Паяльник из резистора своими руками: Мини-паяльник из резистора своими руками

Содержание

Мини-паяльник из резистора своими руками

Приветствую, радиолюбители-самоделкины!

Как известно, основной инструмент радиолюбителя — это паяльник. Незамысловатое устройство, которое представляет собой нагреватель, чаще всего нихромовую спираль, примыкающую к жалу. При включении паяльника через спираль протекает некоторый ток, который вызывает её достаточно сильный нагрев, соответственно, нагревается и жало паяльника. Температура жала во время пайки может составлять 250-350°C и зависит от мощности паяльника, этого достаточно для быстрой плавки припоя и нагрева выводов радиодеталей. Сейчас в продаже можно найти огромное количество паяльников, на любой вкус и цвет, производители стараются снабдить их максимумом разных «плюшек», чтобы сделать процесс пайки более качественным и удобным для пользователя. Например, многие паяльники содержат регулятор мощности, который позволяет регулировать температуру, до которой будет нагреваться жало. Данная функция порой бывает необходима, так как недогретый или перегретый припой будет терять свою механическую прочность, кроме того, существуют разные виды припоя, рассчитанные на разную температуру плавления. А некоторые паяльники даже позволяют регулировать не просто мощность нагрева, а температуру на кончике жала, вплоть до градусов. Такая точность особенно необходима для пайки мелких smd-компонентов, где важен контроль температуры. Видов жал также существует большое количество — они отличаются по форме, имеют разную теплоёмкость, соответственно предназначены для разных целей: выпаять толстую ножку силового транзистора — одно жало, и запаять тонкий контакт smd микросхемы — совершенно другое. Таким образом, современные паяльники далеко ушли по своему функционалу от их советских предшественников и теперь представляют собой не просто нихромовый нагреватель с ручкой, который подключается в сеть, а целую электронную схему. Представим такой парадокс — сломалась электронная схема в паяльнике, он больше не работает, а чтобы его починить, нужно заменить определённую деталь. Сделать это можно только с помощью второго паяльника, но не идти же в магазин покупать второй паяльник, чтобы починить первый? Зато всегда можно сделать запасной паяльник самому буквально из подручных средств. Он может пригодиться не только тогда, когда сломался основной паяльник, но и в любых других ситуациях, когда нужно срочно что-то запаять, а с собой паяльника нет.


Для изготовления потребуется буквально пара компонентов — мощный проволочный резистор и небольшой отрезок толстого медного провода. Резистор обязательно нужно использовать именно проволочный, углеродистые и металлоплёночные не подойдут. Идеальным вариантом будет вот такой отечественный резистор, он хорош тем, что без вреда для себя может выдерживать большие температуры. По словам автора, такие резисторы вполне пригодны даже для использования в качестве временного кипятильника для воды. На фото видно, что резистор уже прошёл «проверку на прочность» путём нагрева до высоких температур, на его боках образовались характерные чёрные пятна.

Использовать можно резистор с номиналом 5-10 Ом, это будет оптимальным сопротивлением. Чем ниже будет сопротивление — тем более мощным получится паяльник, чем выше — тем, соответственно, ниже будет мощность. Более подробно о расчёте мощности речь пойдёт ниже в статье. Стоит лишь упомянуть, что избыток мощности (более 30Вт) может привести к тому, что резистор просто раскалится и перегорит, а недостаток (менее 10Вт) не позволит даже расплавить припой. Оптимальный диапазон мощностей лежит в пределах 10-30Вт. После выбора подходящего резистора нужно его подготовить. Первым делом подключаем к источнику питания с напряжением примерно 10-12В и ждём, пока резистор раскалится — с него должна выгореть краска. При этом, возможно, он будет дымиться и неприятно пахнуть, а потому процедуру лучше проводить под вытяжкой или в проветриваемом помещении. После того, как с корпуса резистора удалён максимум краски, нужно под корень откусить его выводы — они больше не понадобятся. Вместо них нужно по краям, по всему диаметру корпуса резистора надфилем проточить канавки, чтобы был виден голый металлический блеск, как показано на фото. Делать это нужно в меру, чтобы не повредить токопроводящую часть резистора, которая располагается внутри. Торцы резистора нужно сточить до тех пор, пока там не появится отверстие по центру. После всех этих процедур резистор приобретёт примерно такой вид, как показано на фото ниже. С первого раза сделать всё идеально может не получиться — но это не беда, ведь можно взять ещё один резистор и попробовать снова.

Особое внимание стоит уделить выбору жала для будущего самодельного паяльника. Лучшим материалом для жала будет медь, так как ей легко придать нужно форму и она отлично проводит тепло. Для самодельного жала нужно использовать небольшой отрезок медной проволоки, длиной примерно 1-1,5 см. Суть в том, чтобы этот кусочек провода заходил в отверстие, внутрь резистора и торчал наружу с одной стороны примерно на сантиметр. Делать более длинный «вылет» жала не разумно, так как будут большие тепловые потери, а с более коротким будет неудобно использовать паяльник. Диаметр медного провода подбирается так, чтобы он плотно входил внутрь резистора — за счёт плотной вставки он и будет держаться, кроме того, отсутствие зазоров обеспечит максимальную теплопередачу от нагревательного резистора к жалу. При необходимости жало можно дополнительно зафиксировать в резисторе, слегка сплющив или подогнув провод у краёв резистора. В конечном варианте конструкция будет выглядеть, как на картинке ниже.

Теперь необхоимо задуматься о том, как подавать питание на резистор, чтобы он начал нагреваться. Использовать для этого соединения пайку категорически нельзя, ведь припой просто расплавится вместе с нагревом паяльника. При подготовке резистора на его краях были выточены канавки — они нужны как раз для фиксации проводов, подающих питающее напряжение. Использовать здесь провод в изоляции также не стоит, ведь изоляция будет нагреваться и поплавится. Идеальный вариант — использовать медный эмалированный провод, как для жала, только более гибкий и тонкий. Слишком тонкий брать также не следует, ведь ток в цепи будет составлять порядочные 2-5А. При необходимости, можно заизолировать отрезки проводов термоусадкой — она выдерживает большие температуры.

По сути, паяльник уже готов. При подаче питания на подводящие отрезки проводов резистор, и соответственно жало начнут разогреваться. А значит, самое время задуматься о мощности паяльника и напряжении, которое потребуется для его питания. Нужно вспомнить закон Ома, который гласит: ток в цепи равен напряжению, делённому на сопротивление. Сопротивление, в данном случае, это используемый резистор. Например, если его сопротивление будет равно 5 Ом, на него подать напряжение 10В, то в цепи будет протекать ток 10/5=2А. Теперь пора вспомнить формулу расчёта мощности, она гласит, что мощность равна току в цепи, умноженному на напряжение. Как было высчитано выше, ток равен 2А, напряжение равно 10В, соответственно, мощность будет 10*2=20Вт — самый оптимальный вариант для самодельного паяльника. При необходимости можно пересчитать по описанным формулам паяльник на любое сопротивление резистора и любое питающее напряжение при сохранении оптимальной мощности в 20Вт.

Хоть такой паяльник и вполне работоспособен, пользоваться им невозможно, так как отсутствует корпус, а за раскалённый нагреватель паяльник не подержишь. Хорошим вариантом для корпуса могут быть силиконовые высокотемпературные ручки, либо всем известные пробки, из пробкового дерева. Они не нагреваются в процессе работы, так как работают в роли теплоизолятора. Резистор нужно закрепить в толще пробки, вырезав в ней углубление. Затем вывести наружу питающие провода.

Корпус для такого паяльника можно сделать даже из ненужного щупа мультиметра, но этот вариант плох тем, что пластик может начать плавится при длительной работе, особенно при большой мощности. Но зато он наиболее компактен и поместится даже в карман. Удачной сборки!



Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

ПАЯЛЬНИК ИЗ РЕЗИСТОРА


   Как сделать паяльник для маленьких деталей на основе резистора. Как известно, пайку миниатюрных радиодеталей удобнее осуществлять малогабаритным, — размером с авторучку, паяльником. Он должен быть низковольтным и гальванически изолирован от сети. Это обезопасит радиолюбителя от поражения электрическим током, уменьшит вероятность пробоя статическим электричеством, например, полевых транзисторов с изолированным затвором. Для этих целей подойдет предлагаемый микропаяльник, который может быть изготовлен буквально за несколько часов. Мощность паяльника достигает 15 Вт при напряжении питания около 12 В, температура на конце жала составляет 250°С.

   Нагревательный элемент паяльника готовый — им служит металлоплёночный резистор типа МОН мощностью 2 Вт и номинальным сопротивлением 10 Ом, Резистор опускают на несколько минут в ацетон или растворитель, чтобы размягчилось лакокрасочное покрытие, а затем осторожно, стараясь не Повредить токопроводящего слоя, соскабливают ножом краску. Удалив кусачками выводы резистора, в центре одного из торцевых контактных колпачков высверливают отверстие диаметром 2,5 мм, чтобы открыть доступ к отверстию в керамическом основании резистора.

   Из стальной проволоки навивают на стержне диаметром, несколько меньшим диаметра резистора, теплозащитную пружину из 10 витков, надевают пружину на. конец резистора, в котором не сверлили отверстия, так, чтобы 2 витка ее оказались на токопроводящем покрытии. Оставшуюся часть пружины растягивают настолько, чтобы зазор между витками составлял около 1 мм, и изгибают на конце петлю диаметром примерно для подключения проводника питания.

   Возможен и другой вариант крепления пружины, который может оказаться не менее надежным, В этом случае колпачок резистора опиливают надфилем с торца по краю примерно на три четверти окружности, отгибают получившийся лепесток и сверлят в нем отверстие диаметром 3 мм. К лепестку крепят пружину из 5 витков диаметром 5 мм, которую навивают с шагом 2 мм из мягкой стальной проволоки.

   Ручкой паяльника может быть, например, ручка лобзика с металлическим колечком на конце. Подойдет, естественно, и самодельная ручка, выточенная из дерева твердой породы. Вдоль оси ручки сверлят отверстие диаметром 5 мм под электрический шнур.
Защитный кожух вырезают из листовой стали. Заготовку изгибают непосредственно на резисторе и закрепляют колпачок резистора в кожухе винтом и гайкой, Для крепления лепестков кожуха к ручке в ней сверлят глухие отверстия и нарезают резьбу М3, а затем привертывают лепестки винтами с такой резьбой. Под один из винтов подкладывают шайбу и зажимают под ней провод шнура питания, продетого через отверстие в ручке, другой провод шнура прикрепляют коротким винтом и гайкой к теплозащитной пружине. Жало паяльника можно изготовить из толстой медной проволоки. Конец жала вставляют в отверстие в корпусе резистора. Для паяльника можно применить резистор с меньшим сопротивлением и соответственно уменьшить напряжение питания, чтобы рассеиваемая резистором мощность составляла 10-15 Вт. Подойдет МЛТ или МТ. Правда, длина резистора МТ больше, чем МОН, а диаметр меньше, поэтому придется изменить размеры кожуха и жала. Данный самодельный паяльник собирается за пару часов и отлично выполняет свои функции.


Поделитесь полезными схемами



СХЕМА УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ ЦВЕТА
    Устройство, которое распознает цвета, приводится на рисунке. Может быть полезен в схемах диагностики, автоматики и управления процессами. Прибор содержит три датчика освещенности, выполненные на фоторезисторах. 

БЛОК ПИТАНИЯ 5В

   Блок предназначен для питания всех устройств комплекса учебных пособий по информатике и вычислительной техники. Устройства, собранные на полупроводниковых приборах (транзисторы, тринисторы, микросхемы) и электромагнитных реле, питаются от источников постоянного напряжения. Как правило, отклонение напряжения от нормального значения не должны выходить за границы отдельных допусков (например, для микросхем серии К155 питающее напряжение должно составлять 5 В).


ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ГАУСС-ГАНА

    Задающий генератор пушки настроен на частоту 60-65 кГц, для 400 вольт вторичная обмотка содержит 80 витков провода 0,2 -0,6 мм. Обмотка мотается в 2 слоя по 40 витков. В качестве межслойной изоляции можно использовать несколько слоев скотча или изоленты. 


Самодельный паяльник на 220 В: материалы и принцип сборки

Можно ли из сподручных средств и материалов изготовить самодельный паяльник на 220 В своими руками? Согласитесь, не каждый готов выложить энную сумму денег, чтобы купить дорогостоящий прибор, необходимый для проведения несложных работ в бытовых условиях.  Для женщин паяльник это пустой звук, ровным счётом ничего не значащий, но для мужчины, у которого есть руки и желание в работе изготовленный паяльник своими руками 220 В станет незаменимой вещью в доме, где будут исправлены электроприборы, качественно будут работать электроинструменты и пр.

Самодельный паяльник на 220 В

Принципиальная схема устройства

Прибор не имеет сложных конструкций и технических деталей. Принципиальная схема достаточно понятная и вы можете без проблем  собрать мощный паяльник своими руками. Комплектационная часть прибора включает в себя:

  • Стержень из медного материала.
  • Металлический кожух.
  • Трубка из металла.
  • Нагревательный компонент.
  • Изолирующая рукоятка.
  • Вилка.
  • Провод (электропитающий элемент).

Низковольтный паяльник

Что понадобится для изготовления самодельного паяльника на 220 Вольт?  Мы рекомендуем в целях электробезопасности изготовить низковольтный паяльник на 12-14 Вольт, хотя принцип сборки не отличается по принципиальным характеристикам. Для работы вам понадобятся следующие материалы, инструменты:

  • Аккумуляторная батарея Li-Ion можно использовать старые аккумуляторные батареи от ноутбука или шуруповерта.
  • Небольшой отрезок медного провода, желательно диаметром до 2 мм. Длина не более 6 см, этот отрезок понадобится нам в качестве намотки спирали.
  • Трубки из термостойкого стекловолокна. Диаметр трубок предпочтительнее 3,8 мм и 1 мм.  Такая трубка предназначена в качестве кожуха под металлический корпус для нагревательного компонента. Как вариант, можно использовать изоляционный материал неработающего электрочайника.
  • Проволока нихромовая, рекомендуется взять провод диаметром в 0,3 мм. Посмотрите материал в старых, вышедших из строя фена, предназначенного для сушки волос. Вот длину такой проволоки будем подбирать опытным путём, учитывая все основные конструкционные мощности устройства, в том числе аккумуляторной батарее, если вы ее планируете устанавливать на паяльнике вместо электрического провода.
  • Небольшой отрезок от телескопической антенны диаметром в 4 мм, длина такой детали около 3 см.
  • Для жала берём небольшой отрезок медной проволоки одножильного типа. Диаметр лучше всего взять из расчёта 3,8 мм.
  • Провод, предназначенный для подключения источника питания к паяльнику.
  • Для ручки подбираем деревянную или пластмассовую трубу с хорошими характеристиками Электроизоляция.

В принципе, это основой набор материалов, предназначенные для того, чтобы приступить к выполнению задачи как сделать паяльник своими руками.

Порядок действия при сборке

Теперь мы приступаем к ответственному моменту сборки:

  • Изготавливаем нагревательный компонент для паяльника. Аккуратно наматываем на наш отрезок определённую длину нихромовой проволоки. Подбор длины осуществляется опытным путём, главное, нужно добиться наматывания спирали для того, чтобы мы могли обеспечить максимальную рабочую температуру в пределах 350-450 С.
  • Берём тот же отрезок одножильного медного провода и аккуратно на него надеваем трубочку из термостойкого материала. Далее наматываем на трубку по спирали готовую длину отрезка спирали из нихромовой нити.
  • Рассматриваем кончики спирали. На неё необходимо также навесить еще более тонкие трубочки. Всю готовую конструкцию помещаем внутрь более толстой готовой трубы.  Обязательно вынимаем медный провод, чтобы он был в свободном положении.
  • Нагревательный компонент практически полностью готов. Теперь остаётся только вставить внутрь нашей медной трубки от заранее подготовленного отрезка от антенны. Всю готовую конструкцию помещаем в наше жало.  Для прочности и целостности конструкции жало необходимо закрепить саморезами.
  • Теперь наш прибор практически готов. Остаётся только подсоединить к заранее подготовленным концам питающий шнур. Аккуратно вставляем всю конструкцию в заранее подготовленную ручку.

Важно! Помните, прежде чем решить задачу как собрать паяльник на 220 Вольт, между рабочей ручкой и компонентом отрезка от антенны необходимо поместить какой-нибудь негорючий и невоспламеняющийся материал, ЗМП в данном случае может стать отличным изолирующим компонентом для паяльника.

Этот вариант идеально подходит для тех, кто не желает тратиться на покупку материалов. Обратите внимание в вашем доме на ненужные детали, которые вполне подойдут для изготовления собственными силами электроинструмента для пайки деталей.

Паяльник из резистора: основные азы изготовления

Существует дополнительный способ изготовления прибора для пайки, это самодельный паяльник из резистора.  В качестве резистора используем детали серийного мощности типа ПЭ или аналоговой ПЭВ. Резисторы способны гасить режимы сопротивления, без которых невозможно обойтись в процессе эксплуатации. Можно также использовать резистор серии МЛТ-05. Такой резистор имеет приемлемое сопротивление в 5-10 Ом, необходимые для нашего паяльника.

Паяльник из резистора

Процесс работы по сборке имеет идентичные операции, как и для изготовления прибора, имеющий аккумуляторную батарею.  При помощи обычного медицинского скальпеля, а также тонкой наждачной бумаги, удаляем краску с резистора. После этого производим подключение резистора к нашему источнику питания.  Далее производим тщательную очистку одной из ноги резистора, второю ногу нам придётся использовать в качестве токоведущей части и крепёжного компонента. Далее, в том месте, где была удалена нога, проделываем небольшое отверстие диаметром в 1 мм. Этот процесс потребуется для установки жала в конструкцию паяльника.  Теперь необходимо при помощи электроинструмента раззенковать отверстие большего диаметра. Это необходимо для того, чтобы жало в процессе работы не соприкасалось с чашечкой. Берём надфиль и при помощи инструмента делаем дополнительный пропил, причём идеально круглой формы для осуществления элемента токовода на рабочую глубину на 2\3 от основной толщины.

Непосредственно токовод можно изготовить из специально подготовленной и хорошо лудящейся  пружинки, но при этом конструкционные колечки должны очень хорошо надеваться на конструкцию чашки. Теперь необходимо изготовить  плату. В качестве материала необходимо использовать текстолит.  Сама плата должна иметь широкую основу для осуществления припаивания непосредственной части токовода, а также для рассеивания тепла; средняя часть платы будет предназначена для ручки, за которую будем держать паяльник; самая узкая сторона платы предназначена для крепления проводов, а также конструкции кембрика.

Приступаем к сборке

На токовод одеваем предусмотренные колечки для чашечек, припаиваем к основной плате.  Крепим жало, но необходимо его заизолировать при помощи слюды или керамики, это необходимо для ограничения доступа тока.  В конце работы к плате припаиваем провода,  можно использовать из серии МГТФ,  В качестве детального источника обеспечения питания используем блоки из серии БП1А, 0-15В. Паяльник готов, можно приступать к работе.

Перед началом работы, рекомендуется протестировать прибор, и только после этого использовать по прямому назначению.

Самодельный паяльник на 12 Вольт: из резистора, от прикуривателя

Если для прекрасной половины человечества слово паяльник это пустой ничего не значащий предмет, то для мужчин это прибор, который спасает их в любой жизненной ситуации, особенно при проведении несложных ремонтных работ с радиоэлектроникой. Можно ли в домашних условиях сделать паяльник на 12 Вольт своими руками. Если немного дружите с физикой и у вас имеется звание «мастер на все руки», тогда сборка простейшего примитивного низковольтного паяльника будет вам под силу.  Давайте рассмотрим один из немногих вариантов, которые  доступны любому из вас.

Самодельный паяльник на 12 Вольт

Материалы и инструменты, необходимые для самостоятельной сборки низковольтного паяльника

Чтобы сделать паяльник своими руками в домашних условиях, вам потребуется подготовить определённый набор инструментов и материалов, в частности:

  • Проволока из медного материала, диаметр поволоки 1,5 мм, длина – не более 40 мм.
  • Фольга, желательно медная, размером 10*30 мм, можно чуть больше.
  • Проволока нихромовая толщиной 0,2 мм, длина не более 350мм.
  • Кусок жести или любая круглая металлическая труба (необходимо для изготовления конструкции кожуха), потребуется для нагревательного элемента.
  • Силикатный клей или хорошее жидкое стекло.
  • Для изготовления изолирующего слоя нужен тальк, который разбавлен силикатным клеем.
  • Рукоятка, желательно из изолирующего материала пластика.
  • Стандартный электрический шнур с вилкой.

Паяльник на 12 Вольт от прикуривателя

Кроме этого, создавая паяльник на 12 Вольт от прикуривателя своими руками, потребуются дополнительные предметы и вещи, без которых сборка прибора будет неполной:

  • Постоянный источник тепла электрическая или газовая печь.
  • Инструменты слесаря – пассатижи, кусачки, пинцет, надфиля, напильники.
  • Нестандартное приспособление, чем то напоминающее маленький шпатель, желательно из дерева или прочной пластмассы.
  • Ветошь, в процессе работы придётся много и часто удалять грязь.

В принципе, это основной набор материалов и инструментов, необходимые для того, чтобы сделать паяльник на 12 Вольт своими руками из резистора.

Порядок действия по сборке паяльника

Вы подготовили инструменты и материалы! Теперь остаётся придерживаться примерного порядка действий, и тогда вы можете собрать самодельный паяльник на 12 Вольт без особого труда.

  • Берём медную проволоку и изготавливаем жало. Учтите, что один конец проволоки необходимо заточить под углом в 45 градусов.  Хотя это требование необязательно, но все равно лучше заточить под любой угол один конец рабочей медной проволоки. Конец проволоки залуживаем.
  • Замешиваем рабочую изоляционную массу на основе талька и силикатного клея. Главное, добиться тестообразной формы вещества.  Помните, все это время вам придётся бороться с липкостью рук, посыпая при этом порошком и вытирая руки ветошью.
  • Готовое жало необходимо плотно окутать медной фольгой, при этом необходимо оставить около 10 мм конструкции полностью свободным.
  • Сверху конструкции медной фольги посыпаем изолирующим материалом на основе талька. В данном случае вам придётся использовать источник тепла для подсушивания. Температура разогрева при этом должна быть от 100 до 150 градусов.
  • Берём нихромовую нить, наматываем конструкцию спирали. Все витки должны прилагаться как можно плотно, при этом один конец витка должен иметь свободный размер 30 мм (т.н. прямой виток), а второй виток- 60 мм (условный размер заворотного витка).
  • Покрываем обмотку электроизолирующей рабочей смесью. Точно также необходимо просушить на источником тепла – газовая или электрическая печь.
  • Готовый длинный конец укладываем в трубку, но таким образом соблюдая расстояние на максимальном размере между ним и прямым, при этом примерное расстояние составит диаметру конструкции. После этого потребуется дополнительная обмазка и дополнительный рабочий процесс запекания.
  • Теперь вмонтированное в трубку жало готово как полноценный нагревательный элемент.
  • У вас остаются торчащие по обоим концам остатки нихромовой проволоки. Точно также обрабатываем аналогичным изолирующим составом примерно до половины размера. Сушим проволоку над печью. Контролируем так, чтобы остатки мест обработки полностью были покрыты изолирующим составом. В ряде случаев этот процесс придётся проделать несколько раз, но в целях безопасности лучше всего сделайте полную изоляцию остатков нихромовой нити.
  • Производим сбор корпуса паяльника. Протягиваем рабочий шнур через отверстие в рукоятке. Производим соединение с концов необработанного нихрома с оголёнными частями шнура. После этого изолируем места соединения тальком с синтетическим клеем по проверенной технологии свыше.
  • На подготовленный нагревательный элемент надеваем кожух. Один рабочий конец кожуха, должен технологически входить в конструкцию ручки рукоятки, второй компонент кожуха рекомендуется закрепить металлическими приспособлениями, в виде колпачка с отверстиями, который должен полностью исключить соприкасаемость контакта, с медной начинкой встроенного компонента нашего нагревательного прибора.  При необходимости можно ограничиться только хомутом.

Прибор готов, необходимо его правильно протестировать!

Очень важно!  В сеть паяльник можно включать только через трансформатор в 12 Вольт или через блок питания, рассчитанный на 12 Вольт, при этом сила тока – не более 1 А.

Что необходимо дополнительно знать о паяльнике в 12 Вольт

Паяльник к работе полностью готов,  его можно использовать для работы по соединению участков плат с микросхемами. Обязательно нужно будет позаботиться о том, чтобы минимизировать воздействие статического напряжения.

Как правило, это альтернативный вариант прибора для тех, кто считает свой бюджет и хочет использовать прибор для проведения несложных работ по пайке микросхем или прочих бытовых приборов и агрегатов.  В качестве дополнительного варианта можно использовать резисторы. Специалисты говорят, что несмотря на обилие китайских резисторов все же лучше использовать советские или российские аналоги, в частности – ПЭВ-10 или ПЭВ-7,5. В данном случае вам придётся оставить жало, которое в рабочем положении фиксируется в трубке медного вида. При этом рабочий элемент жал должен быть плотно вжат внутрь корпуса резистора. Кроме этого понадобится также зафиксировать контакты резисторов, которые в определённых ситуациях не смогут выдерживать сложные механические нагрузки.

Схема сборки паяльника из резистора

Существуют дополнительные варианты сборки паяльников, которые имеют возможность работать на низком напряжение.  В обязательном порядке используйте изолирующие компоненты и детали, которые используете во время сборки паяльника собственными руками.

Перед началом работы, рекомендуем провести тестирование прибор, соблюдая при этом электрическую и пожарную безопасность.  После того, как проведёте тестирование, попробуйте работу прибора в действии на несложных микросхемах. Обязательно обращайте внимание на металлические части, которые должны быть должным образом заизолированы.

Помните!

Самодельные микро-паяльники не предназначены для промышленного производства. Используйте приборы только для бытовых и домашних работ!

Как сделать паяльник своими руками в домашних условиях

В сети гуляет множество методов создания паяльника в домашних условиях из подручных материалов. Этот важный и незаменимый прибор можно приобрести в магазине в достаточно разной комплектации, но блогеры и ютуберы подхватили этот выдуманный «челендж» по созданию орудия труда домашнего электрика своими руками.

Мы не будем оставаться в стороне и выложим свое виденье решения данной проблемы.

Большинство приборов требуют от создателя глубоких знаний радиотехники, но самодельный паяльник может сделать даже новичок. Потому в данной статье мы поговорим, как сделать паяльник без особых знаний, сложно доступных материалов, но при наличии огромного желания. Инструкции будут расположены от простейшей к более сложной, но не будем тянуть и приступим.

Резистор

Самая простая техника решения задачи по изготовлению паяльника подразумевает использование резистора. Готовое устройство будет работать с напряжением 6-24 Вольт.

Материалы необходимые для использования данного метода следующие:

  • текстолитовая пластина для ручки;
  • резистор, сопротивление которого 20 Ом, а мощность 7 Ватт;
  • два проводка разного сечения. Тот, что толще, должен строго совпадать с внутренним диаметром резистора, а вот тот, что тоньше лучше выбрать с максимально маленьким диаметром, для удобства последующей пайки;
  • колечко пружинки, шайба и винт – их мы используем в качестве фиксатора.

Итак, алгоритм самостоятельного изготовления паяльника с использованием резистора следующий:

  1. В одном из концов толстого прута сверлим отверстие и нарезаем резьбу под винтик, дополнительно стачиваем ложбинку для фиксатора (по глубине колечка от пружинки).
  2. В торце второй стороны медного прута сверлим отверстие под тонкий проводок, который будет выступать в роли жала.
  3. Собираем все подготовленные элементы вместе: устанавливаем винт и фиксатор, вставляем импровизированное жало в торец прута.
  4. Надеваем резистор и фиксируем его винтиком.
  5. Текстолитовую пластину превращаем в рукоятку с выемками под жало, резистор и провод.
  6. Собираем все вместе и подключаем провод электропитания, после чего проверяем.

Такой паяльник позволяет паять элементарные микросхемы, может работать не только от 12 Вольтного блока питания, но и от батареек, также его можно подключать к прикуривателю. По нашему мнению это простейший и эффективнейший вариант быстро собрать качественный паяльник в домашних условиях.

Шариковая ручка

В этом методе кустарного производства необходимо заменить ПЭВ резистор, использованный в прошлом варианте, на МЛТ. Потому, хотя это отдельный метод, некоторые считают его изощренной вариацией предыдущего.

Необходимые материалы:

  • шариковая ручка;
  • резистор имеющий сопротивление 10 Ом и мощность 0,5 Вт;
  • медная проволока сечением 1 мм;
  • стальная проволока сечением 0,8 мм из стали средней твердости;
  • двухсторонний текстолит;
  • сетевой кабель.

Этапы изготовления следующие:

  1. Нагреваем резистор, подключая его к источнику питания, после отключаем и снимаем краску с его верхней части.
  2. Рассмотрев бочонок, вы увидите, что из него выходит 2 проводка, один из них необходимо отрезать и просверлить в чаше отверстие под медный проводник. Просверливая дырочку необходимо проследить, чтобы в последствии проволока не касалась чашечки, для этого необходимо взять сверло несколько большего диаметра, чем сечение проводника. Дополнительно необходимо пропилить канавку токовода на чашечке.
  3. Стальную проволоку необходимо выгнуть под форму ручки, чтобы она совпадала с пропилом на чашечке.
  4. Из текстолита вырезается основание платы.
  5. Собираем конструкцию в кучу, дополнительно добавляя к конструкции кусочек слюды или керамики в пространство между резистором и медной проволокой, делается это для того, чтобы последняя не испортила прибор.
  6. Подключаем прибор к блоку питания на 12 Вольт и к сетевому кабелю.

Техника исполнения в данном случае несколько сложнее, но и прибор получается на порядок мощнее. Он позволит выпаивать даже SMD компоненты микросхем.

Мощная импульсная модель

Напоследок рассмотрим вариант для людей которые имеют знания в электротехнике далеко не начального уровня. Как минимум пригодиться умение читать электрические схемы, потому как собирать паяльник мы будем, используя именно ее.

Данный аппарат будет легко плавить олово, будет готов к работе через 5 секунд после подключения, в тоже время ингредиенты для него проще всего найти дома.

А они следующие:

  • медный провод для жала;
  • ферритовое кольцо. Первичная обмотка трансформатора должна быть из 100 витков меди, а вторичная из 3мм медной шины.

По своей сути данный паяльник создается в одно действие – подключение проволоки к вторичной обмотке. После этого мы подключаем один из балластных выходов к обмотке трансформатора и у нас готов импульсный паяльник.

Полезное видео

Дополнительные советы по изготовлению самодельных паяльников вы сможете почерпнуть из видео ниже:

В завершение

Для новичков лучше использовать первый или второй вариант предложенный нами, профессионалам будет полезен третий вариант, который они наверняка соберут, хотя скорее ради интереса нежели для практического использования. Надеемся, наш ответ этой проблемы, был для вас полезен. Помните – мы не ограничиваем вашу фантазию, ведь паяльник можно собрать даже из зажигалки, а сварочный аппарат из микроволновки. Фантазируйте, но будьте осторожны и работайте безопасно.

Паяльник из медной проволоки — Морской флот

Керамический паяльник своими руками изготавливается по предварительно составленной схеме. Специалисты советуют собирать самодельный агрегат после изучения принципа его работы. Можно собрать паяльник разной мощности. Массивные устройства можно подключать к розетке с 220 В.

Устройство паяльника

Электропаяльник состоит из стержня, нагревательного элемента, жалка, держателя и электрического шнура с вилкой. Стержень нагревается до температуры плавления припоя, передавая тепло к жалу. Эта часть прибора считается рабочей.

Перед тем как сделать паяльник в домашних условиях, рекомендуется определиться с его физическими характеристиками. Частная марка припоя — ПОС 61, температура плавления — 190 ºС, а температура рабочего жала — 300 ºС. Чтобы нагреть электропаяльник своими руками, используется открытый огонь, жало другого более мощного инструмента, маленький резистор.

Применение резистора

Чтобы собрать паяльник из резистора своими руками, потребуются следующие материалы:

  • резистор с сопротивлением 20 Ом и мощностью в 7 Ватт;
  • пластина;
  • медные прутья;
  • винтик с шайбой.

Изготовленное устройство сможет работать при напряжении от 6 до 24 Вольта. Этапы сборки инструмента:

  1. В торце прута просверливается отверстие. Затем вырезается канавка под фиксатор.
  2. С другого торца высверливается отверстие для жала.
  3. Сборка элементов стержня.
  4. Подготовка резистора для фиксации жала.
  5. Изготовление рукоятки.
  6. Подключение шнура к выводам инструмента.
  7. Проверка нагревателя.

Другой вариант как сделать мини-паяльник своими руками заключается в применении резистора МЛТ и шариковой ручки. Так же потребуются следующие материалы:

  • проволока диаметром 1 мм;
  • двухсторонний текстолит;
  • провода.

Чтобы собрать дома микропаяльник, потребуется выполнить следующие действия:

  1. Снять краску с резистора.
  2. Один провод, который выходит из бочонка, срезается. В этом месте просверливается отверстие для медной проволоки. На чашечке резистора выполняется маленький пропол для токовода.
  3. Необходимо выгнуть стальную проволоку в форме ручки.
  4. Выпиливание платы из текстолита.
  5. Сборка подготовленных элементов.
  6. Установка жало.
  7. Подключение самодельного инструмента с низковольтному блоку питанию (до 12 вольт) и с напряжением максимум 5 А.

Сборка импульсного паяльника

Чтобы изготовить мощный паяльник, необходимо разбираться в радиотехники. Плюс такого агрегата заключается в быстром нагреве жала после включения питания. С помощью паяльника можно расплавлять олово. Для его сборки потребуется ферритовое кольцо. В первичной обмотке должно быть 100−120 витков. Жало подключается к вторичной обмотке, а один вывод к сетевой обмотке аккумулятора.

Чтобы спаять массивные детали, специалисты используют молотковый пальяник. Его необходимо нагревать на огне. Он обладает достаточной теплоемкостью на протяжении некоторого временного периода.

Для получения жала рекомендуется расклепать брусок. Затем его обтачивают напильников, чтобы получить ровные грани. Необходимо соблюдать угол заточки в 30 º. Из прута выковывают держатель, присоединяя его к жалу. Чтобы во время работы не отвлекаться на подогревание жала, к инструменту приделывается газовая мини-горелка.

Сборка аккумуляторного агрегата

Для изготовления аккумуляторного паяльника своими руками используется литий-ионная батарейка стандарта 18 650, плата зарядки и маленький выключатель с фиксатором. На первом этапе сборки изготавливается корпус. Рабочие элементы паяльника фиксируют внутри на клемму из эбонита.

Если пользоваться таким паяльником более 10 минут, эбонит начнет вонять. Плюс такой кнопки заключается в наличии латунной втулки с резьбой. Чтобы предотвратить плавление пластикового корпуса, подрезается его передняя часть. Её заменяют имплантом из стеклотекстолита. Элементы корпуса склеивают между собой.

Аккумуляторный агрегат рассчитан на напряжение в 9 вольт. Можно не использовать преобразователь, если соединить последовательно 2 аккумулятора. Но в таком случае увеличатся габариты и вес паяльника. Такое устройство можно заряжать от usb разъема.

Если используется преобразователь, его напряжение должно быть 30 Воль, а сила тока 2 А. Если диод и микросхема нагреваются сильно, в определенный момент температура не будет расти. Но дроссель может сгореть. Рекомендуется установить стабилизатор напряжения на 3 А.

Подключение инвертора питания

Следующий этап — подключение инвертора к батарейке либо к источнику питания. Необходимо подать напряжение до 4 Вольта. За счет вращения резистора можно добиться 9 вольт выходного напряжения. Дополнительно можно заменить 2 индикатора со светодиодами.

Если инструмент будет использовать в полевых условиях, рекомендуется взять с собой несколько заряженных аккумуляторов. Паяльник, устроенный по такой схеме, можно оснастить индикатором зарядом и светодиодом, который будет загораться при его включении.

Тестирование

Собранное устройство необходимо протестировать. Жало может нагреваться до высокой температуры — 350 º. Инвертор легко регулирует выходное напряжение, включая температуру, с которой нагревается жало. При возможности выводится переменный резистор в нужное место, что позволяет получить аккумуляторный инструмент с возможностью регулировки температуры. Из минусов собранного устройства специалисты выделяют 10%-процентную потерю мощности.

Инструмент из консервной банки

Можно собрать паяльник для пайки smd деталей. Для изготовления ручки используется скакалка. В ручки просверливается отверстие. Из крепежных элементов используют саморезы. С их помощью собирается корпус инструмента. Таким способом можно сделать резьбовые втулки. Пружина от шариковой ручки вклеивается в отверстие.

Каркас инструмента — маленькая трубка, согнутая из консервной жестяной банки. Предварительно подготавливается шаблон для гибки этой трубки. Для этого используется медная проволока диаметром в 2,5 мм. Её же используют для изготовления жала.

Отверстия, выполненные в корпусе, должны иметь правильную форму. Чтобы их сделать, используют сверла с заточкой цапфенбор. С помощью отверстий диаметром в 3 и 4 мм можно снизить температуру корпуса в месте его соединения с ручкой. Собранный инструмент используется с перерывами.

Назначение паяльника известно даже людям, далёким от электрики. Говорить о тех, кто в этой сфере работает и вовсе не приходится – для них это просто незаменимый помощник. И рынок, с учётом этого, предоставляет огромное количество приборов, отличающихся по множеству параметров. Но не во всех случаях тратиться целесообразно, ведь можно сделать полноценный паяльник своими руками, не обладая какими-то специфическими знаниями.

Самодельный паяльник

Покупать паяльник имеет смысл, если работать им приходиться постоянно, или как минимум довольно часто. Но если это инструмент, который бо́льшую часть времени пылится на полке, то тратиться особого смысла нет. Тем более что вполне можно самостоятельно сделать полноценный аппарат необходимой мощности, учитывая вероятные потребности.

Безусловно, для того, чтобы знать, как сделать паяльник своими руками, нужно понимать его устройство и принцип работы. Ведь несмотря на внешнюю простоту, есть некоторые нюансы, которые предпочтительнее знать прежде, чем приступать к работе.

Строение и принцип работы

Паяльники имеют крайне простое устройство: медный стержень, взаимодействующий с нагревательным элементом, помещены в своего рода трубку, выполняющую роль корпуса. К нагревателю подсоединяется термостойкий питающий провод. И всю конструкцию завершает ручка из материала с малой теплопроводностью.

Под действием электрического тока нагревательный элемент (к примеру, нихромовая спираль) передаёт тепловую энергию на медный стержень, называемый жалом. Жало, имея высокую теплопроводность, нагревается, что позволяет производить пайку.

Зная, как устроен паяльник, вполне можно сделать его своими руками. Причём реализовать эту идею разными способами, учитывая потребности в отдельно взятой ситуации.

Паяльник на 220 вольт на резисторе

Вариант с напряжением 220 В, в первую очередь, хорош тем, что не требует поиска блока питания. При этом в зависимости от конкретных нужд его мощность можно сделать разной, что позволяет создать электропаяльник своими руками как для пайки мелкой техники, так и молотковый для запайки баков, кастрюль и прочей металлической утвари.

Для начала нужно приготовить части, которые потребуются в процессе изготовления паяльника:

  • Прут из красной меди, так как она имеет отличную теплопроводность. Причём толщина прута выбирается исходя из расчёта мощности изделия.
  • Резистор, расчёт которого также производится на основании необходимой мощности конечного продукта.
  • Силикатный клей.
  • Асбестовая нить.
  • Провода, часть из которых должна быть термостойкими.
  • Металлическая трубка.
  • Ручка или её подобие из материала, плохо проводящего тепло.

В зависимости от того, какие работы рассчитано выполнять в будущем сделанным паяльником, нужно выбирать его мощность. А уже исходя из этих данных необходимо проводить расчёты.

Здесь стоит вспомнить школьный курс физики, а в частности формулу мощности и закон Ома. Для упрощения расчёта предполагается взять за пример резистор на 100 Ом. Учитывая, что ток будет 2,2 А, при использовании подобного резистора паяльник станет потреблять 484 ватта, а это, конечно, чересчур много. Следовательно, необходимо напряжение снизить. Поможет в этом гасящее сопротивление на 300 Ом и конденсатор 10 мкФ до 300 В. Таким образом получится в четыре раза снизить ток, т. е. примерно до 0,5 ампера, что позволит получить напряжение на резисторе в 55 В.

Когда необходимые расчёты выполнены, можно перейти непосредственно к решению вопроса как сделать паяльник в домашних условиях, т. е. к его механической сборке.

Здесь главное правильно расположить жало в резисторе. Для того чтобы надёжно его зафиксировать и уменьшить зазор между медным прутом и резистором, следует залить его силикатным клеем. Это также поможет защитить деталь от вероятности появления в процессе работы трещин.

Для усиления изоляции в местах соединения проводов и нагревательного элемента лучше дополнительно намотать асбестовую нить. Нелишним будет использование для этих целей дополнительно и керамической втулки. Всё это сделает самодельный паяльник более безопасным и надёжным.

Теперь остаётся полученную конструкцию поместить в подходящую железную трубку, на которую насаживается ручка из дерева или текстолита. В отверстие ручки пропускается провод как в классическом паяльнике для подключения к сети питания.

Маломощный минипаяльник из ручки

Довольно часто использование мощных моделей неудобно и нецелесообразно. Особенное это касается работ, проводимых при ремонте мелкой бытовой техники, пайки smd и других чувствительных к высоким температурам элементов. В таких случаях очень кстати пригодится низковольтный, небольшой, лёгкий и удобный паяльник с тонким жалом. И здесь нелишним будет знать, как сделать мини паяльник своими руками, ведь предполагаемые затраты в таком случае будут куда меньше, нежели в случае покупки заводской модели.

Как обычно, всё начинается с подготовки деталей и частей, который потребуются в процессе работы.

  • Медная проволока диаметром около 1 миллиметра.
  • Ненужная шариковая ручка, исполняющая роль корпуса.
  • Небольшой кусок текстолита размерами 30 на 10 миллиметров.
  • Немного стальной проволоки диаметром 0,8 миллиметра.
  • Так как паяльник из резистора, то используется резистор на 5–10 Ом.

Первым делом подготавливается сам резистор. Для этого необходимо очистить его от краски. Сделать это можно по-разному: просто соскрести её ножом, подключить питание и дать прогреться, после чего снять краску или стереть её растворителем. После этого удаляется одна из ножек, а в этом месте аккуратно высверливается отверстие сверлом в 1 мм, как раз чтобы вошла подготовленная медная проволока. При этом особое внимание стоит обращать на то, чтобы она не касалась корпуса резистора. Поэтому стоит отверстие обработать чуть большим сверлом – раззенковать.

На обрабатываемой стороне резистора, на самой чашечке, делается небольшой пропил, куда впоследствии должна лечь петля токовода. Его же делают из стальной проволоки, изогнув таким образом, чтобы получилась петля, которая и будет ложиться в выпиленную канавку-пропил.

Теперь берётся кусочек текстолита, которые выпиливается таким образом, чтобы один его конец хорошо входил в корпус шариковой ручки. Здесь же с двух сторон напаиваются контакты, к которым впоследствии будут подсоединены питающие провода. Другая сторона текстолитовой пластины делается чуть шире, чтобы не входить в корпус ручки. Здесь также напаиваются контакты, к которым будут подсоединяться токоведущие части от резистора. Внешне полученная заготовка напоминает своеобразную букву «Т» примерно как на рисунке:

Теперь все детали нужно собрать. Проволока с петлёй размещается в соответствующий паз на транзисторе, её концы припаиваются к контактам на текстолитовой пластинке.

В отверстие транзистора вставляют медное жало. При этом нелишним будет сделать защиту из слюды или подобного материала, чтобы в процессе нагрева жала, не повредился сам резистор.

В корпус от шариковой ручки пропускают провода, которые припаивают к контактам с тонкой стороны текстолитовой пластинки – это будет питание. Саму же пластинку после этого также располагают в корпусе ручки.

Когда основа паяльника из резистора своими руками собрана, стоит подумать о питании. Для этого подойдёт блок питания напряжением до 15 вольт. Хотя лучше всего использовать 9–12 В – это оптимальное для работы подобного прибора напряжение.

Как можно заметить, имея минимальное количество материалов, которые без труда найдутся практически в каждом доме, можно сделать отличный и безопасный самодельный паяльник на 12 вольт, не обладая высокими познаниями в электрике и электронике.

Автономный прибор на аккумуляторе

Кому часто приходиться работать «в поле» знают, что наличие розетки, куда можно подключить стационарный паяльник, далеко не всегда имеет место. Следовательно, нелишним будет иметь в запасе автономный его налог. Конечно, производить пайку, требующую мощной модели, не получится, но большинство работ всё же выполнить такой микропаяльник способен. Поэтому вполне целесообразно сделать аккумуляторный паяльник своими руками, чтобы упростить работу в ряде случаев.

Почти все детали, входящие в состав беспроводной модели паяльника, найдутся почти в каждом доме. Поэтому перед началом работы нужно подготовить:

  • Аккумулятор на 12–14 В или батарейки. Подойдёт от старого электроинструмента или от ноутбука.
  • Медная проволока диаметром 2 мм и длиной около 6 см.
  • Разного диаметра (1, 3, 8 мм) термостойкие трубки. Можно взять из старой электротехники.
  • Проволока из нихрома диаметром около 0,3 мм. Подойдёт от сломанного фена.
  • Телескопическая антенна от радиоприёмника.
  • Кусочек толстой медной проволоки для жала диаметром 3,8 мм.
  • Провода для подключений.
  • Трубка из материала с низкой теплопроводностью для корпуса.

Когда всё готово, можно приступать непосредственно к сборке паяльника. И для начала нужно сделать нагревающий элемент: нихромовую нить необходимо намотать на подготовленную медную проволоку диаметром 2 мм в виде спирали. При этом длину придётся определять опытным путём. Так, нагрев спирали должен достигать температуры от 300 до 450 градусов Цельсия.

Теперь на эту же проволоку нужно надеть кусочек термостойкой трубки и уже на неё намотать отмеренную нихромовую нить. На её концы одеваются трубки меньшего размера, после чего на всю получившуюся конструкцию надевают трубку самого большого диаметра. Теперь медную проволоку, находящуюся внутри, можно аккуратно вынуть.

Полученный нагревательный элемент остаётся поместить в отрезанный подходящего размера кусочек антенны. Сюда же вставляется жало и закрепляется с помощью самореза.

В общем-то, вся основа уже готова. Остаётся лишь припаять к спирали провода для питания и поместить всё в корпус.

Для того чтобы предотвратить возгорание, между трубкой с нагревающим элементом и корпусом необходимо вставить кусочек какого-либо негорючего материала.

В итоге получился дешёвый, надёжный и удобный инструмент из подручных средств для пайки в полевых условиях.

В списке основных инструментов домашнего мастера не последнее место занимают паяльники. В зависимости от того для чего они предназначены, внешний вид и конструкции их могут очень сильно отличаться друг от друга. Использовать, например, один и тот же инструмент для пайки радиатора автомобиля и работы с микросхемами и транзисторами невозможно.

Паяльник необходим для пайки различных микросхем и деталей.

Купить паяльник с нужными характеристиками удается не всегда. Но вполне возможно изготовить такой электропаяльник своими руками, тем более что особой сложности эта работа не представляет — было бы время и желание.

Как сделать самодельные тиски — читайте тут.

Паяльники с резистором в качестве нагревательного элемента

Проще всего в изготовлении инструменты, в которых в качестве нагревательного элемента выступает достаточно мощный резистор. Разберем несколько примеров того, как сделать паяльник такой конструкции.

Паяльник из проволочного резистора

Устройство паяльника «пистолета».

Понятно, что, для того чтобы изготовить такой паяльник своими руками, нужен подходящий проволочный резистор. Для паяльника на напряжение 12 В, способного питаться не только от соответствующего источника тока, но и от автомобильного аккумулятора, подойдет резистор с номиналом 20 Ом, рассчитанный на мощность 7 Вт.

На рис. 1а и 1б показан внешний вид нагревателя с двух противоположных сторон. Отдельные элементы на них обозначены следующими цифрами:

  1. Ограничительная проволочная шайба.
  2. Отрезок жала паяльника мощностью 25 Вт.
  3. Отрезок жала паяльника мощностью 60 Вт.
  4. Винтик с ограничительной шайбой.

Рисунок 1. Дополнение нагревателя рукояткой.

Отрезок жала от паяльника мощностью 60 Вт (3) плотно входит в отверстие резистора. С одного его конца сверлится отверстие и нарезается резьба под винт (4), а с противоположного — под отрезок жала 25-ваттного паяльника (2). Кроме того, на его поверхности делается канавка под ограничительную проволочную шайбу (1). Ее можно изготовить из колечка, откушенного от подходящей пружины.

Полученный нагреватель нужно дополнить рукояткой пистолетного типа или такой, как показана на рис. 1. К автомобильному аккумулятору его можно подключить через штекер для автомобильного прикуривателя. Паяльник на напряжение 220 В можно изготовить из резистора сопротивлением 1700-2000 Ом мощностью не менее 10 Вт. Рукоятку можно взять от сгоревшего паяльника.

Миниатюрный паяльник из непроволочного резистора

С помощью такого инструмента удобно осуществлять мелкую работу, например, пайку микросхем. Чтобы изготовить этот паяльник своими руками, потребуются следующие материалы:

  • резистор МЛТ номиналом 8-12 Ом с мощностью рассеяния 0,5 Вт;
  • корпус от авторучки;
  • отрезок медного провода толщиной 1 мм для жала;
  • отрезок стальной проволоки диаметром 0,75 мм;
  • кусочек двустороннего текстолита;
  • провода в термостойкой изоляции.

Рисунок 2. Жало перед вставкой необходимо обернуть тонким слоем слюды.

Прежде всего с корпуса резистора удаляется краска. Ее можно снять ножом или немного подержав резистор в ацетоне. Один из выводов отрезается, на месте среза сверлится, а затем раззенковывается отверстие под будущее жало (см. рис. 2а). Первоначальный диаметр отверстия — 1 мм, после раззенковки жало не должно касаться чашечки, держаться оно должно в керамическом корпусе резистора. Во внешней части чашечки выпиливается канавка для крепления стального токоотвода (см. рис. 2б). Он же и удерживает нагревательный элемент.

Из текстолита выпиливается небольшая плата (см. рис. 2в). Она состоит из трех частей:

  • к широкой части припаивается стальной токоотвод;
  • средняя часть служит для закрепления в корпусе авторучки;
  • к узкой части припаивается второй вывод резистора.

Паяльник в сборе показан на рис. 2г. Жало перед вставкой следует обернуть тонким слоем слюды. Для питания желательно использовать регулируемый источник тока. При использовании резистора сопротивлением 8 Ом рабочее напряжение должно быть порядка 6 В.

Низковольтный паяльник своими руками

Рисунок 3. Устройство паяльника.

Разберем, как сделать электропаяльник с нагревателем из нихромовой проволоки. На рис. 3 показано его схематическое устройство. На рисунке отдельные элементы конструкции обозначены цифрами.

Кроме того, нужна медная фольга — основание для нагревательного элемента, тальк и жидкое стекло (силикатный клей) для приготовления термостойкой электроизоляционной пасты. Если не найдется медной фольги, можно отделить ее от фольгированного стеклотекстолита, прогрев его предварительно нагретым утюгом. Для питания паяльника нужен источник тока, способный отдавать ток величиной 1 А при напряжении 12 В.

Начнем с изготовления нагревательного элемента. Его основание — трубка из медной фольги длиной 30 мм, свернутая вокруг жала паяльника. Ее аккуратно покрывают слоем электроизоляционной пасты, состоящей из талька, разведенного в жидком стекле до состояния густого теста. Затем этот слой при температуре 100-150 o C просушивают до полного спекания пасты.

Нагревательный элемент изготовлен из нихромовой проволоки диаметром 0,2 мм длиной 35 см. Он аккуратно, виток к витку наматывается на подготовленное основание в один слой. Обмотка покрывается сверху той же электроизоляционной пастой и снова просушивается. Концы нихромовой проволоки тоже следует до половины длины покрыть пастой. Оставшиеся концы будут позже подсоединены к электрошнуру.

В сечении нагревательного элемента на рис. 3 цифрами обозначены следующие элементы:

  • медное жало — 8;
  • основание (трубка из медной фольги) — 9;
  • обмотка из нихромовой проволоки — 10;
  • слои электроизоляционной пасты — 11.

Заключительный этап — сборка электропаяльника. Электрический шнур протягивается через внутреннее отверстие рукоятки и подключается к выводам электронагревателя. Места контакта изолируются, нагреватель монтируется в защитный кожух из жести, а кожух соединяется с ручкой.

Изготовить паяльник, надежный и функциональный, с нужными характеристиками — не такая уж сложная задача.

Мини паяльник своими руками | all-he

Данный самодельный паяльник отлично подходит для пайки микросхем с шагом 0.5 мм., для элементов в SMD корпусах и для прочей мелкой работы.

Понадобится:

  • корпус от шариковой ручки;
  • резистор МЛТ-0.5 5 – 10 Ом;
  • медная проволока диаметром 1 мм;
  • двухсторонний текстолит;
  • стальная проволока диаметром ~ 0.8 мм;
  • провода.

Как сделать паяльник

Нагревательный элемент. Снимаем с помощью ножа краску, с корпуса резистора. Для того, чтобы облегчить этот процесс, резистор можно нагреть, подключив его к регулируемому источнику питания. Далее отрезаем одну из ног и на месте среза, сверлим отверстие диаметром 1 мм. В керамическом корпусе сверлить не придется, т.к. там уже есть отверстие (как и во всех советских резисторах) примерно такого же диаметра.
Теперь необходимо раззенковать отверстие сверлом большего диаметра, чтобы жало не касалось чашечки. Так же на чашечке необходимо сделать пропил для прикрепления токовода.

Токовод кроме функции проводника будет выполнять еще и функцию крепления нагревательного элемента.
Проволоку нужно подобрать такую, чтобы она хорошо лудилась и держала форму. Придаем ей форму как показано на фото (кольцо должно одеваться на чашечку резистора с небольшим усилием).

Из текстолита выпиливаем небольшую плату.
Она состоит из трех частей:

  1. Широкая. Для припаивания тоководов и рассеивания тепла.
  2. Служит креплением платы в корпусе ручки.
  3. К ней будут припаяны проводки.

Собираем миниатюрный паяльник. Надеваем на переднюю чашку резистора кольцо и припаиваем. Так мы обеспечим хороший контакт для прохождения тока. Припаиваем токоотводы к плате.

Жало для паяльника изготавливаем из медной проволоки. Перед установкой жала, нужно поместить в отверстие небольшой кусочек слюды, либо керамики, чтобы жало не касалось задней чашечки резистора.

Провода лучше всего использовать МГТФ (они не расплавятся при контакте с нагревательным элементом). В качестве источника питания, используется БП 1А, 0 -15В.
Если использовать резистор 8.5 Ом, то рабочее напряжение мини паяльника будет около 5.5 — 6В.

Что касается технологии использования данного самодельного паяльника, то она ничем не отличается от обычного паяльника (стандартный припой флюс и т.д.).

Вот, что можно изготовить данным устройством.

По материалам сайта: radiosezon.ru

Как собрать простой паяльник · Один транзистор

Соберите низковольтный паяльник с медным стержнем, нихромовой проволокой и термоизолятором.

Хотя паяльники довольно дешевы, широко доступны и бывают разных форм и размеров, вот способ своими руками. В этой статье будут описаны некоторые простые в сборке паяльники, которые могут обеспечить мощность 15–30 Вт и питаются от низкого напряжения (5–12 В, в зависимости от используемого вами нагревательного провода). Это означает, что вы можете подключить его к любому блоку питания, который соответствует этим требованиям (компьютерный блок питания будет хорошим выбором).Проект прост: для его нагрева используется нагревательный резистор, намотанный на медный наконечник. Основная сложность здесь — найти термоустойчивый изолятор, который можно наматывать на медный наконечник. Я использовал материал, который можно найти между силовыми транзисторами и радиаторами.

Описаны два варианта. Разница между ними заключается в способе прикрепления медного стержня к ручке.

Паяльник своими руками (вариант 1)
Возьмите медный наконечник (1) (кусок 7.. 10 см медного стержня диаметром 3 … 4,5 мм) и намотайте на него изолятор примерно на 4 см. Присоедините один конец нихромовой проволоки нагревателя (диаметром около 0,3 … 0,5 мм) к острому концу (3) и начните наматывать его на изоляцию, чтобы получился резистор нагревателя (4). Повороты должны быть близко, но не касаться друг друга. Чтобы получить наилучшую длину провода (количество витков), требуется небольшой эксперимент, поэтому вам следует включить его и посмотреть, как он себя ведет. Удерживая наконечник с другого конца плоскогубцами, подайте немного постоянного напряжения.Можно смело начинать с 5V от БП компьютера ATX. Он имеет достаточный ток и при коротком замыкании автоматически отключается. Наконечник соединяется с одним концом нихромовой проволоки. Это тоже будет основание устройства. Другой конец нихромовой проволоки должен выходить на напряжение питания (VCC).

Очень важно использовать источники питания с ограничением по току или с защитой от короткого замыкания . Изолятор между нихромовой проволокой и медным наконечником может сломаться при высоких температурах и вызвать короткое замыкание.

Провод не должен раскаливаться. В таком случае попробуйте использовать более низкое напряжение. Хорошая подгонка — когда провод немного виден в темноте. Не более чем через минуту наконечник должен расплавить припой. В противном случае, если вы прикоснетесь припоем к нихромовой проволоке, и она плавится, но не плавится на кончике, это означает, что вы использовали слишком толстый изолятор или обладающий теплоизоляционными свойствами, что не очень хорошо. Если проволочный резистор кажется недостаточно горячим, попробуйте использовать более высокое напряжение.

Если вам удалось его собрать, то теперь вы должны прикрепить этот обогреватель к ручке.Первый вариант предполагает размещение наконечника с нагревателем внутри металлической трубы после введения керамических прокладок (2) на концах. Вам нужно будет прикрепить металлическую трубу к шайбе (7), которая будет прикреплена несколькими винтами (9) и распорками (8) к ручке (10). Прокладки рекомендуются для улучшения теплоизоляции ручки, чтобы она не нагревалась во время использования.

Паяльник своими руками (вариант 2)
Второй вариант построить немного проще.Вместо того, чтобы вставлять наконечник с нагревателем в трубу, противоположный конец наконечника закрепляют на металлическом листе (6), который сгибается в L-образной форме для облегчения крепления ручки (8). Этот металлический лист также служит радиатором.

Вот деталь конструкции шайбы (7) из варианта 1 и детали из листового металла (6) из варианта 2:

Деталь металлических деталей
На следующем фото показана попытка собрать наконечник с нагревателем.Диаметр медного стержня всего 2,5 мм. В моих тестах он хорошо работал при 6 … 7 вольт переменного тока прямо от трансформатора.
Жало паяльника с нагревателем из нихромовой проволоки
Противоположный конец жала можно термически прикрепить к датчику температуры (возможно, к термопаре), чтобы построить паяльную станцию ​​с регулируемой температурой. Подробнее об этом в будущем посте.

DIY Паяльник с холодным нагревом: 10 шагов (с изображениями)

То, что мы собираемся сконструировать, по-прежнему технически является паяльником резистивного типа, как и традиционный утюг, но вместо нагрева металлического наконечника для расплавления припоя и нагрева соединения, мы будем нагревать работу напрямую.Нам понадобится всего несколько простых деталей. У многих строителей уже есть большая часть деталей.

Нам понадобится:

1. Блок питания с низким напряжением и большой силой тока. Что-нибудь около 5-10 В и 5+ ампер должно быть достаточно. После поиска мне пришло в голову: старый блок питания ПК! он имеет цепь 5 В, рассчитанную примерно на 15 ампер.

2. Старый паяльник или что-нибудь подходящее для ручки.

3. Два небольших кусочка меди или латуни. Подойдет любой металл, но это то, что было у меня.

4. Полоска слюды. У тебя нет слюды? Какого черта … хорошо … Просто возьми плексиглас, как я. Люди также рекомендовали стекло или кусок керамической цоколя для лампочки. Чем тоньше материал, тем лучше. Где-то от 1/8 до 1/16 дюйма было бы хорошо.

5. Несколько футов проволоки сечением от 8 до 12.

6. Рабочий припой (да, я понимаю иронию …)

7. Свинцовые стержни для механического карандаша (толщина не имеет значения)

8.Некоторые инструменты, включая небольшой напильник и ножницы для проволоки. Фактический список инструментов может немного отличаться в зависимости от частей, которые вы собираете, и от того, какие виды разрушений вы должны обуздать, чтобы заставить их сотрудничать.

9. Изолента.

10. Мультиметр-мастер. Необязательно, но настоятельно рекомендуется. Нет более точного инструмента.

11. Какой-либо переменный резистор, способный выдерживать напряжение 5 В, выходящее из блока питания. Я думал о педали от швейной машины или, возможно, о каком-то стандартном реостате.Это также необязательно, и демонстрация здесь сделана без него, но многие люди сделали эту рекомендацию.

А теперь сложите все это вместе и идите перекусить .. Когда вернетесь, мы начнем хаос.

Паяльник для бедняков: 7 шагов (с изображениями)

Если вам не интересна эта деталь или вы уже все знаете, вы можете просто перейти к следующему шагу.

Теперь … паяльник выделяет тепло, заставляя электрический ток проходить через сопротивление.Вот и все.

Подождите, а что такое сопротивление?

Когда ток проходит через какой-либо материал, атомы этого материала ведут себя как препятствие для потока электронов. Есть то, что мы можем рассматривать как своего рода трение. Это трение или сопротивление, как и другие виды трения, генерирует тепло. Таким образом, часть тока, протекающего в каждой цепи, преобразуется в тепло, в зависимости от сопротивления материала, через который он протекает (вообще говоря, металлы имеют низкое сопротивление, в то время как такие материалы, как стекло или пластик, имеют высокое сопротивление).

Этот принцип широко используется в электрических лампах, электрических духовках и всех видах электрических обогревателей в целом.

Чтобы создать такую ​​схему, все, что нам нужно, это то, что генерирует ток, и что-то, что преобразует его часть в тепло.

На этом этапе некоторые основные формулы могут помочь лучше понять:

Ток, протекающий в цепи = Напряжение генератора (ов) / Общее сопротивление цепи

или i = V / R

Эта формула позволяет рассчитать сколько тока будет протекать через цепь.Приведем пример: у нас есть батарея AA, которая выдает 1,5 вольта (это единица измерения напряжения), и мы соединяем два полюса металлическим проводом с сопротивлением 1 Ом (это единица сопротивления). Мы не учитываем сопротивление материалов батареи, которое обычно очень низкое. Ток, протекающий по этой цепи, будет примерно 1,5 В / 1 Ом = 1,5 Ампер (единица измерения тока). Важно отметить, что если мы хотим увеличить ток, протекающий в нашей цепи, мы должны уменьшить сопротивление в этой цепи или увеличить напряжение генератора.

А вот еще одна формула:

Мощность, рассеиваемая материалом, имеющим сопротивление = Напряжение, приложенное к этому материалу * Ток, протекающий через него

или P = V * i

Эта формула позволяет более или менее выяснить, как много тепла будет выделять кусок любого материала (рассеиваемая мощность прямо пропорциональна выделяемому теплу). Давайте посчитаем, сколько энергии тратит впустую наш металлический провод, подключенный к батарее:

1,5 В * 1,5 А = 2,25 Вт (ватты, единица мощности)

Чтобы увеличить потери мощности и выделяемое тепло, мы должны увеличьте напряжение или ток, или и то, и другое.

Хорошо, возможно, я просто жарю вам мозг не очень полезной математикой.

В качестве блока питания мы будем использовать, ну, блок питания. А в качестве стойкого материала (который будет нашим наконечником) мы будем использовать графит. Как отмечает photozz в своем руководстве, графит — очень хороший материал для использования в качестве жала паяльника, потому что он имеет низкое сопротивление, но не слишком низкое сопротивление, он разлагается при очень очень высоких температурах (Википедия говорит о 3500 ° C). C), его очень легко найти (эм… карандаши) и очень легко чистится (припой не прилипает к графиту). И, по сравнению с металлическим наконечником, кажется, что за очень короткое время он возвращается к холоду.

Наша схема будет выглядеть так, как я нарисовал на картинке. Мы подключим провод к блоку питания и концу наконечника, а другой провод — к блоку питания и другому концу наконечника, чтобы через него протекал ток.

Руководство по пайке | Электронный клуб

Руководство по пайке | Клуб электроники

Как паять | Радиатор | Компоненты | Припой | Демонтаж | Бернс

Информацию о паяльниках и других инструментах см. На странице «Инструменты».

Загрузите PDF-версию этой страницы: Руководство по пайке (PDF)


Как припаять

Сначала несколько мер предосторожности:

Никогда не прикасайтесь к элементу или наконечнику паяльника. Они очень горячие (около 400 ° C) и могут вызвать неприятный ожог.

Соблюдайте осторожность, чтобы не прикасаться кончиком утюга к гибкому разъему питания. Утюг должен иметь термостойкий изгиб для дополнительной защиты. Обычный пластик flex немедленно плавится, если к нему прикоснуться горячим утюгом, и есть серьезный опасность ожога и поражения электрическим током.

Всегда возвращайте паяльник на подставку, когда он не используется. Никогда не кладите его на рабочий стол, даже на мгновение!

Работайте в хорошо вентилируемом помещении. Дым, образующийся при плавлении припоя, в основном возникает из-за флюса и вызывает сильное раздражение. Не дышите им, держите голову сбоку от работы, а не над ней.

Вымойте руки после использования припоя. Традиционный припой содержит свинец, который является ядовитым металлом.

Если вы получили ожог, см. «Первая помощь при ожогах».

Настоятельно рекомендую использовать паяльник с термостойким силиконовым кабелем в целях безопасности, потому что он не расплавится при случайном прикосновении к горячему утюгу.

Например, паяльник 230 В от Rapid Electronics: паяльник

Подготовка паяльника:

Установите паяльник на подставку и вставьте его в розетку. Утюгу потребуется несколько минут, чтобы достичь своей рабочей температуры около 400 ° C.

Смочите губку в подставке. Лучший способ сделать это — приподнять подставку и подержать под струей холодной воды в течение на мгновение, затем нажмите, чтобы удалить лишнюю воду. Он должен быть влажным, а не мокрым.

Подождите несколько минут, чтобы паяльник нагрелся. Вы можете проверить, готов ли он, попытавшись расплавить немного припоя на наконечнике.

Протрите кончик утюга влажной губкой. Это очистит наконечник.

Расплавьте немного припоя на кончике утюга. Это называется лужением, и оно помогает теплу отводиться от кончика утюга. к суставу. Это нужно делать только тогда, когда вы подключаете утюг, и иногда во время пайки, если вам нужно протереть наконечник о губку.

Теперь вы готовы приступить к пайке:

Держите паяльник как ручку у основания ручки (представьте, что вы собираетесь написать свое имя). Не прикасайтесь к горячему элементу или наконечнику.

Коснитесь паяльником соединяемого соединения. Убедитесь, что он касается как вывода компонента, так и дорожки. Держи кончик там на несколько секунд и …

Нанесите немного припоя на соединение. Он должен плавно течь на свинец и гусеницу, чтобы сформировать форму вулкана, как показано на рисунке. на диаграмме. Наносите припой на соединение, а не на железо.

Удалите припой, затем утюг, сохраняя соединение неподвижным. Прежде чем перемещать монтажную плату, подождите несколько секунд, пока соединение остынет.

Внимательно осмотрите соединение. Он должен выглядеть блестящим и иметь форму вулкана. Если нет, вам нужно будет разогреть его. и подайте еще немного припоя. На этот раз убедитесь, что и ведут впереди и следят за ним. полностью нагреваются перед нанесением припоя.

Если вы получили ожог, см. Раздел «Первая помощь при ожогах» ниже.


Использование радиатора

Некоторые компоненты, такие как транзисторы, могут быть повреждены нагревом при пайке, поэтому, если вы не специалист, разумно использовать радиатор, закрепленный на проводе между стыком и тело компонента.Можно купить специальный инструмент, но стандартный зажим «крокодил» (без пластиковой крышки). работает так же хорошо и дешевле.

Радиатор работает, забирая часть тепла от паяльника и этого помогает предотвратить чрезмерное повышение температуры компонента.

Rapid Electronics: зажим «крокодил»



Рекомендации по пайке компонентов

Очень заманчиво сразу приступить к пайке компонентов на печатной плате, но сначала найдите время, чтобы определить все детали.Наклеивая их на лист макулатуры и маркировка каждого из них имеет смысл, и вы с меньшей вероятностью сделаете ошибку, если сделаете это.

Некоторые ИС чувствительны к статическому электричеству и будут поставляться в антистатической упаковке — оставьте эти микросхемы в упаковке до тех пор, пока они вам не понадобятся, затем заземлите руки, прикоснувшись к металлическому водопроводную трубу или оконную раму перед работой с ИС.

  1. Наклейте компоненты на бумагу с помощью липкой ленты.
  2. Определите каждый компонент и напишите рядом с ним его имя или значение.
  3. При необходимости добавьте метки (R1, R2, C1 и т. Д.), Используемые на схеме проекта.
  4. Значения резистора можно найти с помощью цветового кода. объяснено на странице резисторов. Вы можете сделать свой собственный калькулятор цветового кода.
  5. Значения конденсатора могут быть немного сложнее, различные системы маркировки объяснено на странице конденсаторов.

Некоторые компоненты требуют особого ухода при пайке.

Многие должны быть установлены правильно, а некоторые могут быть легко повреждены теплом от пайки.

В таблице приведены рекомендации по различным компонентам и предлагаемый порядок их установки. на борту. Как правило, лучше начинать с мельчайших деталей, но не для полосовой бумаги. Полезно начать с держателя (ов) ИС в качестве ориентира для других деталей.

Ссылки проволочные

Соединения проводов между точками на плате могут быть выполнены с помощью одножильного провода с пластиковым покрытием, который необходимо зачистить, или луженую медную проволоку, если звено не будет касаться других частей. Луженая медная проволока выглядит как припой, но вы можете Почувствуйте разницу, он жестче припоя (и не плавится).

Провода к частям вне платы должны быть гибкими, поэтому используйте для них многожильный провод с пластиковым покрытием, популярным типом является проволока 7 / 0,2 мм (7 жил проволоки диаметром 0,2 мм). Одножильный провод непригоден, потому что он ломается при многократном сгибании.

Rapid Electronics: набор проводов 7 / 0,2 мм

Пайка компонентов
Установите компоненты на плату в следующем порядке:
1. Держатели микросхем
Подключите правильно — выемка напомнит вам, в какую сторону разместить ИС. Пока НЕ ​​вставляйте микросхемы.
2. Резисторы
Подключите в обе стороны.
3. Конденсаторы малой емкости
Конденсаторы малой емкости (<1 мкФ) не поляризованы. Подключите в любом случае.
4. Электролитические конденсаторы (1 мкФ +)
Подключите правильным образом, поищите плюс или минус рядом с одним проводом. Они могут быть радиального типа (оба вывода на одном конце) или осевого типа (выводы на каждом конце).
5. Диоды
Подключите правильно. Полоса отмечает катод (линия на символе), обычно обозначаемый буквой k на диаграммах.
Для германиевых диодов используйте радиатор.
6. Светодиоды
Подключите правильно, катод — это короткий провод. Диаграмма будет иметь или + для анода, k или — для катода.
7. Транзисторы У транзисторов
3 «ножки» (вывода), поэтому будьте особенно внимательны, чтобы правильно их подключить.Они могут быть повреждены нагреванием, используйте радиатор, пока не сможете быстро паять.
8. Проволочные перемычки
Связи между точками на плате могут быть выполнены одножильным проводом с пластиковым покрытием, или луженую медную проволоку, если звено не будет касаться других частей.
9. Детали с собственными проводами
Зажимы аккумулятора, зуммеры и т. Д. При необходимости подключите правильным образом.
10. Провода к частям вне платы
Используйте многожильный провод для переключателей, реле, громкоговорители, переменные резисторы и т. д.
11. ИС (микросхемы)
Подключите правильно, ищите выемку или точку рядом с контактом 1. Убедитесь, что все штифты выровнены с гнездом, прежде чем сильно надавить на него большим пальцем.

Что такое припой?

Традиционный припой представляет собой сплав (смесь) олова и свинца, обычно 60% олова и 40% свинца. Плавится при температуре около 200 ° C.

Современный бессвинцовый припой представляет собой сплав олова с другими металлами, включая медь и серебро.Плавится при температуре около 220 ° C.

Покрытие поверхности припоем называется лужением из-за содержания в припое олова.

Фотография © Rapid Electronics

Всегда мойте руки после использования припоя , это особенно важно для традиционных припой, поскольку он содержит токсичный свинец.

Лучший размер припоя для электроники — 22 SWG (SWG = стандартный калибр проводов) и Я рекомендую использовать бессвинцовый припой.

Rapid Electronics: бессвинцовый припой

Припой для электроники содержит крошечные сердечники из флюса, похожие на провода внутри гибкого кабеля. Флюс вызывает коррозию, как кислота, и очищает металлические поверхности по мере плавления припоя. Вот почему вы должны плавить припой непосредственно на стыке, а не на наконечнике железа. Без флюс выйдет из строя, потому что металлы быстро окисляются, а сам припой не должным образом стечь на грязную окисленную металлическую поверхность.



Удаление припоя

На каком-то этапе вам, вероятно, потребуется распаять соединение, чтобы удалить или переместить провод или компонент.Удалить припой можно двумя способами:

1. С демонтажным насосом

Также известен как «присоска для припоя». Лучше всего использовать один с ESD (электростатический разряд). насадка для защиты некоторых микросхем, которые могут быть повреждены статическим электричеством.

  1. Настройте насос, нажав на подпружиненный плунжер вниз до его фиксации.
  2. Приложите к стыку сопло насоса и наконечник паяльника.
  3. Подождите секунду или две, пока припой расплавится.
  4. Затем нажмите кнопку на насосе, чтобы освободить поршень и всосать расплавленный припой в инструмент.
  5. Повторите, если необходимо, чтобы удалить как можно больше припоя.
  6. Время от времени потребуется опорожнение насоса путем откручивания форсунки.

Rapid Electronics: насос для удаления припоя

С помощью демонтажного насоса (присоски для припоя)

2. С оплеткой для удаления припоя

Медная оплетка действует как фитиль для расплавленного припоя, который легко течет на оплетку вдали от стыка.

  1. Прикрепите конец медной оплетки и наконечник паяльника к стыку.
  2. По мере плавления припоя большая часть его будет стекать на оплетку в сторону от стыка.
  3. Снимите сначала оплетку, затем паяльник.
  4. Отрежьте и выбросьте конец оплетки, покрытой припоем.

Rapid Electronics: оплетка для удаления припоя

После удаления большей части припоя из стыка (-ов) вы можете удалить провод или компонентный провод (подождите несколько секунд, чтобы он остыл).Если соединение не разваливается, легко примените паяльник, чтобы расплавить оставшиеся следы припоя одновременно с разъединением стыка, снятием осторожность, чтобы не обжечься.


Первая помощь при ожогах

Большинство ожогов от пайки, вероятно, будут незначительными, и лечение простое:

  1. Немедленно охладите пораженный участок под слабой струей холодной воды.
    Подержите ожог в холодной воде не менее 5 минут (рекомендуется 15 минут).Если лед легко доступен, это тоже может быть полезно, но не откладывайте первый охлаждение холодной водой.
  2. Не наносите кремы или мази.
    Без них ожог заживает лучше. Сухая повязка, например, чистый носовой платок, может применяться, если вы хотите защитить участок от грязи.
  3. Обратитесь за медицинской помощью, если ожог охватывает область больше, чем ваша рука.

Для снижения риска ожогов:

  • Всегда возвращайте паяльник на подставку сразу после использования.
  • Дайте соединениям и компонентам примерно минуту остыть, прежде чем прикасаться к ним.
  • Никогда не прикасайтесь к элементу или наконечнику паяльника, если не уверены, что он холодный.

Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Как сделать модуль пайки высокой мощности

Большинство производителей электровелосипедов никогда не видели модуль для пайки сопротивлением, поэтому они не знают, что это вариант, когда вы переходите к пайке более крупных разъемов.Если вы хотите купить их, они дорогие, но … их на удивление легко сделать, если вы относитесь к тому типу людей, которые умеют обращаться в магазин.


Что, черт возьми, такое RSU?

Имеющиеся здесь считыватели уже умеют пользоваться паяльником. Вы подключаете его, наконечник нагревается, и при нажатии горячим наконечником на две части, которые вы хотите соединить, детали нагреваются настолько, что, когда вы касаетесь стыка частью припоя, он плавится и течет в стык. .Довольно прямолинейно, правда?

RSU нагревает две металлические детали, пропуская через них ток. Это то же самое явление, когда наши электрические разъемы ebike нагреваются, когда мы пропускаем слишком много ампер через разъемы, которые слишком малы для амперной нагрузки. Вы касаетесь двух проводящих щупов по обе стороны от частей, которые хотите соединить, а затем пропускаете через них высокий ток (путем включения RSU с помощью ножного переключателя). Поскольку щупы на самом деле касаются детали, высокое напряжение не требуется.Именно усилители создают тепло.

Чтобы дать вам представление о том, что возможно, обычно используемые детали могут обеспечивать макс. Ток 700 А при 2 В . Конечно, фактическое количество усилителей, которые вы в итоге получите, легко отрегулировать. Тот же 1400Вт можно на 120А на 12В намотать.


Как работает трансформатор

Сердце RSU — простой трансформатор, и его можно дешево найти внутри выброшенной мусорной микроволновой печи.На YouTube есть много видеороликов о том, как безопасно собрать Трансформатор для микроволновой печи (MOT).

Для вашей безопасности важно помнить, что микроволновые печи имеют большие конденсаторы, которые будут удерживать заряд 2000 В, , даже после того, как микроволновая печь отключена от сети . Надевайте резиновые перчатки при разборке микроволновки, потому что если вы случайно дотронетесь до разъемов конденсатора, они точно могут вас убить, и… даже если вы живы, вам точно будет больно.

Если вы не хотите ждать, чтобы найти брошенную микроволновую печь бесплатно, вы можете просто зайти на ebay и выполнить поиск «Трансформатор для микроволновой печи». МОТ от очень распространенной микроволновой печи на 800 Вт может работать нормально (2 В X 400 А), но я рекомендую приобрести устройство большей мощности на 1400–1500 Вт (с кандидатами на ebay мне пришлось гуглить номер детали, чтобы найти мощность). Это связано с тем, что вы можете настроить RSU для вывода более низких ампер, но максимальное возможное количество ампер ограничено физическим размером MOT. Если вы начнете с большого, вы можете затем отрегулировать усилители в сторону понижения в зависимости от того, что подходит для вашей работы.

Я немного переборщил с размером MOT, потому что я также хочу использовать его в качестве сварочного аппарата для толстых медных электрических шин на нестандартном аккумуляторном блоке, но это статья для другого раза. Если вы уверены, что вам нужна только сверхмощная паяльная станция, МОТ мощностью 800 Вт подойдет, и ее тоже будет легче приобрести…

Обычный стержневой магнит с железными опилками, показывающими форму магнитного поля. N означает север, а S означает юг

Земля имеет трехмерное электромагнитное поле, имеющее примерно форму пончика (также называемого тороидом).Если вы поместите простой стержневой магнит под стекло и присыпите верхнюю часть стекла железными опилками, металлические чешуйки выровняются с невидимым магнитным полем по форме, очень похожей на поле Земли. На картинке выше вы можете увидеть классический «двойной цикл», который образуется, когда вы показываете только двумерный срез этого поля.

В этой статье я буду использовать термины сталь и Iron взаимозаменяемо, но сталь — это просто железо, в которое примешано около одной трети одного процента углерода, что делает железо физически более прочным, но не меняет своих магнитных свойств.В МОТ, о которых мы будем говорить, обычно используется сердечник, который состоит из стопки тонких стальных листов, которые называются ламинатами (каждый лист окунается в прозрачный изоляционный лак, поэтому они не связаны друг с другом электрически).

Первый шаг — понять, что если вы возьмете катушку из изолированного медного провода (магнитный провод выглядит оголенным, но имеет покрытие из прозрачной изоляции), и когда вы пропустите через него переменный ток, он будет называться « соленоид с воздушным сердечником.Это создаст магнитное поле. В варианте с воздушным сердечником переменное напряжение переменного тока может переключаться вперед и назад очень быстро без перегрева (высокая частота). Иногда они используются в радиоприемниках.

Тем не менее, магнитное поле соленоида с воздушным сердечником сильно разбросано (слабое, как у меня в коленях). Но … если вы вставите что-то из стали в его центр, он станет соленоидом с железным сердечником (часто используемым в качестве электромагнита, который можно включать и выключать по мере необходимости, например, двигатель). Добавление железа к центру делает его магнитную силу более сфокусированной и более концентрированной.Если вы также окружите катушку стальными пластинами, которые имеют классическую форму «двойной петли», о которой я упоминал ранее, стальной сердечник будет втягивать все магнитное поле, так что оно течет только через пластинки, а не через окружающий воздух.

Характеристика железа и стали, которая втягивает и направляет магнитное поле, называется «проницаемостью».

Ток, выходящий из настенных розеток в обычных домах в США, составляет около 110 В переменного тока, который меняет свое направление 60 раз в секунду (60 циклов).Типичная настенная розетка может иметь выключатель на 15 А для защиты, а это означает, что если вы умножите 110 В на 15 А, вы можете подключить устройство, которое потребляет максимум примерно 1600 Вт.

Вот почему самые большие распространенные микроволны — 1500 Вт, и если они работают, и вы включаете второй прибор, иногда срабатывает прерыватель, и его необходимо переустановить. Микроволновая печь, которой требуется больше энергии, скорее всего, будет рассчитана на питание от сети переменного тока 220 В, поэтому она может использовать меньшее количество ампер для работы. Если весь ваш дом подключен к сети 220 В (например, в Австралии), вам понадобится входной трансформатор 220 В, но… ТО, которое я рекомендую североамериканским любителям, которые хотят сделать RSU, — это устройство мощностью 1500 Вт, которое подключено к сети 110 В. Вход.

Ток, который проходит через первичную катушку, использует явление «индуктивности», и он «преобразует» ток в магнитное поле. ЕСЛИ… вы поместите вторую катушку рядом с первой катушкой, магнитное поле вызовет ток во вторичной катушке без какого-либо физического или электрического соединения между двумя катушками. Поскольку первичная обмотка и вторичная обмотка вообще не связаны электрически, единственная связь между ними — это пульсирующее магнитное поле, внутри которого они находятся.

ТО стандартного выпуска со снятой высоковольтной катушкой

На картинке выше вы можете увидеть «двойную петлю» магнитного поля в форме стального ламинированного стека, образующего сердечник трансформатора. Вторичная обмотка высокого напряжения была удалена, а пространства, предназначенные для вставки катушек, называются «окнами». Показанный у меня в руке прямой пучок пластин — это магнитные «шунты», которые не понадобятся.

Ламинированный сердечник ТО.Есть несколько стилей, и этот по понятным причинам называется E / I. Вы можете увидеть остатки первоначальной сварки, которая скрепила их вместе, вверху и внизу стыка.

На картинке выше все снято с этого сердечника MOT, а секции E / I были разделены путем шлифовки сварных швов, которые ранее скрепляли их вместе (я не рекомендую их разделять). Относительный КПД этого типа трансформатора только средний, но это обычное явление, потому что катушки могут быть намотаны машинным способом, а большая часть сборки может быть частично автоматизирована, что делает их довольно доступными.

Снятие вторичной обмотки высокого напряжения

Сторона высокого напряжения трансформатора обычно выдает примерно 2000 В (независимо от того, является ли вход 110 В или 220 В). Вы никогда не должны включать его, пока штатная высоковольтная катушка все еще находится в трансформаторе, так как 2,000V вас абсолютно убьет . На рисунке выше катушка ВН трансформатора покрыта дополнительной изоляцией, которая выглядит как жесткая бумага.

Мне кажется, что ножовкой проще всего снять катушку ВН.Будьте очень осторожны, чтобы не порезать или порезать входную катушку 110 В. Катушку высокого напряжения можно легко распознать, потому что она имеет ту же массу, что и катушка низкого напряжения, но состоит из тысяч крошечных нитей, намного меньших, чем сторона входа низкого напряжения.

110 В слева и 2 000 В справа. Примерно один вольт на жилу (имейте в виду, что не все трансформаторы используют один вольт на жилу, когда вы выполняете расчеты)

Две катушки должны иметь примерно одинаковый объем, чтобы получить максимальный эффект, измеряемый в ваттах.Когда вы вводите 110 В при 14 А, вы получаете магнитное поле, которое имеет примерно 1500 Вт энергии. Соседняя катушка преобразует это пульсирующее магнитное поле в выходной переменный ток. Это НЕ меняет количество ватт, так что … если вы используете много тонких проводов на вторичной обмотке, чтобы поднять напряжение, усилители упадут, чтобы сбалансировать.

Итак, если увеличение количества жил приведет к увеличению напряжения и уменьшению силы тока, то мы можем использовать это явление для увеличения силы тока, но … это также снизит напряжение.К счастью, снижение напряжения является дополнительным преимуществом, потому что это делает устройство намного безопаснее (за исключением опасности сильного нагрева).

Если вы хотите получить от RSU максимальное количество энергии, которое мы собираемся сделать, вы должны заполнить все окно трансформатора максимальной массой меди, которая подходит. Однако это никому не повредит, если вы используете выходную катушку меньшего размера (вы даже можете использовать две отдельные катушки в выходном окне). Это самый простой способ отрегулировать выход усилителя, переключившись на меньшую выходную катушку.

Я рекомендую где-то от двух до двенадцати «витков» в пользовательской вторичной катушке, и в результате на выходе будет от 2 до 12 В (независимо от толщины провода), и … имейте в виду, что фактическое результирующее напряжение будет приблизительно . Размер медной массы на вторичной обмотке определяет общую мощность ватт, а отношение ватт к вольтам определяет полученное количество ампер.

[Имейте в виду, все вторичные катушки будут выводить переменный ток / переменный ток]

Источник питания магнетронного нагревателя 3 В, обычно размещаемый между первичной и вторичной обмотками

Одним из примеров обратной зависимости между напряжением и током является источник питания нагревателей магнетрона.Между первичной и вторичной обмотками находится крошечная третья обмотка, которую можно выбросить. У них могло быть всего несколько витков, так как я видел несколько с тремя витками в катушке. Эта конфигурация приведет к примерно 3 В переменного тока, но … поскольку он имеет очень небольшой объем меди, проходящей через окна трансформатора, это означает, что он также будет иметь низкие ватты, что приведет к низким амперметрам.

После того, как у вас есть трансформатор и вы удалили все из сердечника, кроме первичной входной катушки, вам нужно будет добавить новую настраиваемую вторичную катушку через окна, и эта катушка должна закручиваться в том же направлении, что и первичная.Если вы сделаете это наоборот, выход будет очень низким, и трансформатор станет горячим.

Абсолютно максимально возможный усилитель, который вы могли бы получить, был бы при использовании толстого медного стержня, который согнут в форме буквы «U», и … поскольку он делает только один оборот через окна, это будет выход в один вольт, который обеспечивает примерно 1400A. Такая конфигурация была бы нереалистичной, поэтому в наиболее распространенной вторичной обмотке используется два витка толстого сварочного кабеля (как показано на рисунке заголовка в верхней части этой статьи). Сварочный кабель имеет прочную, но тонкую изоляцию, поэтому большая часть его диаметра целиком состоит из меди.В сварочном кабеле также обычно используется очень гибкий многожильный провод, что дает множество преимуществ.


Коммерческие RSU

RSU на базе трансформатора — не новость, которую открыли для себя любители, компания под названием «American Beauty Tools», а также «Luma» уже много лет изготавливает их для промышленного использования. Компания Micro Mark также продает RSU энтузиастам моделирования поездов. Однако RSU мощностью 250 Вт от American Beauty Tools стоит более 500 долларов!

Вот блог любителя, который показывает, как сделать самодельный RSU (нажмите здесь).

Очень профессиональное устройство для пайки сопротивления DIY

На картинке выше любитель взял небольшое ТО и заменил специальную 6-вольтовую вторичную обмотку, а затем добавил регулятор скорости двигателя, который был сделан для фрезерного станка / пилы. Это позволило ему отрегулировать мощность 110 В переменного тока, поступающую в первичную обмотку, что отрегулировало выходные усилители примерно до 50 А, что в сумме составляет 320 Вт.

Поскольку концы медных электродов могут плавиться (от тепла) и затем прилипать к заготовке, в этой конструкции он использовал стержни для строжки угля , которые имеют проводящую медную оболочку (щелкните здесь).Они легкие и хрупкие, и я легко заточил их кончики точилкой для карандашей. Второй вариант высокотемпературной пайки (или точечной сварки) — использовать дорогие вольфрамовые стержни, но их высокое сопротивление означает, что они будут очень горячими.

Стержни

Carbon Gouging дешевы. Их можно найти в Интернете или в местном магазине сварочных материалов.

Для вашего первого устройства RSU / Spot-Welder я хотел бы предложить сделать держатели со стержнем диаметром 1/8, 3/16 или 1/4 дюйма. Очень легко получить медные, вольфрамовые и углеродные стержни для строжки таких размеров.

[В паяльниках используется стальной наконечник, но мы не пытаемся нагреть датчики RSU, электрический ток будет тем, что мы используем для нагрева детали]

Для небольших паяльных работ медь — самый доступный наконечник, но при более высоких уровнях тока наконечники плавятся достаточно, чтобы прилипать к заготовке (сплошной заземляющий провод 6 га имеет длину примерно 3/16 дюйма, можно найти в хозяйственных магазинах) . Вольфрам стоит дорого, но его высокая температура плавления означает, что он не прилипает к заготовке, но … он имеет высокое сопротивление, поэтому при частом использовании он будет очень горячим.Карбоновые стержни для строжки довольно дешевы, и их наконечникам очень легко придать форму.

Вот короткое видео от компании Luma Electric, демонстрирующее их промышленный RSU в действии (нажмите здесь). Обратите внимание на картинке ниже, что кончик настолько горячий, что он действительно светится. Наличие такого количества концентрированного тепла означает, что пайка может происходить очень быстро, поэтому тепло не распространяется очень далеко через заготовку. Электродом здесь является углеродный стержень диаметром 1/8 дюйма.

Промышленный RSU Luma. Второй электрод зажимается в металлических тисках для замыкания цепи 6 В переменного тока

Вот еще одно короткое видео, показывающее RSU в действии (щелкните здесь).

И, наконец, третье короткое видео, показывающее толстые кабели с наконечниками, прикрепленными с помощью RSU (щелкните здесь).

Кроме того, при пайке толстых проводников обычному паяльнику будет сложно нагреть заготовку, потому что медная масса будет действовать как теплоотвод … что означает, что медная масса будет отводить тепло от стыка и распространять его. быстрее, чем применяется. RSU может приложить очень сильное тепло к определенному месту, прежде чем тепло может уйти.

Еще одним важным преимуществом RSU является то, что он обычно приводится в действие дешевым ножным переключателем.Это оставляет обе руки свободными, чтобы удерживать электрод и подавать припой в нужное место или манипулировать и перемещать заготовку. Некоторые типы задач позволяют использовать токопроводящие пинцеты, так что два электрода также физически зажимают детали вместе до / во время / после подачи тепла с помощью педального переключателя (как показано на видео чуть выше).

Несмотря на то, что два электрода должны касаться детали для замыкания цепи, один из электродов может быть прикреплен к ней, поэтому вам нужно только одной рукой прикоснуться вторым электродом к тому месту, которое вы хотите нагреть …

[Если вы иногда обнаруживаете, что вам нужна «третья рука» для подачи обычного припоя проволочного типа, попробуйте «паяльную пасту».Вы наносите паяльную пасту на соединение, соединяете две части, затем прикладываете тепло в течение нескольких секунд, чтобы расплавить припой]

Стандартные паяльники немного медленно нагреваются при подключении к сети, особенно большие, необходимые для больших работ. RSU может очень быстро нагреваться, а затем довольно быстро остывает. Их можно снять с полки, чтобы они сделали работу, и сразу же, не дожидаясь ожидания, разжечь их.


Сварщик точечной сварки

Если вы уверены, что вам нужен только RSU, очень распространенный размер микроволн, который вы можете легко найти, составляет 800 Вт, а его MOT составляет примерно половину размера блока 1500 Вт, который я рекомендую.Если вы возьмете 800 Вт, а затем намотаете вторичную выходную катушку на 12 В, результирующий ток будет только 66 А (или, возможно, использовать шесть витков вторичной катушки, что составит 6 В / 130 А), что все еще очень полезно. 800Вт очень мощный для паяльника . На самом деле, было бы неплохо сначала опробовать все на бесплатной микроволновой печи меньшего размера, а вы не упустите возможность попробовать большую.

Профессиональный портативный аппарат для точечной сварки.

Я добавил картинку выше, чтобы показать, как выглядит обычный портативный точечный сварочный аппарат.Это тип, который будет использоваться для плавления двух металлических частей вместе с мощностью 1400 Вт. В большинстве дизайнов YouTube используются деревянные кронштейны, а сварочные кабели проходят вдоль кронштейнов до кончиков электродов.

Точечная сварка двух гвоздей из низкоуглеродистой стали вместе с мощностью 1400 Вт. Обратите внимание на желтый деревянный рычаг и кабель, идущий вдоль него до кончиков.

На рисунке выше показаны две очень важные вещи, на которые следует обратить внимание. Гвозди из низкоуглеродистой стали плавятся при температуре 2500F (1370C), чего вы легко можете достичь при использовании 700A.Еще я хочу, чтобы вы заметили, что точка контакта нагревается ТАК БЫСТРО, что человек держит ногти голыми пальцами. Конечно, ему придется сразу же положить их после завершения сварки, так как высокая температура довольно быстро переместится в то место, где он держит гвоздь.

Если вам когда-либо приходилось долго ждать, пока ваш паяльник нагреет большие разъемы, которые вы паяете, RSU на 800 Вт может быть удобным дополнением для ускорения работы.

Как только вы научитесь работать с той работой, которую вы выполняете, я бы порекомендовал сделать деревянный ящик для размещения RSU или, возможно, купить пластиковый ящик для инструментов. Это предотвратит случайное попадание чего-либо проводящего в разъемы переменного тока 120 В (например, отвертку или плоскогубцы).


Паяльные материалы для сантехники

В некоторых сантехнических работах используются медные трубы, и их стыки необходимо паять. Обычно это делается с помощью ручного фонарика.Но когда у вас есть соединение медной трубы, расположенное в труднодоступном месте рядом с деревянными шпильками … факел может вызвать пожар. Итак, сантехника — одно из мест, где будет использоваться промышленный RSU (щелкните здесь, чтобы увидеть пример). Я упоминаю об этом, потому что при обычном поиске в местных магазинах сантехники можно найти материалы для пайки.

Сантехник с помощью пропановой горелки припаял медную трубу

Водопроводчики используют флюс очень агрессивного типа на кислотной основе, который очень вреден для электроники.Электрические разъемы, возможно, не пострадают от флюса водопроводчиков, но я не хочу, чтобы кто-то мог путаться с моими принадлежностями для ремонта электрооборудования.

То же самое и с припоем для медных труб. Раньше водопроводчики использовали смесь олова и свинца (Sn / Pb) на 50-50%, а теперь для использования «бессвинцового» припоя (98% олова) требуется водопровод. Лучший припой для электрических разъемов ebike — это тип 63/37 (и 60/40 тоже хорошо). Я использовал современный «бессвинцовый» припой SAC305, и все, что я могу сказать, это … когда когда-нибудь правительство полностью запретит свинцовый припой, у меня будет достаточно 63/37, чтобы их хватило на всю оставшуюся жизнь.

Флюс на основе канифоли (высушенный сок сосны) широко распространен и отлично подходит для электрических деталей. Если вам не удается получить хорошее паяное соединение, убедитесь, что вы используете хороший флюс. Если вы не используете флюс, ваша жизнь сидела на троне лжи…


Подведем итоги

Мне на самом деле не «нужен» точечный сварщик или RSU. Но… пока я люблю экспериментировать, они могут быть очень кстати. Я купил большой трансформатор мощностью 1500 Вт, потому что он может выполнять две работы.Одна из этих задач — это точечный сварочный аппарат на 700A, который может плавить стальные детали вместе, а другой — мягкий и регулируемый RSU для тех работ, с которыми мой паяльник мощностью 100 Вт иногда борется.

У меня также есть один из этих карманных точечных сварочных аппаратов от kWeld, и он очень хорошо сваривает никелевую ленту толщиной 0,20 мм с ячейками 18650. Однако в мои планы на будущее входит создание нескольких аккумуляторных батарей с высоким током, и если вы часто потребляете более 20 А на элемент, никель действует скорее как резистор, чем как проводник (около 21700 элементов могут безопасно обеспечить пиковое значение 30 А).

Я могу поэкспериментировать с латунью для язычков батареи (дешевле, чем никель и на 20% более проводящей), но с материалом основной шины?… Мне действительно нравится медь из-за ее низкой цены и теплоотвода. Это потому, что я недавно обнаружил, что большинство строителей (вроде меня) не понимали, сколько материала шины можно использовать для отвода тепла и охлаждения элементов.

Медная шина с никелевыми выводами для точечной сварки к ячейкам 18650

На картинке выше я нашел пример в промышленности, где используются медные шины, но рядом с ячейкой находится никелевая вкладка, поэтому они все еще могут использовать существующие заводские сварочные аппараты (никель легко сваривает точечную сварку).Соединения между медью и никелем по краям требуют гораздо большего количества тепла (достаточного, чтобы повредить ячейки 18650), но … никелевые вкладыши можно прикрепить к медным шинам отдельной операцией, а затем дать им остыть перед точечной сваркой никель к насадкам сотовых.

Они использовали дорогостоящий лазерный сварочный аппарат для соединения никелевых / медных стыков, но я не собираюсь покупать один из них! Известно, что медь плохо поддается точечной сварке на никелированные корпуса 18650, но это можно сделать с помощью дорогостоящего оборудования.Я все еще возлагаю большие надежды на предстоящие эксперименты, в которых медная шина будет «никелирована своими руками» в надежде, что никелевая пластина упростит точечную сварку меди, но … нам придется подождать те результаты.

Пожелайте мне удачи!


Если вы не собираетесь создавать свой собственный аккумулятор (что означает, что вы в здравом уме), у меня есть два аккумулятора от Luna Cycle, которыми я очень доволен.


Написано Роном / spinningmagnets, декабрь 2018 г.

Набор для пайки сопротивления DIY — technitoys.com

Поместите тепло для пайки туда, где оно вам нужно — прямо сейчас!

Эта самодельная установка для пайки сопротивления обеспечивает мощность более 320 Вт для точечной пайки

Пайка сопротивлением

Пайка сопротивлением — это процесс, при котором объекты, подлежащие пайке, нагреваются за счет пропускания через них тока, а не за счет приложения тепла от внешнего источника. Локальный нагрев вызывается относительно сильным током, проходящим через сопротивление перехода.Пока скорость нагрева соединения превышает скорость рассеивания тепла, температура будет повышаться достаточно высоко, чтобы припой плавился и растекся.

Использование резистивной пайки может иметь несколько преимуществ для определенных применений, но выделяются два больших:

  • Скорость — установка для пайки сопротивлением может генерировать тепло в локализованном месте намного быстрее, чем применение паяльника с температурой от 700 до 800 градусов, который использует теплопроводность для передачи тепла. Пайка сопротивлением может также превышать температуру пайки, нагревая соединение до ярко-оранжевого цвета, фактически сваривая вместе небольшие детали.
  • Крутой температурный градиент — из-за быстрого нагрева паяемого соединения можно получить очень высокий температурный градиент на небольшом физическом расстоянии, что упрощает предотвращение расплавления и разрушения близлежащих паяных соединений. Это делает его привлекательным для последовательной пайки сложных деталей.

Оборудование, используемое для пайки сопротивлением, аналогично оборудованию, используемому для точечной сварки, за исключением того, что требуемые токи намного ниже.Пайка сопротивлением электрических устройств, как правило, не рекомендуется из-за риска повреждения детали под действием приложенного тока.

Переменная мощность предотвращает это — слишком горячие кончики пинцета для пайки

Коммерческое оборудование для пайки сопротивлением можно приобрести по меню или в виде систем, состоящих из источников питания и щупов или пинцета, предназначенных для подачи тока через соединение. American Beauty — один из производителей, который предлагает все, от микро-емкостей до сверхмощных сантехнических систем, и их сайт является хорошим источником информации для выбора системы, соответствующей вашим потребностям.

Источники питания

теперь обычно поставляются с бесступенчатой ​​регулировкой, хотя могут быть найдены более старые или недорогие устройства с фиксированными настройками или иногда с кранами, позволяющими настраивать несколько нагрева (текущие настройки). Мощность блока питания (а также выбор датчика) будет определять, насколько большими или теплопроводными могут быть объекты, подлежащие пайке. 250 Вт — это обычная мощность для хобби. 100 Вт, вероятно, справятся с легкими работами (например, из проволоки), а сверхмощные блоки в диапазоне 1800 Вт могут справиться с гораздо большим.

Зонды и пинцеты бывают разных размеров. Зонд с одним наконечником выглядит как паяльный карандаш, но имеет наконечник из нержавеющей стали или углерода, покрытого медью; он предназначен для подачи тока на локальную точку. Этот тип датчика представляет собой однопроводное устройство, и объект, подлежащий пайке, должен быть подключен к другому проводу источника питания через металлический столик, проводные тиски, поддон, заполненный проводящей прокладкой, или путем зажима провода на самом объекте. . Это соединение с объектом должно иметь низкое сопротивление, иначе он сам нагреется.

Углеродный зонд припаивает небольшую деталь без плавления прилегающих стыков

Пинцет для резистивной пайки

— это устройство с двумя проводниками, которое очень удобно использовать, так как оно помогает удерживать детали вместе при подаче тока именно туда, где это необходимо. В маленьком пинцете можно использовать зонды из нержавеющей стали, плоские или заостренные. В пинцетах большего размера можно использовать угольные губки, тогда как больший размер позволяет хрупкому углю иметь достаточную механическую прочность.

Следует отметить, что тепло выделяется не только из-за сопротивления между припаиваемыми частями.По сравнению с медью нержавеющая сталь плохо проводит электричество и тепло, а углерод еще хуже. Это заставляет нержавеющие зонды и наконечники генерировать собственное тепло, а углерод часто светится в точке контакта. Некоторый нагрев паяемого спая будет вызван теплопроводностью от горячих наконечников зонда, так что, по сути, вы получаете пайку сопротивлением с добавлением небольшого количества обычного кондуктивного нагрева.

Пайка сопротивлением дополняет обычную пайку — есть приложения, в которых один метод явно предпочтительнее другого, и иногда любой процесс будет работать одинаково хорошо.

Построение системы по сравнению с покупкой

Педальный переключатель освобождает обе руки, оставляя вам только одну короткую

Коммерческий блок мощностью 250 Вт с пинцетом и ножной педалью стоит от 450 до 600 долларов. Цены на подержанные системы на eBay все еще могут быть очень высокими. Если вам нужен агрегат, который нужно запустить сейчас, или если вы захотите пойти и купить все компоненты, которые вам понадобятся для его создания, покупка нового или бывшего в употреблении может оказаться правильным решением.

Однако, если у вас уже есть запас электрических деталей и материалов, вы, возможно, сможете построить свои собственные почти за бесценок, как это сделал я.Конечно, я не считаю стоимость рабочей силы и стоимость товаров на складе, которые были куплены ранее, но это радость DIY — думать, что вы ушли бесплатно.

Показанная здесь система потребовала затрат менее 40 долларов, но я признаю, что начал со старого вариак, трансформатора, подходящего для перемотки, различных второстепенных компонентов и металлического инвентаря. Все, что мне действительно пришлось купить специально для этого проекта, — это несколько футов провода 6 калибра для обмотки трансформатора, угольные стержни для наконечников зондов и ножной переключатель.Ни один из компонентов, необходимых для изготовления источника питания и наконечника пробника, не является критически важным, и его можно найти в избыточных магазинах, на Craigslist или, возможно, даже на вашем собственном складе.

Источник питания

Источник питания очень простой конструкции. Он состоит из понижающего трансформатора высокого тока и низкого напряжения, некоторых средств управления им, таких как регулируемый автотрансформатор (вариак), предохранитель или автоматический выключатель / выключатель, а также кое-что для его размещения.

Блок питания должен подключаться к ножному переключателю, который затем подключается к стене.Тумблер на источнике питания используется для основного питания и остается включенным во время использования; педальный переключатель используется для подачи тока на пинцет или зонд с угольным наконечником.

Выбор трансформатора

ВНИМАНИЕ: чтобы обеспечить надлежащую изоляцию линии, необходимо выбрать трансформатор с отдельными первичными и вторичными обмотками без каких-либо соединений между ними. Не используйте автотрансформатор.

Блоки питания для пайки сопротивлением

, кажется, работают при более низком напряжении, чем можно легко найти в избыточных трансформаторах из магазина — я искал трансформатор с выходом от 3 до 4 вольт.Я бы остановился на понижающем трансформаторе от 120 до 6 вольт в диапазоне 250 ВА, но в то время его не было. Думаю, я наткнулся на статью в Интернете, где кто-то использовал модифицированный трансформатор для микроволновой печи, но единственная неисправная микроволновая печь, которая у меня была в то время, была инверторной разновидности, в которой нет необходимого большого трансформаторного сердечника.

Копаясь в своей ванне трансформатора, я обнаружил почти новый трансформатор с напряжением 120 В на 60 В при токе 6 А, купленный для старого проекта усилителя в колледже, который, вероятно, был оплачен за счет доходов от посещения центра плазмы крови в кампусе.Вторичная обмотка на 60 вольт была почти бесполезна для всего, что я мог себе представить в эти дни, но первичная обмотка и сердечник удовлетворяли бы моей цели в 250 ватт, а затем и некоторым. Также казалось, что после удаления вторичной обмотки в нем будет достаточно места, чтобы намотать количество витков тяжелого провода, которое, как я думал, мне понадобится для получения выходного напряжения 4 В.

8 витков вторичной обмотки — многожильный провод # 6 THHN

Крышка бумажной обмотки была снята, а вторичная обмотка полностью снята.Поскольку у меня не было возможности узнать, сколько витков провