.
  3. У разобранного прибора осматриваются контакты на предмет оплавлений, обгораний или потемнений. Если таковые имеются, то их следует устранить надфилем или тонкой пилкой для ногтей. Сгодится что угодно, лишь бы убрать нагар и неровности.
  4. Затем на катушку реле подаётся напряжение, чтобы убедиться, что её нормально-разомкнутые контакты приходят в движение и соединяются. Надёжность работы необходимо проверить омметром. Переходное сопротивление контактов должно быть близким к нулю.
  5. После реле собирается. По возможности оно испытывается под нагрузкой пару часов и в случае успешно пройденных испытаний возвращается обратно.

Ремонт платы управления

Диагностика и ремонт управляющей платы требуют хотя бы минимальных знаний в электронике. Нужно убедиться, что на все узлы схемы поступает питание. Проверить напряжение на коллекторах выходных транзисторов и на операционном усилителе. Микросхема ha17324a в стабилизаторе напряжения встречается наиболее часто. Она и есть вышеописанный ОУ, на котором следует проверить питание. Затем плата исследуется на наличие вздутых или потёкших конденсаторов (электролитов), пробитых диодов, резисторов в обрыве, сгоревших предохранителей и банально отвалившихся деталей. Особо тщательно осматриваются места пайки компонентов, ведь там возможны трещины. Крупные детали нужно пошевелить рукой, чтобы убедиться, что они надёжно впаяны в плату. Данные проблемы являются наиболее распространённой причиной поломки любого электронного устройства, их нужно искать в первую очередь.

Микросхема HA17324A

Дополнительная информация. Для точной проверки транзистора его следует выпаять из платы. В противном случае возможен некорректный результат.

Для человека, владеющего знаниями и опытом по ремонту электрики и электроники, наладка стабилизатора напряжения не составит особой сложности. Такая работа в большинстве случаев считается оправданной. Покупка нового устройства обойдётся в разы дороже, чем приобретение деталей для его ремонта.

Видео

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Ремонт своими руками стабилизатора напряжения Энергия.

Рассматриваемая нами модель стабилизатора Энергия СНТВ-5000/1, с поломкой,  нет выходного напряжения.

Для ремонта стабилизатора напряжения своими руками нам потребуется, мультиметр, крестовая отвертка, паяльник и наждачная бумага.

Зачастую, причиной поломки стабилизатора напряжения,  является плата управления и сервопривод. Сервопривод является часто уязвимим местом в стабилизаторе, так так основная работа по стабилизации напряжения лежит на нем, и плате управления, которая управляет сервоприводом. Управление сервоприводом осуществляют транзисторы TIP41 И TIP42 и они выходят из строя так же, являются причиной поломки стабилизатора напряжения. В данной статье мы расскажем и покажем как самостоятельно починить свой аппарат.

Нам потребуется крестовая отвертка, откручиваем болты с верху и по бокам стабилизатора и снимаем верхнюю крышку.

 

Далее берем мультиметр, ставим его в режим измерения сопротивления и проверяем диоды (IN4007), которые находятся на сервоприводе, в рабочем состоянии при нажитии на микропереключатель, они не должны звониться.

 

В нашем случае диоды не звонятся, значит они целые.

Берем наждачную бумагу, лучше всего нулевку и зачищаем медную катушку, от нарага оставшегося после работы щеток.

Далее будем проверять плату правления, снова нам потребуется мультиметр, проверяем с помощью него, управляющие транзисторы TIP41 и TIP42, так как они отвечают за работу сервопривода.

В нашем случае они оказались, вышедшими из строя, следовательно они не могут осуществлять управление сервоприводом, и поэтому нет стабилизации напряжения.

Бирем паяльник, заранее включенный в сеть и выпаиваем транзисторы, с целью замены их на новые. Важно! При замены этих транзисторов, важно, что бы они были из одной патрии, так так если они будут из разных партий, они могу не корректно работать, и снова могут выйти из строя.

Впаиваем новые транзисторы на место, подключаем все клеммы на место и подключаем стабилизатор к сети.

Берем мультимер и проверяем выходное напряжение, по показаниям на приборе видим, что погрешность минимальна, а значит выходное напряжение есть.

Собираем аппарат в обратном порядке. ВАЖНО! В стабилизаторе присутствует высокое напряжение, все работынужно производить с соблюдение техники безопастности. Иногда при более проблемной поломке бывает нужна схема стабилизатора напряжения, но по прочтении данной статьи вы можете попробовать обойтись и без нее. В будущем будем показывать и рассказывать как отремонтировать своими руками также и другие модели стабилизаторов с самыми распространенными поломками. Желаем всем стабильного напряжения в сети!

 

Схема мощного стабилизатора напряжения 220в своими руками. Стабилизатор напряжения — как все сделать своими руками. Видео. Преимущества и недостатки перед фабричными

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей «купи и выброси». Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC — 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР»а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие — на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков — 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе — уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы — К50-35, резисторы — МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому — КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами — стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) — полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 — 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов — бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком — до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 — на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Напряжение домашней электросети часто бывает пониженным, никогда не достигая нормальных 220 В. В такой ситуации и холодильник плохо запускается, и освещение слабое, и вода в электрочайнике долгое время не закипает. Мощность устаревшего стабилизатора напряжения, предназначенного для питания черно-белого (лампового) телевизора, обычно недостаточна для всех других бытовых приборов, да и напряжение в сети зачастую падает ниже допустимого для такого стабилизатора.

Известен простой способ повысить напряжение в сети, используя трансформатор мощностью значительно меньше мощности нагрузки. Первичную обмотку трансформатора включают непосредственно в сеть, а нагрузку соединив последовательно со вторичной (понижающей) обмоткой трансформатора. При соответствующей фазировке напряжение на нагрузке будет равно сумме сетевого и снимаемого с трансформатора.

Схема стабилизатора сетевого напряжения , действующего по этому принципу, изображена на рис. 1. Когда включенный в диагональ диодного моста VD2 полевой транзистор VT2 закрыт, обмотка I (первичная) трансформатора Т1 отключена от сети. Напряжение на нагрузке практически равно сетевому за вычетом небольшого падения напряжения на обмотке II (вторичной) трансформатора Т1. Если же открыть полевой транзистор, цепь питания первичной обмотки трансформатора будет замкнута, а к нагрузке приложена сумма напряжения его вторичной обмотки и сетевого.

Рис. 1 Схема стабилизатора напряжения

Напряжение на нагрузке, пониженное трансформатором Т2 и выпрямленное диодным мостом VD1, поступает на базу транзистора VT1. Движок подстроечного резистора R1 должен быть установлен в положение, при котором транзистор VT1 открыт, a VT2 закрыт, если напряжение на нагрузке больше номинального (220 В). При напряжении меньше номинального транзистор VT1 будет закрыт, a VT2 — открыт. Организованная таким образом отрицательная I обратная связь поддерживает напряжение на нагрузке приблизительно равным номинальному

Выпрямленное мостом VD1 напряжение использовано и для питания коллекторной цепи транзистора VT1 (через интегральный стабилизатор DA1). Цепь C5R6 подавляет нежелательные выбросы напряжения сток-исток транзистора VT2. Конденсатор С1 снижает помехи, проникающие в сеть при работе стабилизатора. Резисторы R3 и R5 подбирают, добиваясь наилучшей и устойчивой стабилизации напряжения. Выключателем SA1 включают и выключают стабилизатор вместе с нагрузкой. Замкнув выключатель SA2, отключают автоматику, поддерживающую напряжение на нагрузке неизменным. Оно в этом случае становится максимально возможным при данном напряжении в сети.

Большинство деталей стабилизатора смонтированы на печатной плате, изображенной на рис. 2. Остальные соединяются с ней в точках А-Г.

Подбирая замену диодному мосту КЦ405А (VD2), следует иметь в виду, что он должен быть рассчитан на напряжение не менее 600 В и ток, равный максимальному току нагрузки, деленному на коэффициент трансформации трансформатора Т1. Требования к мосту VD1 скромнее: напряжение и ток — не менее соответственно 50 В и 50 мА

Рис. 2 Монтаж печатной платы

Транзистор КТ972А можно заменить на КТ815Б , a IRF840 — на IRF740 . Полевой транзистор имеет теплоотвод размерами 50×40 мм.

«Вольтодобавочный» трансформатор Т1 изготовлен из трансформатора СТ-320, применявшегося в блоках питания БП-1 телевизоров УЛПЦТ-59. Трансформатор разбирают, и аккуратно сматывают вторичные обмотки, оставив первичные в сохранности. Новые вторичные обмотки (одинаковые на обеих катушках) наматывают эмалированным медным проводом (ПЭЛ или ПЭВ) в соответствии с данными, приведенными в таблице. Чем сильнее падает напряжение в сети, тем больше потребуется витков и тем меньше допустимая мощность нагрузки.

После перемотки и сборки трансформатора выводы 2 и 2″ половин первичной обмотки, находящихся на разных стержнях магнитопровода, соединены перемычкой. Половины вторичной обмотки нужно соединить последовательно таким образом, чтобы их суммарное напряжение было максимальным (при неправильном соединении оно окажется близким к нулю). По максимуму суммарного напряжения вторичной обмотки и сети нужно определить, какой из оставшихся свободными выводов этой обмотки следует соединить с выводом 1 первичной, а какой — с нагрузкой.

Трансформатор Т2 — любой сетевой с напряжением на вторичной обмотке, близким к указанному на схеме при потребляемом от этой обмотки токе 5О…1ООмА.

Таблица 1

Добавочное напряжение, В706050403020
Максимальная мощность нагрузки, кВт11.21.41,82,33,5
Число витков обмотки II60+6054+5448+4841+4132+3223+23
Диаметр провода, мм1.51,61,822,22,8

Включив собранный стабилизатор в сеть, подстроечным резистором R1 установите напряжение на нагрузке равным 220 В. Следует учитывать, что описанное устройство не устраняет колебания сетевого напряжения, если оно превышает 220 В или опускается ниже минимального, принятого при расчете трансформатора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Примечание: в тяжелых режимах работы стабилизатора, мощность, рассеиваемая транзистором VT2, бывает весьма увеличенной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем теплоотводе транзистора.

Как сделать стабилизатор напряжения своими руками: инструкция

Практически каждый человек знает, что перепады напряжения могут повлиять на работу бытовой техники. Чтобы выровнять ток в домашних условиях вам необходимо использовать стабилизатор напряжения. Если у вас нет желания покупать это устройство, тогда мы расскажем, как сделать стабилизатор напряжения своими руками.

Это устройство способно надежно защитить вашу бытовую технику от перепада напряжения. Если вы желаете защитить технику от всех перепадов, тогда также можно использовать устройства защитного отключения.

Основные элементы стабилизатора напряжения

Перед тем как изготовить стабилизатор напряжения вам необходимо изучить его составные части. Чтобы собрать простой выравниватель тока вам потребуются стандартные навыки. Самодельный стабилизатор напряжения для дома состоит из:

  1. Трансформатора.
  2. Конденсатора.
  3. Нескольких диодов.
  4. Резистора.
  5. Проводов, которые соединят микросхемы.

Если вы возьмете старый сварочный аппарат, тогда он идеально справиться с этой задачей. Переделать сварочный аппарат в стабилизатор не составляет труда. Не у всех людей есть ненужный сварочный аппарат и поэтому мы решили рассмотреть другой способ изготовления стабилизатора напряжения своими руками. Импульсный стабилизатор сложно изготовить своими руками. Именно поэтому в этой статье мы рассмотрим изготовление линейного стабилизатора самостоятельно. Тирристорный стабилизатор напряжения также поможет защитить проводку.

Изготовление самодельного стабилизатора

Основой любого выпрямителя считается трансформатор. Это устройство представляет собою две небольшие катушки, которые в процессе работы образуют индуктивную электромагнитную связь. Эту взаимосвязь можно выразить формулой, которая изображена на фото ниже:

Формула считается не идеальной, так как она позволяет понижать или повышать напряжение. Если изучить статистику, тогда можно понять, что в 90% случаев потребители получают пониженный ток. Именно поэтому вам необходимо сделать повышающий трансформатор. Число его витков должно быть не менее 2000 тысяч. Для расчета витков следует использовать следующую формулу:

Также вам следует изучить вторую часть формулы, которая изображена ниже:

Теперь ваш стабилизатор напряжения, который будет увеличивать ток на заданную величину готов. Иногда потребитель может столкнуться со скачками напряжения. Именно поэтому формула примет следующие значения:

Чтобы устранить подобные неполадки вам следует использовать закон Ома. Если вы понизите сопротивление, тогда соответственно уменьшится и напряжение. Если вам будет интересно, тогда читайте про релейный стабилизатор напряжения.

Для изменения сопротивления в сети вы сможете использовать реостат. Вам сложно будет управлять этим устройством вручную. Именно поэтому благодаря микросхеме вы сможете его полностью автоматизировать. Наиболее простым способом считается вывод тока с трансформатора на конденсатор.

Этот способ считается достаточно архаичным. Если у вас нет желания с ним заморачиваться, тогда лучше всего использовать УЗО. В этом случае, если напряжение в квартире или доме возрастет, тогда УЗО просто отключит его подачу. В остальное время трансформатор самостоятельно сможет выравнивать напряжение. При повышенном напряжении вам необходимо использовать понижающий трансформатор. Собирать его можно также как и этот. Только обмотка на второй катушке обязательно должна быть из толстой проволоки. Если вы желаете получить хороший эффект, тогда необходимо собрать оба трансформатора.

В первом случае вам потребует использовать ручной процесс переключения, а во втором вы сможете его автоматизировать.

Советы по работе с самодельным стабилизатором

Во время сборки стабилизатора напряжения вам следует отталкиваться от параметров конкретной техники, такой как:

  1. Продумать прозвонку.
  2. Если ремонт не предполагается, тогда установить удлинители.
  3. Подключить каждую группу техники к отдельному стабилизатору.

Все виды бытовой техники обязательно содержат на своей тыльной стороне требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть. Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева.

Рекомендуем прочесть: стабилизаторы напряжения для дачи.

Услуги по ремонту стабилизаторов напряжения

в Бангалоре, лучшие сервисные центры

Услуги по ремонту стабилизаторов высокого напряжения в Бангалоре, лучшие центры обслуживания | Сулекха Бангалор Сулеха

Профессиональные техники | Гарантия лучшей цены | Служба порога

Выбрать вид техники для ремонта / обслуживания

Мокрая шлифовальная машина

Смеситель-измельчитель

Производитель роти

Кухонный комбайн

Электрический чайник

Электрическая рисоварка

Блендер

Изготовитель сэндвичей

Соковыжималка

Вытяжной вентилятор

Стабилизатор напряжения

Швейная машина

3 Easy Stepsto нанять удобных специалистов по ремонту

1

Поделитесь своим требованием с Сулехой

Выберите тип услуги, которую вы хотите исправить.

2

Получите бесплатные проверенные расценки на услуги

Бесплатные сервисные предложения от лучших технических специалистов.

3

Сравнение, аренда и обслуживание без проблем

Сравните цены на услуги, наймите лучших технических специалистов, соответствующих вашему бюджету.

Об услугах по ремонту стабилизаторов напряжения в Бангалоре

Лучшие услуги по ремонту стабилизаторов напряжения в Бангалоре Предлагает платформу для поиска лучших профессионалов в соответствии с вашими потребностями.Они исправляют все типы проблем в различных брендах и своих моделях плееров BLU ray по доступной цене. Опытные техники! Обслуживание может быть выполнено по удобству!

Почему Сулеха

Sulekha — самая эффективная и доступная служба листинга премиум-класса в Индии. Когда вы выбираете Sulekha, вы получаете лучшие предложения, доступные на рынке, и обсуждаете свои условия с лучшими поставщиками услуг. Наши специалисты гарантируют 100% удовлетворение запросов клиентов при своевременном оказании услуг.

1000+ обслуживаемых городов 5-звездочные специалисты по обслуживанию стабилизаторов напряжения Обслуживано более 50000 стабилизаторов напряжения Использованы 100% оригинальные запасные части. 24/7 Служба поддержки клиентов 8 500+ проверенных специалистов по стабилизации напряжения

Авторизованные центры обслуживания стабилизаторов напряжения в Бангалоре

по состоянию на 26 июля 2021 г.

Также обслуживает в Бангалоре

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

Оценка Сулехи 5 Время работы с 8:00 до 20:00

Недавний обзор JAGADISH из Тирупати

«Хороший………………… »

К

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

Оценка Сулехи 0,1

Недавний обзор sasi из Бангалора

«Обратились к этим людям, чтобы обслужить мое холодильное оборудование Voltas.В основном я давал их для устранения основной проблемы с моим охлаждением. Они взяли с меня 2800 рупий за все услуги. Они оказали хорошую услугу «.

Я

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт стиральных машин, Ремонт холодильников (холодильников)

Сулеха оценка 0.1 Время работы с 9:00 до 18:30

Недавний обзор Адитья из Бангалора

«Мне потребовалось установить настенное крепление для телевизора. Я предпочел этот сервисный центр. Они проделали большую работу. Они взяли с меня разумную сумму за установку. В целом, я доволен их услугами.»

H

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

Оценка Сулехи 0,1 Время работы с 9:00 до 20:00

Недавний обзор Sudeep из Бангалора

«Позвонив пользователю, Пользователь сказал, что получил услугу от сулехи и доволен их услугами.»

А

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

Оценка Сулехи 0,1 Время работы с 10 до 21

Недавний обзор 7760273537 из Бангалора

«Недавно я столкнулся с проблемой змеевика моей микроволновой печи, поэтому я обратился в этот сервисный центр.Они приехали, заменили катушку и взяли с меня 2300 рупий. В целом они оказали хорошие услуги ».

т

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

м

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

л

Схема расположения HSR, Бангалор, 560102

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

А

Предлагаемые услуги: Ремонт стабилизаторов напряжения, Ремонт аудио / видео техники, Ремонт телевизоров, Ремонт воздухоохладителя, Ремонт стиральных машин

С

Предлагаемые услуги: Ремонт стабилизаторов напряжения, ремонт телевизоров, ремонт воздухоохладителя, ремонт стиральных машин, ремонт водонагревателя (газовой колонки)

Годы опыта 1 год Рабочие часы с 09:00 до 17:00 Гарантийный срок обслуживания 60 дней

Последние обзоры сервисных центров по ремонту стабилизаторов напряжения в Бангалоре по состоянию на 26 июля 2021 г.

Средний рейтинг

4.0/5 28 отзывов

Последние запросы в центры ремонта стабилизаторов напряжения в Бангалоре

Часто задаваемые вопросы

На какой срок предоставляется гарантия на стабилизатор напряжения в Бангалоре?

Гарантия и послепродажное обслуживание во многом зависят от марки стабилизатора напряжения, который вы купили.Большинство производителей предоставляют гарантию на обслуживание и ремонт от 3 до 6 месяцев на стабилизатор напряжения.

Какие типы стабилизаторов я могу отремонтировать?

Можно отремонтировать все типы стабилизаторов напряжения, а специалисты по ремонту и обслуживанию имеют большой опыт и квалификацию для работы со стабилизаторами напряжения, такими как реле, сервоуправляемые и статические стабилизаторы напряжения.

Как связаться со специалистами по ремонту и обслуживанию стабилизаторов напряжения в Бангалоре?

Авторизуйтесь на Sulekha.com и ищите услуги по ремонту стабилизаторов напряжения в вашем городе. Вы будете перенаправлены в топ-лист проверенных компаний по ремонту и обслуживанию стабилизаторов напряжения и экспертов на выбор.Просматривайте обзоры и рейтинги, чтобы выбрать лучшее, и получите бесплатные расценки и консультации по телефону.

Сколько стоит обслуживание стабилизатора в Бангалоре?

Стоимость обслуживания стабилизатора

зависит от типа и проблемы стабилизатора и может стоить от 500 до 2500 рупий за один стабилизатор.Уточняйте плату во время звонка со своим специалистом по ремонту, объяснив им проблему или попросив плату за осмотр, и после того, как техник осмотрит стабилизатор напряжения, вы получите точную стоимость обслуживания стабилизатора.

Какая плата взимается за услуги по ремонту напряжения?

Если вы воспользуетесь услугой по ремонту стабилизатора напряжения, плата за осмотр не будет включена в ваш счет, и вам придется оплатить только плату за обслуживание.Если вы не пользуетесь услугами техников, которые занимаются осмотром проблемы, или стабилизатор не требует ремонта, вы должны заплатить минимальную плату за осмотр в размере от 150 до 300 рупий в зависимости от расстояния и количества технических специалистов. .

Используется ли их доступность для онлайн-оплаты услуги?

Да, у большинства поставщиков услуг есть несколько способов оплаты: кредитная / дебетовая карта, наличные, интернет-банкинг и т. Д.Во время телефонного звонка уточните у поставщика услуг, принимает ли он ваш метод сетевого банкинга или платежного приложения.

Знаете ли вы?

1 000+ В прошлом году люди доверили Сулехе нанять специалистов по ремонту стабилизаторов напряжения.

Последние блоги о ремонте и обслуживании бытовой техники

Вас также может заинтересовать

Дом Бангалор Ремонт бытовой техники и услуги Ремонт стабилизатора напряжения Схема автоматического стабилизатора напряжения

Стабилизатор напряжения — это устройство, которое стабилизирует напряжение переменного тока и поддерживает его в диапазоне от 200 В до 255 В переменного тока.Иногда в линии переменного тока появляются колебания напряжения или скачки напряжения, если мы используем стабилизатор напряжения, то сверхвысокие или низкие напряжения не могут вызвать проблем для приборов. Он защищает любое подключенное к нему электронное устройство от повреждения. Автоматический стабилизатор напряжения очень хороший пример силовой электроники проекта .

На рынке представлены различные разновидности стабилизаторов напряжения. Но мы также можем изготовить их дома в соответствии с нашими потребностями и требованиями.

стабилизатор напряжения важные моменты

Перед созданием этого устройства необходимо иметь в виду следующие моменты и характеристики, чтобы устройство, которое мы создали, могло работать должным образом и давать желаемые результаты:

  • Диапазон входного напряжения должен быть от 150 до 260 В.
  • Диапазон выходного напряжения должен составлять от 200 В до 240 В.
  • Форма волны или частота входных / выходных напряжений не должны изменяться.
  • Материал, используемый в нем, не должен быть слишком дорогим, иначе было бы бесполезно делать его дома, переживая все неприятности, вместо этого можно просто купить дешевый на рынке.Следовательно, это не должно быть дорогим.
  • В окончательной версии изделия не должно быть варисторов или переменных резисторов.
  • Всего в цепи используется 4 реле.
  • Используемый автотрансформатор имеет 4 дополнительных ответвления на 165 В, 190 В, 215 В и 240 В, все с разницей примерно в 25 В.
  • Используемый микроконтроллер r — PIC 16F873A.

Стабилизатор напряжения автоматический рабочий

Микроконтроллер генерирует управляющие сигналы, и четыре реле используются с автотрансформатором для управления и преобразования напряжения.Входное напряжение воспринимается микроконтроллером, и он пытается удерживать выходное напряжение между заданными диапазонами, переключая реле. Из четырех реле два из них переключают соединение между выводами 165 В, 190 В и 240 В, одно переключает выходное соединение между выводами 215 и 240, а последнее является главным реле включения / выключения, которое отключает выход в случае режимы low и high cut. Связь реле с микроконтроллером очень проста.

стабилизатор напряжения ДАТЧИК ВХОДНЫХ НАПРЯЖЕНИЙ

Прежде всего, выпрямитель моста используется для преобразования входного переменного напряжения в постоянное, а затем большой конденсатор, который сглаживает постоянное напряжение.И, используя схему делителя напряжения, мы понижаем напряжение постоянного тока, чтобы микроконтроллер мог его принять. После долгих размышлений и экспериментов было выбрано соотношение резисторов схемы делителя напряжения (47 кОм * 6): 3,3 кОм. схема в этом соотношении работает лучше, а рассеиваемая мощность также снижается.

На выходе схемы делителя напряжения была подключена фиксирующая схема, образованная двумя диодами. Напряжение будет ограничено одним из диодов, когда он начнет работать в прямом смещенном состоянии после получения высокого напряжения.Это будет примерно 5,7 В. Если на выходе делителя напряжения появляется низкое напряжение, то другой диод начинает работать в режиме прямого смещения и ограничивает напряжение на -0,7. Затем эти напряжения могут безопасно поступать на ADC микроконтроллера. Диоды Шоттки можно использовать для улучшения фиксации напряжений.

Входное сопротивление АЦП и входные конденсаторы — это две вещи, которые могут повлиять на правильную работу схемы:

  • Если входной конденсатор очень большой, его разряд будет медленнее, и мы не сможем получить быструю или быструю реакцию.После использования различных конденсаторов мы обнаружили, что лучше всего подходит конденсатор емкостью 22 мкФ, поскольку его реакция эффективна в случае постоянного напряжения, а также пульсаций.
  • Для правильного измерения уровня постоянного тока АЦП ПОС мы подключаем конденсатор на выходе делителя напряжения. Это обеспечит параллельную емкость внутреннему конденсатору АЦП. Время выборки АЦП также было скорректировано, чтобы мы могли получить точные результаты.

КАЛИБРОВКА АКПП стабилизатор напряжения

Для калибровки мы поместили в цепь переключатель.Когда этот переключатель активируется и мы сбрасываем микроконтроллер, тогда контроллер переходит в режим калибровки. Это будет единственный переменный резистор, который мы использовали в схеме, и он необходим, потому что может быть много расхождений в различных компонентах и ​​их выходах в схеме. На выходы могут влиять допуск резисторов и вариации прямого падения напряжения диодов, а также многие другие факторы. Мы подключим переменный резистор в нашу схему делителя напряжения и, изменив значения сопротивления, мы сможем получить требуемый выход.

Переменный резистор в этой схеме ненадежен, и в условиях переменного высокого и низкого напряжения нам нужна последовательность в работе этой схемы в течение более длительных периодов времени, поэтому мы решили не использовать переменный резистор в конечном продукте.

автоматический стабилизатор напряжения с микроконтроллером

Когда микроконтроллер входит в режим калибровки, измененное входное напряжение отображается контроллером. Мы можем измерить реальное напряжение с помощью вольтметра.Меняем переменное сопротивление и микроконтроллер показывает другое напряжение. Кодирование АЦП микроконтроллера выполнено таким образом, что результат АЦП преобразуется в уровень переменного напряжения. Также вводится константа, которая умножается на все выражение, и когда мы меняем значение переменного резистора, то постоянное значение также изменяется, что можно увидеть на семисегментном дисплее. Микроконтроллер сохраняет это значение в своей EEPROM .

При запуске контроллер проверяет калибровку.Постоянное значение было сохранено в EEPROM, контроллер извлекает данные, и теперь это значение будет использоваться во всех дальнейших расчетах напряжения. При первом запуске микроконтроллер ожидает калибровки, если переключатель нажат и калибровка выполнена, переключатель размыкается, константа сохраняется в EEPROM, и выполняются дальнейшие операции.

После успешной калибровки мы можем удалить переключатель и переменный резистор из схемы.Переключатель и переменный резистор могут понадобиться только сейчас, если мы хотим перекалибровать схему, в противном случае они больше не требуются в схеме.

Стабилизатор напряжения Реле и ответвления трансформатора

Приведенная выше конфигурация показывает различные ответвления трансформатора с реле. Переключение входа осуществляется между 165 В, 190 В и 240 В, а для вывода — 240 В и 215 В. В этой схеме мы использовали простой автотрансформатор.Вспомогательная обмотка используется для питания схемы, также показано соотношение витков:

Схема автоматического стабилизатора напряжения

Обе части принципиальной схемы автоматического стабилизатора напряжения показаны ниже. Вы можете использовать эти схемы.

Схема автоматического стабилизатора напряжения 2 Схема автоматического стабилизатора напряжения

Стабилизатор напряжения ЦЕПНАЯ работа

Для схемы микроконтроллера мы используем внешний кристалл на 4 МГц.Это необходимо, потому что в PIC 16F873A нет внутреннего кристалла. Вход 5 В постоянного тока используется для питания микроконтроллера. Вспомогательная обмотка автотрансформатора 12,5В. Это напряжение не будет сильно изменяться, потому что цепь и реле также будут работать, чтобы регулировать это напряжение. Этот переменный ток преобразуется в постоянный с помощью выпрямителя, а затем конденсатор фильтрует его. Также используется регулятор 7805 напряжения, который принимает отфильтрованный постоянный ток. Также используется развязывающий конденсатор, который размещается рядом с микроконтроллером.

Напряжение постоянного тока, которое подается на 7805 , также используется для питания реле. Но не напрямую, так как напряжение все же немного выше номинального напряжения реле. Таким образом, мы пропускаем это напряжение через четыре последовательно соединенных диода, что снизит напряжение на 2,8 В. Микроконтроллер управляет переключением реле, но он не может обеспечить ток, необходимый для работы реле, поэтому мы используем транзисторы для увеличения значения тока.

Переходя к семисегментному дисплею, три семисегментных дисплея, используемые в схеме, переключаются один за другим, что минимизирует количество выводов, необходимых для их управления.Но это происходит так быстро, что мы не можем понять это, просто глядя на них. Частота обновления составляет 167 Гц, то есть дисплей обновляется 167 раз за секунду. Для достижения необходимой яркости мы соединили семь транзисторов с семисегментными дисплеями.

Мы использовали три светодиода в схеме, которые также показывают задержку, обрезку низких или высоких частот или просто нормальный режим контроллера. Это был весь процесс создания автоматического стабилизатора напряжения в домашних условиях. Мы надеемся, что, выполнив все действия правильно, вы сможете сделать его и дома, а также можете изменить его в соответствии с вашими требованиями.

Выход стабилизатора

не работает (признаки и способы его устранения) — PortablePowerGuides

Колебания напряжения могут возникать по любому количеству причин, включая плохую проводку, ненадлежащее заземление и короткие замыкания. Единственный способ защитить вашу технику от этих колебаний — использовать стабилизатор напряжения.

Он будет поддерживать постоянную подачу питания. Но стабилизаторы напряжения не идеальны. Известно, что они неисправны. Если выход стабилизатора в вашем устройстве не работает, вы должны как можно быстрее определить неисправность, прежде чем она подвергнет ваше оборудование тем же угрозам, которые стабилизатор должен был предотвратить.

Почему не работает выход стабилизатора?

Если ваша мощность стабилизатора сомнительна и у вас нет опыта работы с электрическими устройствами, вам следует нанять специалиста. Не открывайте стабилизатор или устройство, к которому он прикреплен, если у вас нет соответствующих технических знаний. Если у вас есть элементарное представление о стабилизаторах, ваше расследование, вероятно, укажет вам направление следующего:

1). Неисправен вольтметр

Вы должны начать с разъяснения вашей ситуации.Работают ли приспособления, прикрепленные к стабилизатору? Если они выключены, у вас может быть серьезная проблема. С другой стороны, если эти устройства работают должным образом, но стабилизатор показывает нулевое выходное напряжение, ситуация, вероятно, менее серьезна.

Проверить вольтметр . Скорее всего неисправен . Перегоревший разъем может отключить вольтметр от выходной розетки, что повлияет на его способность отображать соответствующую информацию.

Однако не стоит так быстро приходить к такому выводу. У некоторых стабилизаторов напряжения есть кнопка, которую нужно нажать, чтобы считать напряжение. В противном случае будет показано нулевое выходное напряжение. Обратитесь к руководству по эксплуатации стабилизатора. Если ничего не говорится о кнопке чтения, можно предположить, что вольтметр неисправен или поврежден.

2). Реле, подключенное к выходному терминалу, неисправно

Стабилизатор предназначен для повышения или понижения напряжения в зависимости от вашей ситуации.Согласно Electricalfundablog.com, средний стабилизатор использует трансформатор, который прикреплен к переключающим реле для выполнения своей работы.

Выход может перестать работать или отображать нулевое напряжение, потому что реле, подключенное к выходной клемме, неисправно. Если вы открываете стабилизатор и реле имеют отметки пригорания , они являются источником всех ваших проблем, причиной того, что приборы, прикрепленные к стабилизатору, перестали работать.

3). Автоматический выключатель срабатывания

Некоторые стабилизаторы переменного тока ( те, которые превышают 5 кВА, ) имеют предохранители и автоматические выключатели.Вы можете перегрузить стабилизатор, что приведет к перегоранию предохранителя или срабатыванию автоматического выключателя. Это поставит под угрозу его работу.

4). Перегрузка

Многие стабилизаторы имеют механизмы, которые, например, r уменьшают или понижают выходное напряжение всякий раз, когда оно превышает определенный порог. Этот ответ предназначен для защиты вашего оборудования от немедленного или длительного повреждения.

В некоторых моделях есть индикатор, который включается, чтобы предупредить пользователя о том, что выходное напряжение превысило допустимый уровень .Это побуждает потребителя отключать стабилизатор и подключенные к нему приборы, прежде чем предпринимать шаги по выявлению причины перенапряжения . Иногда виновата электросеть. Но в некоторых случаях неисправность кроется в электрической цепи в вашем доме.

VGuard имеет стабилизаторы напряжения, которые реагируют таким образом. Они называют функцию « Защита от перегрузки ». Он срабатывает при коротком замыкании или перегорании в результате перегрузки. Некоторым не нравится механизм.Они называют такие бренды, как VGuard, чрезмерно защитными, потому что их стабилизаторы отключаются, если они не могут поддерживать выходное напряжение между 220 и 240 В.

Связанное сообщение:

Стабилизатор переменного тока

отключается — почему?

Постоянно срабатывающий стабилизатор может стать помехой. Но не стоит думать, что срабатывает срабатывание стабилизатора переменного тока. Найдите момент, чтобы определить, вступили ли в игру некоторые из факторов, вызывающих отключение, в том числе:

1).Входное напряжение слишком высокое или низкое

Похоже, что стабилизатор может отключиться, когда входное напряжение выше или ниже диапазона, в котором стабилизатор может нормально работать . Другими словами, если входное напряжение слишком высокое или слишком низкое для стабилизатора, чтобы обеспечить требуемый выход, он может сработать. Это сделано для защиты вашей техники, хотя некоторых людей это раздражает.

2). Плохая изоляция прибора

Вы проверили бытовую технику? Некоторые стабилизаторы срабатывают только при включении определенного устройства.Если это относится к вашему стабилизатору напряжения, рассматриваемый прибор может иметь плохую изоляцию или течь. Через некоторое время изоляция может ухудшиться, что приведет к утечкам.

3). Реле

повреждено

Если срабатывание стабилизатора не может быть объяснено перегрузкой или утечками в ваших приборах, вы должны учитывать возможность того, что одно или несколько реле неисправны или повреждены.

Другой возможной причиной отключения являются настройки .Реле настроено на срабатывание на заданном уровне. Если по какой-либо причине настройки неверны, стабилизатор будет продолжать отключаться по неясным причинам. Вам нужен техник, чтобы сбросить реле. Хотя некоторым легче заменить реле.

4). Колебания

Стабилизатор предназначен для защиты ваших приборов и устройств от колебаний. Некоторые колебания достаточно сильны (в обоих направлениях), чтобы повредить стабилизатор. Это может вызвать множество проблем, включая постоянное отключение и выходное напряжение, которое не работает.

Как проверить, работает ли стабилизатор переменного тока?

Вы можете проверить, работает ли стабилизатор переменного тока, измеряя входное и выходное напряжение , процесс, который обычно включает в себя следующее:

1). Начните с отключения нагрузки . Это относится к приборам, прикрепленным к стабилизатору.

2). Вам нужно измерить входное напряжение . Это покажет вам, получает ли регулятор требуемое напряжение.Это важно, потому что стабилизатор не может выполнять свою работу, если на него не поступает достаточное напряжение. Устройство не может производить регулируемое напряжение, которое вы ожидаете, если входное напряжение слишком высокое или слишком низкое.

Вы можете измерить входное напряжение, подключив положительный и отрицательный щупы мультиметра к входному контакту и контакту заземления соответственно. Посмотрите на показания. Если входное напряжение выше номинального выходного, стабилизатор получает достаточное напряжение.

3). По окончании проверки входного напряжения обратите внимание на выходное напряжение .Процесс такой же. Отрицательный щуп подключается к контакту заземления. Положительный датчик подключается к выходному контакту. Показания должны соответствовать номинальному выходному напряжению стабилизатора.

Они не должны быть точными, но они должны быть близки. Это говорит вам, что устройство выдает ожидаемый результат. Другими словами, он работает именно так, как задумал производитель.

Индикатор стабилизатора, чтобы проверить, работает он или нет

Почему стабилизатор светится красным светом?

Красный светодиод загорается при низком входном напряжении.

Стабилизатор переменного тока не светится зеленым цветом

Зеленый светодиод показывает, что напряжение в норме. Другими словами, если зеленый свет не горит, то, вероятно, загорится красный свет, чтобы предупредить вас о том, что напряжение плохое.

Другой альтернативой является включение красного и зеленого света на одновременно и постоянное горение. Это тоже нехорошо, потому что i t показывает, что напряжение слишком высокое или слишком низкое . Лучше всего, если загорится зеленый свет.Это признак того, что входное и выходное напряжение находится в соответствующем диапазоне.

Как отремонтировать выход стабилизатора?

Действия, которые вы предпримете для исправления выходной мощности стабилизатора, во многом зависят от факторов, вызывающих проблему. Рассмотрим следующее:

1). Правильная проводка

Прежде чем продолжить, убедитесь, что стабилизатор правильно подключен. Проверьте руководство. Он покажет вам, какие провода нужно использовать для входных и выходных клемм. Это также помешает вам поменять местами провода под напряжением и нейтраль, что является плохой идеей.

Нельзя ожидать, что стабилизатор будет работать должным образом, если вы не подключите его соответствующим образом. После включения дисплей должен показывать правильные показания (во многих случаях 220 В).

2). Купить новые реле

Если реле неисправны, неисправны или повреждены, сделайте то, что сделали специалисты по ремонту электроники. Купить новые . Их не так уж и сложно найти. И если вы знаете, что делаете, заменить их тоже не так уж сложно.

3).Заменить предохранитель

Если предохранитель стабилизатора перегорел, очевидным решением будет его замена. Однако, если стабилизатор продолжает перегорать предохранитель, вы должны найти момент, чтобы определить причину. Вы не окажете своему оборудованию никакой пользы, неоднократно заменяя предохранитель.

Это относится также и к реле. Если вы продолжаете сжигать реле, вам следует выяснить, почему, прежде чем ваше оборудование постигнет та же участь.

Скорее всего, вы выдвигаете стабилизатор за его пределы.Согласно Bold Brothers Tech, потребителей не должны превышать максимальную мощность стабилизатора. Это может произойти, если вы соедините стабилизатор, имеющий более низкий рейтинг, с приборами, в которых используются мотор-компрессоры. Их пусковая мощность может превышать пределы стабилизатора.

Люди об этом забывают. Они думают, что рейтинг рассматриваемого устройства — это все, что имеет значение. Они не понимают, что пусковая мощность прибора может перегрузить стабилизатор.

Также следует хорошо обращаться со стабилизатором. Не храните его в плохо вентилируемом месте. Он также не должен находиться под прямыми солнечными лучами. Держите его подальше от легковоспламеняющихся предметов и детей.

Стабилизатор переменного тока, показывающий высокое напряжение / нулевое выходное напряжение

Винить в этом можно неисправные реле и вольтметры. Неисправные реле также могут помешать работе выхода стабилизатора . Хотя во многих случаях входное напряжение является проблемой, потому что оно либо слишком высокое, либо слишком низкое.

Стабилизатор перестанет работать, если обнаружит высокое выходное напряжение.Это сделано для того, чтобы ваши приборы были в безопасности. Обычно люди винят в высоком выходном напряжении такое же высокое входное напряжение.

Если входное напряжение слишком велико для того, чтобы стабилизатор реально снизился для получения номинального выходного напряжения, он отключится. Если ваше оборудование перестало работать и вы считаете, что виновато высокое напряжение, вам следует подтвердить свои подозрения, прежде чем действовать.

Это можно сделать, отключив стабилизатор и подключив оборудование напрямую к источнику питания.Если он работает, значит, проблема в высоком напряжении стабилизатора.

Следует отметить, что проблема со схемой стабилизатора также может вызвать высокое напряжение. Не обвиняйте сеть, пока не проверите дом своего соседа. Если их напряжение все еще находится в допустимом диапазоне, вы можете с уверенностью сделать вывод, что ваш стабилизатор неисправен.

Car Treatments определила высокое напряжение на выходе как один из признаков неисправного регулятора .Некоторые стабилизаторы автоматически вернутся к своим нормальным функциям после их сброса. Но если ваш продолжает регистрировать высокое выходное напряжение, вам следует вызвать специалиста.

Они изучат устройство, чтобы определить, неисправны ли реле и транзисторы. Если они не найдут эффективного решения, единственный выход — купить новый стабилизатор.

Заключение

Стабилизатор важен, потому что он предотвращает повреждение оборудования колебаниями напряжения, поддерживая постоянство подаваемого им питания.Но стабилизаторы не всегда работают должным образом.

Стабилизаторам для работы требуется достаточное входное напряжение. Иногда напряжение превышает допустимый порог. Стабилизатор не может отрегулировать его в достаточной степени, чтобы обеспечить выходное напряжение, на которое он рассчитан. Когда устройство сталкивается с такими ситуациями, оно снижает или отключает выходную мощность, чтобы ваши устройства были в безопасности.

Если вы обратите пристальное внимание на светодиодные индикаторы, они сообщат вам об этом соответствующим образом. Если вы не знаете, что означают индикаторы на стабилизаторе, вы можете легко определить, работает ли устройство должным образом, с помощью мультиметра.

Вы подключаете щупы мультиметра к входным и выходным контактам. Если показания входного и выходного напряжения верны, стабилизатор работает должным образом. Если они ошибочны, стабилизатор неисправен.

Некоторые люди думают, что некоторые марки стабилизаторов обладают чрезмерной защитой. Но другие ценят тот факт, что у них есть механизм отключения в случае экстремальных колебаний.

Ремонт стабилизатора переменного тока | Новости техники и ремонта электроники

Джестин Йонг, 22 мая 2015 г.

Моя мама позвонила мне, что у нее не работает кондиционер.После работы я пошел прямо домой и взял свой набор инструментов, чтобы проверить кондиционер. Кондиционер не получает питание от стабилизатора переменного тока. Итак, настоящая проблема заключалась в стабилизаторе, а не в кондиционере. Стабилизатор переменного тока был очень старым (более 10 лет) с моделью под названием Syscom и рассчитан на 4KV. Взгляните на фото ниже:

Все три светодиода не загорались при включении стабилизатора. Итак, я открыл верхнюю крышку, чтобы проверить, в чем может быть причина.

Источник питания достиг реле, но не дальше. Я увидел обгоревшую отметку на стороне реле и сразу понял, что это была основная причина неисправности.

Фотография неисправного реле представлена ​​на рисунке ниже. Всего было три реле и два реле были неисправны.

Так как было уже поздно, я решил купить реле на следующее утро. После завтрака я пошел в магазин электроники, который находился примерно в 6 км от моего дома.Я купил новые реле примерно по 40 рупий каждое (около 0,7 доллара США).

Я заменил его на новые реле и вуаля стабилизатор переменного тока снова ожил.

Миссия выполнена.

Эта статья предоставлена ​​Дорайсвами SR из Ченнаи, Индия. В течение 20 лет проработал в ВВС инженером-электронщиком, в настоящее время работает менеджером на заводе-изготовителе. Энтузиасты электрики и электроники берутся за ремонт и исправление неисправностей в качестве хобби, чтобы узнать больше.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Знаете ли вы кого-нибудь из ваших друзей, которым понравился бы этот контент, который вы сейчас читаете? Если да, отправьте этот веб-сайт своим друзьям или вы можете пригласить своих друзей подписаться на мою информационную рассылку бесплатно по этой ссылке .

Нравится (214) Не нравится (2)

Ремонт стабилизатора напряжения переменного тока для электроники

Джестин Йонг, 11 января, 2019

Я получил этот электронный стабилизатор переменного напряжения SUN без признаков жизни.

Я открыл машину и сначала начал тестировать полупроводники:

Проверил транзистор АО1015, все хорошо. Для тестирования микросхемы LM324N я решил заменить ее на хорошую и надежную, поскольку для тестирования этой микросхемы операционного усилителя требуется сборка схемы на макетной плате, а это отнимает много времени. У меня на складе была одна неиспользованная микросхема. Я заменил эту микросхему, но никакого прогресса !?

Затем я начинаю проверять три электролитических конденсатора с помощью ESR-метра. Значения СОЭ были слишком высокими, и я заменил их.

Сейчас! Красный светодиод начинает светиться, что указывает на то, что напряжение достигает машины, через 2-3 минуты загорается зеленый светодиод. Стабильное напряжение должно доходить до розеток для использования.

Но на удивление выхода нет! Никаких напряжений в розетках! Машина заработала, но выхода нет? Но что еще происходит внутри цепи от большого переключателя? Две линии переменного тока входят в цепь: одна напрямую подключается к одному из полюсов переключателя реле, другая подключается к цепи через большой полиэфирный конденсатор на 650 вольт и 63 нанофарада.В этой машине установлено реле на 12 вольт. Когда компаратор IC LM324N подтвердил, что входящие напряжения переменного тока находятся в пределах допуска, дайте этот ответ, отправив 12 В постоянного тока на другой переключатель поля реле. Реле позволяет соединить другую линию входного переменного тока с проводом розетки розетки, и выход переменного тока будет готов к использованию. Это реле, когда 12 В постоянного тока достигает полюсов (A.B), должно действовать как переключатель и полюса (C.D)

Должен быть включен контакт, и в выходной розетке должно появиться напряжение.Я предположил, что это реле должно быть неисправным компонентом G5LA-14. Вытащил это реле из схемы и проверил. Но на удивление реле прошло оба метода тестирования вне схемы и показало, что оно работает хорошо! Но внутри схемы не справились.

Я решил заменить реле на новое, несмотря на то, что реле прошло испытания, и посмотреть, что будет? И я сделал это, и машина снова заработала и стабильное напряжение достигло розеток! Но все же это вопрос? Почему это реле внутри схемы не сработало, но хорошо прошло все испытания вне схемы ?!

Эта статья была подготовлена ​​для вас г-ном Бехом из Ирана.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание. Вы можете ознакомиться с его предыдущими статьями по ремонту по ссылке ниже:

https: // jestineyong.com / настольный номер вызывающего абонента-телефон-отремонтированный-модель-geepas-gtp7212 /

Нравится (77) Не нравится (0)

Что такое стабилизатор напряжения и как он работает? Типы стабилизаторов

Что такое стабилизатор напряжения и зачем он нам? Работа стабилизатора, типы и применение

Введение в стабилизатор:

Внедрение технологии микропроцессорных микросхем и силовых электронных устройств в конструкцию интеллектуальных стабилизаторов напряжения переменного тока (или автоматических регуляторов напряжения (AVR)) привело к получению высоких -качественное, стабильное электроснабжение при значительных и продолжительных отклонениях сетевого напряжения.

В качестве усовершенствования традиционных стабилизаторов напряжения релейного типа в современных инновационных стабилизаторах используются высокопроизводительные цифровые схемы управления и полупроводниковые схемы управления, которые исключают регулировку потенциометра и позволяют пользователю устанавливать требования к напряжению с помощью клавиатуры, с возможностью запуска и остановки выхода.

Это также привело к тому, что время срабатывания стабилизаторов или чувствительность стабилизаторов были очень низкими, обычно менее нескольких миллисекунд, кроме того, это можно регулировать с помощью переменной настройки.В настоящее время стабилизаторы стали оптимизированным решением для питания многих электронных устройств, чувствительных к колебаниям напряжения, и они нашли работу со многими устройствами, такими как станки с ЧПУ, кондиционеры, телевизоры, медицинское оборудование, компьютеры, телекоммуникационное оборудование и т. Д.

Что такое стабилизатор напряжения?

Это электрический прибор, который разработан для подачи постоянного напряжения на нагрузку на ее выходных клеммах независимо от изменений входного или входящего напряжения питания.Он защищает оборудование или машину от перенапряжения, пониженного напряжения и других скачков напряжения.

Также называется автоматический регулятор напряжения (АРН) . Стабилизаторы напряжения предпочтительны для дорогостоящего и драгоценного электрического оборудования, поскольку они защищают его от вредных колебаний низкого / высокого напряжения. Некоторое из этого оборудования — кондиционеры, офсетные печатные машины, лабораторное оборудование, промышленные машины и медицинское оборудование.

Стабилизаторы напряжения регулируют колебания входного напряжения до того, как оно может быть подано на нагрузку (или оборудование, чувствительное к колебаниям напряжения).Выходное напряжение стабилизатора будет оставаться в диапазоне 220 В или 230 В в случае однофазного питания и 380 В или 400 В в случае трехфазного питания в пределах заданного диапазона колебаний входного напряжения. Это регулирование осуществляется с помощью понижающих и повышающих операций, выполняемых внутренней схемой.

На современном рынке доступно огромное количество разнообразных автоматических регуляторов напряжения. Это могут быть одно- или трехфазные блоки в зависимости от типа применения и необходимой мощности (кВА).Трехфазные стабилизаторы выпускаются в двух версиях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они доступны либо в виде отдельных блоков для бытовых приборов, либо в виде больших стабилизаторов для целых приборов в определенном месте, например, во всем доме. Кроме того, это могут быть стабилизаторы аналогового или цифрового типа.

К распространенным типам стабилизаторов напряжения относятся стабилизаторы с ручным управлением или с переключением, автоматические стабилизаторы релейного типа, твердотельные или статические стабилизаторы и стабилизаторы с сервоуправлением.В дополнение к функции стабилизации большинство стабилизаторов имеют дополнительные функции, такие как отсечка низкого напряжения на входе / выходе, отсечка высокого напряжения на входе / выходе, отсечка при перегрузке, возможность запуска и остановки выхода, ручной / автоматический запуск, отображение отсечки напряжения, переключение при нулевом напряжении. и др.

Зачем нужны стабилизаторы напряжения?

Как правило, каждое электрическое оборудование или устройство рассчитано на широкий диапазон входного напряжения. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенными значениями, например, одно оборудование может выдерживать ± 10 процентов номинального напряжения, а другое — ± 5 процентов или меньше.

Колебания напряжения (повышение или понижение величины номинального напряжения) довольно часто встречаются во многих областях, особенно на оконечных линиях. Наиболее частые причины колебаний напряжения — это освещение, неисправности электрооборудования, неисправная проводка и периодическое отключение устройства. Эти колебания приводят к поломке электрического оборудования или приборов.

Результатом длительного перенапряжения

  • Необратимое повреждение оборудования
  • Повреждение изоляции обмоток
  • Нежелательное прерывание нагрузки
  • Повышенные потери в кабелях и сопутствующем оборудовании
  • Снижение срока службы устройства

Длительное пониженное напряжение приведет к

  • Неисправность оборудования
  • Более длительные периоды работы (как в случае резистивных нагревателей)
  • Снижение производительности оборудования
  • Получение больших токов, которые в дальнейшем приводят к перегреву
  • Ошибки вычислений
  • Пониженная скорость двигателей

Таким образом, стабильность и точность напряжения определяют правильную работу оборудования.Таким образом, стабилизаторы напряжения гарантируют, что колебания напряжения на входящем источнике питания не влияют на нагрузку или электрический прибор.

Как работает стабилизатор напряжения?

Основной принцип работы стабилизатора напряжения для выполнения операций понижения и повышения

В стабилизаторе напряжения коррекция напряжения при повышенном и пониженном напряжении выполняется с помощью двух основных операций, а именно: b oost и операции понижения . Эти операции могут выполняться вручную с помощью переключателей или автоматически с помощью электронных схем.В условиях пониженного напряжения режим повышения напряжения увеличивает напряжение до номинального уровня, в то время как понижающий режим снижает уровень напряжения во время состояния повышенного напряжения.

Концепция стабилизации включает в себя добавление или вычитание напряжения в сети и из нее. Для выполнения такой задачи в стабилизаторе используется трансформатор, который в различных конфигурациях соединен с переключающими реле. В некоторых стабилизаторах используется трансформатор с отводами на обмотке для обеспечения различных коррекций напряжения, в то время как в сервостабилизаторах используется автотрансформатор для обеспечения широкого диапазона коррекции.

Чтобы понять эту концепцию, давайте рассмотрим простой понижающий трансформатор с номиналом 230 / 12В и его связь с этими операциями приведены ниже.

На рисунке выше показана конфигурация повышения, в которой полярность вторичной обмотки ориентирована таким образом, что ее напряжение добавляется непосредственно к первичному напряжению. Следовательно, в случае пониженного напряжения трансформатор (будь то переключение ответвлений или автотрансформатор) переключается с помощью реле или твердотельных переключателей, так что к входному напряжению добавляются дополнительные вольты.

На приведенном выше рисунке трансформатор подключен в компенсирующей конфигурации, в которой полярность вторичной катушки ориентирована таким образом, что ее напряжение вычитается из первичного напряжения. Схема переключения переключает соединение с нагрузкой в ​​эту конфигурацию во время состояния перенапряжения.

На рисунке выше показан двухступенчатый стабилизатор напряжения, в котором используются два реле для обеспечения постоянной подачи переменного тока на нагрузку во время перенапряжения и в условиях напряжения. Путем переключения реле могут выполняться операции понижения и повышения напряжения для двух конкретных колебаний напряжения (одно находится под напряжением, например, 195 В, а другое — при повышенном напряжении, например, 245 В).

В случае стабилизаторов ответвительного трансформаторного типа, различные ответвления переключаются в зависимости от требуемой величины повышающего или понижающего напряжения. Но в случае стабилизаторов автотрансформаторного типа двигатели (серводвигатели) используются вместе со скользящим контактом для получения повышающего или понижающего напряжения от автотрансформатора, поскольку он содержит только одну обмотку.

Типы стабилизаторов напряжения

Стабилизаторы напряжения стали неотъемлемой частью многих бытовых, промышленных и коммерческих электроприборов.Раньше использовались ручные или переключаемые стабилизаторы напряжения для повышения или понижения входящего напряжения, чтобы обеспечить выходное напряжение в желаемом диапазоне. Такие стабилизаторы построены с электромеханическими реле в качестве переключающих устройств.

Позже, дополнительная электронная схема автоматизирует процесс стабилизации, и на свет появились автоматические регуляторы напряжения РПН. Другой популярный тип стабилизатора напряжения — сервостабилизатор, в котором коррекция напряжения осуществляется непрерывно без какого-либо переключателя.Обсудим три основных типа стабилизаторов напряжения.

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения этого типа регулирование напряжения осуществляется переключением реле таким образом, чтобы одно из нескольких ответвлений трансформатора подключалось к нагрузке (как описано выше), независимо от того, он предназначен для работы в режиме повышения или понижения. На рисунке ниже показана внутренняя схема стабилизатора релейного типа.

Он имеет электронную схему и набор реле, помимо трансформатора (который может быть трансформатором с тороидальным или железным сердечником с отводами на его вторичной обмотке).Электронная схема включает схему выпрямителя, операционный усилитель, микроконтроллер и другие крошечные компоненты.

Электронная схема сравнивает выходное напряжение с эталонным значением, обеспечиваемым встроенным источником эталонного напряжения. Всякий раз, когда напряжение повышается или опускается ниже заданного значения, схема управления переключает соответствующее реле для подключения к выходу требуемого ответвления.

Эти стабилизаторы обычно изменяют напряжение при колебаниях входного напряжения от ± 15 процентов до ± 6 процентов с точностью выходного напряжения от ± 5 до ± 10 процентов.Этот тип стабилизаторов наиболее часто используется для низкоуровневых бытовых приборов в жилых, коммерческих и промышленных помещениях, поскольку они имеют малый вес и низкую стоимость. Однако они страдают от нескольких ограничений, таких как низкая скорость коррекции напряжения, меньшая долговечность, меньшая надежность, прерывание цепи питания во время регулирования и неспособность выдерживать высокие скачки напряжения.

Стабилизаторы напряжения с сервоуправлением

Они просто называются сервостабилизаторами (работают с сервомеханизмом, который также известен как отрицательная обратная связь), и название предполагает, что он использует серводвигатель для коррекции напряжения.Они в основном используются для обеспечения высокой точности выходного напряжения, обычно ± 1% при изменении входного напряжения до ± 50%. На рисунке ниже показана внутренняя схема сервостабилизатора, который включает в себя серводвигатель, автотрансформатор, повышающий трансформатор, драйвер двигателя и схему управления в качестве основных компонентов.

В этом стабилизаторе один конец первичной обмотки понижающего повышающего трансформатора соединен с фиксированным ответвлением автотрансформатора, а другой конец соединен с подвижным рычагом, которым управляет серводвигатель.Вторичная обмотка понижающего повышающего трансформатора подключена последовательно к входящему источнику питания, который является не чем иным, как выходом стабилизатора.

Электронная схема управления обнаруживает провал и рост напряжения путем сравнения входного сигнала со встроенным источником опорного напряжения. Когда схема обнаруживает ошибку, она приводит в действие двигатель, который, в свою очередь, перемещает рычаг автотрансформатора. Он может питать первичную обмотку повышающего трансформатора, так что напряжение на вторичной обмотке должно быть желаемым выходным напряжением.Большинство сервостабилизаторов используют встроенный микроконтроллер или процессор для схемы управления для достижения интеллектуального управления.

Эти стабилизаторы могут быть однофазными, трехфазными симметричными или трехфазными несимметричными. В однофазном исполнении серводвигатель, соединенный с регулируемым трансформатором, обеспечивает коррекцию напряжения. В случае трехфазного симметричного типа серводвигатель соединен с тремя автотрансформаторами, так что стабилизированный выход обеспечивается во время колебаний путем регулировки выхода трансформаторов.В несбалансированном типе сервостабилизаторов три независимых серводвигателя соединены с тремя автотрансформаторами и имеют три отдельные цепи управления.

Сервостабилизаторы обладают различными преимуществами по сравнению со стабилизаторами релейного типа. Некоторые из них — более высокая скорость коррекции, высокая точность стабилизированного выхода, способность выдерживать броски тока и высокая надежность. Однако они требуют периодического обслуживания из-за наличия двигателей.

Стабилизаторы статического напряжения

Как следует из названия, стабилизатор статического напряжения не имеет движущихся частей в качестве механизма сервомотора в случае сервостабилизаторов.Он использует схему силового электронного преобразователя для стабилизации напряжения, а не вариацию в случае обычных стабилизаторов. С помощью этих стабилизаторов можно добиться большей точности и отличного регулирования напряжения по сравнению с сервостабилизаторами, и обычно регулирование составляет ± 1 процент.

По сути, он состоит из повышающего трансформатора, преобразователя мощности IGBT (или преобразователя переменного тока в переменный) и микроконтроллера, микропроцессора или контроллера на базе DSP. Управляемый микропроцессором преобразователь IGBT генерирует соответствующее количество напряжения с помощью метода широтно-импульсной модуляции, и это напряжение подается на первичную обмотку повышающего трансформатора.Преобразователь IGBT вырабатывает напряжение таким образом, чтобы оно могло быть синфазным или сдвинутым на 180 градусов по фазе входящего линейного напряжения, чтобы выполнять сложение и вычитание напряжений во время колебаний.

Каждый раз, когда микропроцессор обнаруживает провал напряжения, он посылает импульсы ШИМ на преобразователь IGBT, так что он генерирует напряжение, равное величине отклонения от номинального значения. Этот выход находится в фазе с входящим питанием и подается на первичную обмотку повышающего трансформатора.Поскольку вторичная обмотка подключена к входящей линии, индуцированное напряжение будет добавлено к входящему источнику питания, и это скорректированное напряжение будет подаваться на нагрузку.

Точно так же повышение напряжения заставляет схему микропроцессора посылать импульсы ШИМ таким образом, что преобразователь выводит напряжение с отклоненной величиной, которое на 180 градусов не совпадает по фазе с входящим напряжением. Это напряжение на вторичной обмотке понижающего вольтодобавочного трансформатора вычитается из входного напряжения, так что выполняется понижающая операция.

Эти стабилизаторы очень популярны по сравнению со стабилизаторами с переключением отводов и сервоуправляемыми стабилизаторами из-за большого количества преимуществ, таких как компактный размер, очень быстрая скорость коррекции, отличное регулирование напряжения, отсутствие технического обслуживания из-за отсутствия движущихся частей, высокая эффективность и высокий КПД. надежность.

Разница между стабилизатором напряжения и регулятором напряжения

Здесь возникает серьезный, но сбивающий с толку вопрос: в чем именно разница (я) между стабилизатором и регулятором ? Хорошо.. Оба выполняют одно и то же действие, которое заключается в стабилизации напряжения, но основная разница между стабилизатором напряжения и регулятором напряжения составляет :

Стабилизатор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменений. по входящему напряжению.

Регулятор напряжения: Это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменения тока нагрузки.

Как выбрать стабилизатор напряжения правильного размера?

Прежде всего, необходимо учесть несколько факторов, прежде чем покупать стабилизатор напряжения для прибора.Эти факторы включают в себя мощность, требуемую для устройства, уровень колебаний напряжения, которые возникают в зоне установки, тип устройства, тип стабилизатора, рабочий диапазон стабилизатора (на который стабилизатор подает правильное напряжение), отключение по перенапряжению / пониженному напряжению, тип схема управления, тип монтажа и другие факторы. Здесь мы привели основные шаги, которые следует учитывать перед покупкой стабилизатора для вашего приложения.

  • Проверьте номинальную мощность устройства, которое вы собираетесь использовать со стабилизатором, наблюдая за деталями паспортной таблички (вот образцы: паспортная табличка трансформатора, паспортная табличка MCB, паспортная табличка конденсатора и т. Д.) Или из руководства пользователя продукта.
  • Поскольку стабилизаторы рассчитаны на кВА (то же, что и в случае трансформатора с номинальной мощностью в кВА, а не кВт), также можно рассчитать мощность, просто умножив напряжение прибора на максимальный номинальный ток.
  • Рекомендуется добавить запас прочности к номиналу стабилизатора, обычно 20-25 процентов. Это может быть полезно для будущих планов по добавлению дополнительных устройств к выходу стабилизатора.
  • Если прибор рассчитан в ваттах, учитывайте коэффициент мощности при расчете номинальной мощности стабилизатора в кВА.Напротив, если стабилизаторы рассчитаны в кВт, а не в кВА, умножьте коэффициент мощности на произведение напряжения и тока.

ниже — это решение под напряжением. Пример как выбрать стабилизатор напряжения подходящего размера для вашего электроприбора

Предположим, если прибор (кондиционер или холодильник) рассчитан на 1 кВА. Следовательно, безопасный запас в 20 процентов составляет 200 Вт. Прибавив эти ватты к фактическому номиналу, мы получим мощность 1200 ВА. Поэтому для устройства предпочтительнее стабилизатор на 1,2 кВА или 1200 ВА.Для домашних нужд предпочтительны стабилизаторы от 200 ВА до 10 кВА. А для коммерческих и промышленных применений используются однофазные и трехфазные стабилизаторы большой мощности.

Надеемся, что представленная информация будет информативной и полезной для читателя. Мы хотим, чтобы читатели выразили свое мнение по этой теме и ответили на этот простой вопрос — какова цель функции связи RS232 / RS485 в современных стабилизаторах напряжения — в разделе комментариев ниже.

Как отремонтировать электронный дроссель или балласт Philips для лампового освещения

Главная »Как отремонтировать электронный дроссель Philips или балласт для лампового освещения Автор Автор: Сделай сам Ремонт | Размещено 1 день назад

Как отремонтировать электронный дроссель или балласт Philips для лампового освещения. Самое приятное: Несмотря на огромную репутацию, сайт постоянно стремится улучшить свои возможности и, в частности, усердно работает над некоторыми новыми характеристиками.Как отремонтировать электронный дроссель или балласт Philips для лампового света

Связанные с ремонтом дроссельной заслонки или балласта Philips для лампового освещения

  • Как исправить / Ремонт электронного балласта | Электронный балласт | Балласты люминесцентных ламп
    Как исправить / Ремонт электронного балласта, люминесцентного балласта, электронного балласта, балласта люминесцентных ламп. Что касается всех моих видео, надеюсь, вам понравится мой видеоклип, посвященный YouTube-каналу «BDM007», и, пожалуйста, подпишитесь, поставьте лайк, прокомментируйте и поделитесь, чтобы получить больше полезных видео с нашего канала: BDM007.Спасибо за поддержку ! Посетите: gonou.net *************************************************************************************************************************************************************************************************************************************** ****************** Пожалуйста, помогите подписаться на другие видео: youtube.com/channel/UCi30E1Ae08C49r-02Wy6z1A ************************************************************************************************************************************************************************************************************************************************************* Пожалуйста, подписывайтесь на нас: Блог 1: bdm006.blogspot.com/ Блог 2: bdmxxx.blogspot.com/ Pinterest: pinterest.com/IBDM007/ Facebook: facebook.com/VDOI007 Twitter: twitter.com/IBDM007 Google Plus: goo.gl/L9WNeH Reddit: reddit.com/user/Onheng/ Tumblr: goo.gl/KR63qu
  • Как заменить электронный дроссель в трубке тамила | ремонт трубок | Gen infopedia
    Из этого видео вы узнаете, как заменить электронный дроссель в трубке Tamil | ремонт трубок | Gen infopedia Темы, затронутые в этом видео: как отремонтировать ламповый свет на тамильском языке электронный дроссель на тамильском языке как установить электронный дроссель Замена электронного дросселя очень проста и занимает всего 5 минут.А для замены электронного дросселя в tubelight достаточно отвертки тестера. Стоимость осветительной арматуры 280 рупий. Но стоимость Choke всего 130 рупий, —————— Посетите ссылку «Мой канал» для получения более информативных видео: bit.ly/geninfopedia —————— Итак, просмотрите это видео полностью и не пропускайте его. Надеюсь, вы узнали из этого видео. Если вам нравится это видео, поделитесь своими друзьями и подпишитесь на мой канал. ——————- Спасибо за просмотр этого видео. Пожалуйста, оставьте комментарий о моем видео.Приветствуются даже негативные комментарии и антипатии, которые помогут улучшить мой канал. ——————— #howtoreplaceelectronicchokeintubelight # Электронный удар #tubelightrepair #chokerepairintamil #tubelightfittings #repairtubelightintamil Заявление об ограничении ответственности: Этот канал не поощряет и не поощряет незаконную деятельность. Все материалы, предоставленные этим каналом, предназначены только для общих и образовательных целей. Отказ от авторских прав в соответствии с разделом 107 Закона об авторском праве 1976 г. разрешено добросовестное использование в таких целях, как критика, комментарии, сообщения новостей, стипендии и исследования.Добросовестное использование — это использование, разрешенное законом об авторских правах, которое в противном случае могло бы нарушать авторские права. Некоммерческое, образовательное или личное использование склоняет чашу весов в пользу добросовестного использования. ——————
  • Схема электронного дросселя | простой | легко учиться | Электронный бластер | Техническая презентация
    Часть 1 — Ремонт видео ссылка- youtube.com/watch?v=kU97YOMCJ_E Схема электронного дросселя Схема электронного бластера Схема дросселя Tubelight Ремонтный дроссель Техническая презентация Техническая презентация #electronicchoke #tubelightchoke #blaster #technicalpresentation
  • как отремонтировать электронный дроссель для лампового света на хинди
    запчасти Лена хо лизать Ниче хай привет, привет, намасте, да, да, видео мне ремонт дросселя ke bare ma hai дроссель ремонт карна бахут ашан хай ремонт дроссельной заслонки низкая стоимость ка хай дроссель ремонт ghar me kar shakte hu #Rk #electronics #project мой блогер…… rkelectronicsproject.blogspot.in подпишитесь сейчас, чтобы увидеть больше видео, перейдите на мой канал и подпишитесь сейчас DC-DC Повышение с 4 до 12 вольт amzn.to/2OAbEjw Комплект для проектирования печатных плат (печатная плата, травильный порошок, ручное сверло) amzn.to/2qfXEkI Комплект ТРАНЗИСТОРНОГО АУДИОУСИЛИТЕЛЯ 300 Вт 2n3055 и МОДУЛЬ BLUETOOTH КОМПЛЕКТ ПОСТАВКИ НА 24 В ПОСТОЯННОГО ТОКА amzn.to/2CIit07 Микрофон Петличный миниатюрный петличный микрофон для устройства Android / iOS (черный) amzn.to/2JJMwEz Руководство по сверлению печатных плат / Уникальный сверлильный станок amzn.to/2qknJyg Электронные компоненты Project Kit amzn.to/2qfYkqg Новый лучший качественный держатель печатной платы Инструмент для ремонта мобильных телефонов amzn.к / 2GPb8yc Паяльник / Soldron 25 Вт amzn.to/2Hn6HaE Комплект BLUETOOTH МОДУЛЬ (ТРАНЗИСТОР 2n3055, ЦИФРОВОЙ СТЕРЕО АУДИО КОМПЛЕКТ ДЛЯ УСИЛИТЕЛЯ 4440 IC) amzn.to/2Drg0U3 комплект домашнего кинотеатра 4.1 ch .. amzn.to/2C2MQhv динамик для домашнего кинотеатра, ноутбука и рабочего стола amzn.to/2EabbyP Комплект Bluetooth Приемник EDR класса 2 для автомобильной аудиосистемы и домашней музыкальной системы amzn.to/2C29YNj Домашний кинотеатр Intex ch 4.1 Компьютерные мультимедийные динамики (USB-динамик начального уровня) amzn.to/2CVtJ69 КОМПЛЕКТ АУДИОУСИЛИТЕЛЯ 100 Вт и комплект USB BOARD BASS TREBLE BALANCE 4440 IC amzn.to / 2lWloqX Усилитель с USB, Aux, MMC, FM и двойной IC 4440 amzn.to/2CI9sUR вольтметр Красный YB27A LED AC 0-500Volt Цифровой вольтметр Домашний дисплей напряжения, 2-проводные светодиодные дисплеи amzn.to/2ETDumh 40watt High Power White LED 4Pics rupes 120 DC 12Volt SMD Bead Chips Bulb Light Лампа amzn.to/2qiOgz3 20watt High Power White LED 5Pics rupes 129 DC 12Volt SMD Bead Chips Bulb Light Лампа amzn.to/2CF9Zqy Комплект электронных компонентов или макетная плата, конденсатор, резистор, светодиод, переключатель (поставляется в коробке) amzn.к / 2zoeBv1 Изменение цвета света светодиодной ленты на пульте дистанционного управления RGB amzn.to/2lkU8C4 IC-4017 Десятилетний счетчик amzn.to/2pJozr4 7508 ИС стабилизатора положительного напряжения, 5 В, 1 А (набор из 5) amzn.to/2pmjWDm
  • Как проверить с помощью электронного дроссельного мультиметра tubelight на тамильском / мщиннасамском языке
    Как проверить с помощью электронного дроссельного мультиметра tubelight Другой канал 👇👇👇👇👇 youtube.com/channel/UCvY7c-R8X4mIgBbyrSsf5Rg Отказ от ответственности: этот канал не продвигает и не поощряет какую-либо незаконную деятельность, все содержимое предоставляется на этом канале.Отказ от авторских прав в соответствии с разделом 107 Закона об авторском праве 1976 г. разрешено добросовестное использование в таких целях, как критика, комментарии, репортажи, обучение, стипендии и исследования. Добросовестное использование, разрешенное законом об авторских правах, которое в противном случае могло бы нарушать авторские права. Некоммерческое, образовательное или личное использование Подсказывает баланс в пользу добросовестного использования. # tubelightelectronicchoke # mschinnasamy
  • Видео о ремонте электронного балласта # как отремонтировать схему электронного балласта
    Разработчик VideoShow: videoshowglobalserver.com / free
  • как отремонтировать ламповый световой дроссель только 10rs (удивительный трюк) 100% работоспособен
    пожалуйста, как каро яр подпишитесь, пожалуйста, или ха комментарии бхи карна me apke pyare pyare комментарии ka подожди krta hu ребята, моя инстра ссылка подписывайтесь на меня — instra- instagram.com/pritam88p/?hl=en #tubelight #choke #led #repair #pkindiansproject
  • Ремонт электронного балластного дросселя TUBE LIGHT_Tamil, Процесс ремонта электронного дросселя.
    ПОДПИСАТЬСЯ на ИНЖЕНЕРНЫЕ ФАКТЫ.youtube.com/c/EngineeringFacts Следующее видео о том, почему на запоминающем устройстве меньше места, чем указанный размер? _Tamil, Почему SDCard / Pendrive показывает низкий уровень? youtu.be/duQW5aiSyHM Следующее видео о том, почему мощность переменного тока называется ТОННАМИ? _Tamil, Что такое ТОННЫ? Как TON определяется в AC? youtu.be/ZAVsVf2qn3s Следующее видео о том, как отремонтировать светодиодную лампу _Tamil, Как устранить неисправность светодиодной лампы в домашних условиях? youtu.be/i90ES-uT13E Следующее видео о том, почему разное НАПРЯЖЕНИЕ в разных СТРАНАХ? _Тамиль, почему в Индии 230 В, 50 Гц, в какой-то стране 120 В, 60 Гц? youtu.be / z5Gw9kCIDLU Следующее видео о том, что внутри; Светодиодная лампа против лампы накаливания_ Тамил, Как работает светодиодная лампа и лампа накаливания? youtu.be/9vKMh47JzWI Следующее видео о том, как выбрать звездный рейтинг для вашего кондиционера / холодильника? _ Тамильский, Чем 3 звезды лучше 5? youtu.be/j8CoBbvmr20 Следующее видео о том, что внутри; москитная летучая мышь? _ Тамил, как работает москитная летучая мышь? как напряжение повысилось с низкого до высокого? youtu.be/kQH6spa-Wz8 Следующее видео о том, Как узнать свой счет за электроэнергию раньше? _Tamil, Как сэкономить / снизить потребление электроэнергии? youtu.be / ab6JgYYBOVI Следующее видео о том, как мыло / дезинфицирующее средство работают против вирусов? _Tamil, Какое мыло работает против вирусов? youtu.be/XP7eZxld1BY Следующее видео про கொரோனாவை தடுக்க ‘MASK’ தேவையா? Как правильно выбрать маску от вируса COVID-19. youtu.be/5fYOdrLFJh5 Следующее видео о том, что внутри; Отрезной / Углошлифовальный станок и ремонт in_Tamil youtu.be/53-6shFG91U Следующее видео о том, что внутри: Калькулятор. Как работает калькулятор, почему в батарее течет кислота? _Tamil youtu.be/NkC_tmXJgh5 Следующее видео о том, как отремонтировать ВЕНТИЛЯТОР? _ Тамильский, Как работает вентилятор, Назначение конденсатора в вентиляторе.youtu.be/jqKoW05nWoQ Следующее видео о том, что внутри: настенные часы, как работают настенные часы ?, கடிகாரத்தின் உள்ளே என்ன இருக்கிறது? youtu.be/d3LWUxa6sxQ Следующее видео о домашнем ремонте электрики DIY_ Tamil, எலக்ட்ரிகல் ரிப்பேர் நீங்களே செய்வது எப்படி? youtu.be/Yl3gvc-yZTo Следующее видео о том, как выбрать моторное масло_ тамильский, எஞ்சின் ஆயில் தேர்ந்தெடுப்பது எப்படி? youtu.be/r_Hm_G1gpuc Следующее видео о том, откуда берется вода из переменного тока? _ Тамильский, AC- ல தண்ணீர் எங்க இருந்து வருது? youtu.be/7xCQW1OgfCI Следующее видео о том, как работает плотина? _Tamil, Объяснение работы и инженерии плотины, используемой для строительства плотины.youtu.be/j7y89mpjR0c Следующее видео о том, как пользоваться мультиметром? _Тамильский язык, Советы и хитрости мультиметра с использованием простых параметров youtu.be/18ePZaTDHYc Следующее видео о Может ли мобильная радиация вызывать РАК? _Тамил, Объяснение мобильной радиации и ее вредных эффектов youtu.be/x9vDcCygo3g Следующее видео о «Могут ли птицы умереть от радиации?» _Tamil, объяснение электромагнитных волн и от чего умирает птица? youtu.be/d1WpNnws1gM Следующее видео о том, можно ли получить энергию от ИОНОВ? _Tamil, Объяснение положительных и отрицательных ионов.youtu.be/52nebabyTBw Следующее видео о том, что такое черная дыра? _ ТАМИЛ, Почему изображение черной дыры не было реальным? youtu.be/1S4wesOkXXw Следующее видео о том, как эксплуатировать мобильный телефон под водой, youtu.be/2s1jnbiMRZQ Следующее видео о том, почему быстрая зарядка — это плохо? youtu.be/i-dRAwBOPr0 Следующее видео о том, почему стабилизатор запускается с задержкой? youtu.be/i9ZRRBQ96RE Следующее видео о том, почему контакт заземления большой в трехконтактном штекере youtu.be/mjj91zgBBFQ Следующее видео о том, почему 1 ГБ не равно 1000 МБ? youtu.be/aJXZWIecLSk Следующее видео о Спрей для тела безопасен для вашего тела? youtu.be / 1D7oQnFwYYE Следующее видео про Сила поражения электрическим током youtu.be/PJJUkvqRy10 Следующее видео о ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ youtu.be/-eGGRzdOin4 Следующее видео про ОБЪЯСНЕНИЕ ЭЛЕКТРИЧЕСТВА НА АТОМНОМ УРОВНЕ; youtu.be/ck-1TFaJlSI Пожалуйста, оставьте комментарий о моем видео / канале / указанной информации. Приветствуются даже негативные комментарии и антипатии, которые помогут улучшить мой канал. Поделись этим видео со своими друзьями. О инженерных фактах, Этот канал создан для того, чтобы наши тамильские люди были сильными в науке, чтобы интеллектуально управлять технологиями будущего.И студентам, которые собираются накапливать знания для своей карьеры. # Инженерные факты #Engineeringfactstamil #Tubelightrepair
  • Ремонт электронного дросселя Tubelight ….
    Как отремонтировать электронный дроссель Tubelight для повторного использования ???
  • Как отремонтировать пескоструйный ремонт / ремонт колодок
    Как отремонтировать пескоструйный ремонт / ремонт колодок. ………. Для получения дополнительной информации посетите мой блог selfcreation84.blogspot.com/ .Досто это видео меня мейн аапко йе батая х к чок меня китне тарах к фальт аате х или аап унко кис тарах се тхик кр сакте х.Dosto cfl или led se relaited или bhi videos ko dekhne k liye humare channel ko subscribe kare или agar aapko humari aaj ki video pasand aaye to plz like jarur kare .. Db3 k falt k bare me sikhne k liye niche click kare ……….. youtu.be/OKNo1ASCRNM
  • как проверить электронный дроссель или электронный балласт
    как проверить электронный дроссель или электронный балласт посмотрите это видео. Обмотка потолочного фанкойла вручную — Часть 1 Для начинающих Шаг за шагом // पेपर किस Размер में काटे youtu.be / WsxXei14vyk Намотка потолочного фанкойла вручную — Часть 2 Для начинающих Пошаговая инструкция / Проволока कहाँ से लपेटना शुरू करें youtu.be/lKqMVxGMRyg Потолочный вентилятор, настольный вентилятор, трансформатор का Справочник данных обмоток कहांँ मिलेगी? youtu.be/oKFrA4viFrA Ремонт стабилизатора напряжения Autocut на хинди // Ремонт стабилизатора на хинди youtu.be/mA1ymmLh5OY Ремонт стабилизатора напряжения Autocut на хинди // Ремонт стабилизатора на хинди youtu.be/mA1ymmLh5OY Как отремонтировать солнечную панель घर पर सोलर पैनल कैसे रिपेयर करें? Как отремонтировать обходной диод солнечной панели youtu.be / 3CqpYQ5YDdc खराब ПОТОЛОЧНЫЙ ВЕНТИЛЯТОР को सबसे पहले कहाँ और कैसे ПРОВЕРИТЬ करना चाहिए youtu.be/Xqc89DEgt7s Топ-5 солнечных компаний в Индии youtu.be/kWKrtL6vWxQ Потолочный вентилятор में फंसे हुए Подшипник को कैसे निकालें youtu.be/NhpeOllOhyA Миниатюрный солнечный инвертор с полной зарядкой करने के बाद भी 10 से 15 मिनट ही चलता है youtu.be/ayywHb6slPE ПЛАТА ДЛЯ ИСПЫТАНИЙ СЕРИИ — ДВА В ОДНОМ youtu.be/g6CwdmOZQKA एक Потолочный вентилятор को Обмотка करने में कितना ग्राम Медный провод लगता है youtu.be/ZZztSehxykc Потолочный вентилятор, настольный вентилятор, трансформатор का Справочник данных обмоток कहांँ मिलेगी? youtu.be / oKFrA4viFrA Подключение проводов к плате тестовой лампы youtu.be/BYN0CCsZNTw Потолочный вентилятор का Конденсатор, катушка और Подключение सही है फिर भी Потолочный вентилятор उल्टा घूमता है क्यों? youtu.be/yGCc7JF_xaw Напольный вентилятор, потолочный вентилятор, настольный вентилятор, вытяжной вентилятор में Ток क्यों मारता है youtu.be/dXg9g-148Ig Водяной насос चलते चलते चिपक जाती है फिर हाथ से भी नहीं घूमती है // Двигатель चलते चलते रुक जाती है youtu.be/0ZqTmCYOxUM ये Потолочный вентилятор क्यों हिलता है? Часть-2 youtu.be/w8ieRlB4Ie4 अगर Потолочный вентилятор का Вал घीस जाए तो youtu.be / XTazhtqGXvQ Количество витков провода, количество и вес провода // Потолочный вентилятор, настольный вентилятор, вытяжной вентилятор и т. Д. youtu.be/IBIyyT_pBqw Неправильное и правильное подключение потолочного вентилятора youtu.be/RUFMIIG5fy0 Потолочный вентилятор // प्रत्येक दो Змеевик के बीच Изоляционная бумага youtu.be/zr6CuZWY5TQ общий провод को कैसे पहचाने // Потолочный вентилятор, настольный вентилятор, вытяжной вентилятор и т. д. youtu.be/UJiAH-uL80E पंखे में Current आता है // Потолочный вентилятор, настольный вентилятор, вытяжной вентилятор и т. Д. Youtu.be/1v_N3rX0NJI Потолочный вентилятор आवाज करता है // Потолочный вентилятор धीरे घुमता है youtu.be / uz1aG1OradM Ремонт потолочного вентилятора youtu.be/a3Km0h9L7Y4 Ремонт потолочного вентилятора с короткой спиралью youtu.be/hwO8amLeRms अगर Потолочный вентилятор का Лопасть खराब हो जाए तो youtu.be/bY9KiwGWpy4 अगर Потолочный вентилятор का Отвертка для корпуса से भी ना खुले तो youtu.be/pNNdqpWAafo Подключение потолочного вентилятора // उल्टा Подключение को सीधा कैसे करें youtu.be/U1Hq8uMQNiE कैसे जाने потолочный вентилятор का змеевик короткий है — ПОЛЕЗНЫЕ СОВЕТЫ youtu.be/0MY3xIEFRQ0 Как заменить конденсатор потолочного вентилятора youtu.be/SRz45RC5JSo как открыть подшипник потолочного вентилятора youtu.be/OAfbohWnQ64 पंखा उल्टा घुमने के दो मुख्य कारण — ПОЛЕЗНЫЕ СОВЕТЫ youtu.быть / vOm_cRUSew0 Потолочный вентилятор का выключить है फिर भी Тестер जलता है youtu.be/poQvHDexNh8 Конденсатор बदलने के बाद भी потолочный вентилятор नहीं घुमता है youtu.be/c0QprdFr57c पंखा खरीदने से पहले, यह видео जरूर देख लें youtu.be/tDiEiKCeShI Двойной конденсатор в потолочном вентиляторе youtu.be/CIL6QT6ehBI अगर Потолочный вентилятор का दो Змеевик जल जाए तो youtu.be/dqjm9_rFVOg अगर Потолочный вентилятор का दो Змеевик जल जाए तो — часть 2 youtu.be/GYqCtS8kBD4 ПОТОЛОЧНЫЙ ВЕНТИЛЯТОР — spin art в потолочном вентиляторе youtu.be/j5j_l1Na1DA Обмотка потолочного фанкойла — часть 1 youtu.be / dXgUVXnqAek Обмотка потолочного фанкойла — часть 2 youtu.be/4YKd6Zd0VRI अगर потолочный вентилятор का подключение उल्ट youtu.be/MpZwfELfrtE потолочный вентилятор का подключение мультиметра से कैसे проверить किया जाता है? youtu.be/25TtSgiXxa8 Потолочный вентилятор जाम होने के मुख्य कारण — ПОЛЕЗНЫЕ СОВЕТЫ youtu.be/9hPXvEK7XXI Сколько витков в потолочном фанкойле youtu.be/zbAwZxbo7Z8 подключение потолочного вентилятора трехпроводное youtu.be/1_CCsB0hjA8 अगर потолочный вентилятор का статор फंस जाए तो — ПОЛЕЗНЫЕ СОВЕТЫ youtu.be/nnPJkQbSTRU Потолочный вентилятор — как преобразовать четыре провода в три провода youtu.be / r7dLXmjh5bU #sanjugupta #electronicchoke # электронный балласт
  • как отремонтировать электронный дроссель Philips или балласт для лампового освещения
    В этом видео мы собираемся отремонтировать электронный дроссель (Philips) для лампового освещения. проблема в том, что лампочка не светится на полную мощность. Причина этой неисправности — два конденсатора фильтра. когда мы их меняем, ламповый свет снова светится на полную мощность.
  • Как отремонтировать дроссель для электроники 36-40 Вт
    Ламповый дроссель для электроники Подключение лампы накаливания Трубка соединяется Свет в тоннеле Ремонт лампового дросселя Ламповый дроссель Цепь Ремонт дроссельной заслонки электроники Электронное испытание дросселей Замена конденсатора электронного дросселя Как отремонтировать электронный дроссель для лампового света на хинди Как проверить, что электронный дроссель Tubelight работает хорошо Ремонт электронного дросселя Электронная схема chuke электронный чук
  • Устранение неисправностей и ремонт люминесцентных ламп: стартер, лампочка или пускорегулирующий аппарат
    Этот люминесцентный светильник в моем гараже либо вообще не включался, либо так сильно мерцал, что этого даже не стоило.Посмотрите, в чем была проблема и как я ее исправил. Как мои рубашки? Найдите товары ChickFix на Amazon Prime! amzn.to/2lX0z26
  • трубчатый световой балласт | Принцип работы дросселя с электронным балластом | Как установить электронный дроссель
    ламповый балласт | Принцип работы дросселя с электронным балластом | Как установить электронный дроссель #tubelightballast #tubelightballastworking #tubelight #tubelightchoke #electronicchoke В этом видео показано, как заменить электромагнитный дроссель на электронный дроссель или электронный балласт.Цепь коммерческого электронного балласта реконструирована и показана принципиальная схема, которая, я надеюсь, поможет в диагностике неисправностей балласта во время ремонта. Объясняются преимущества электронного дросселя или балласта. Электронный дроссель снижает потери энергии и экономит энергию. Таким образом, замена электромагнитных дросселей является важной потребностью для всех нас в плане экономии энергии и сокращения счетов за электроэнергию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *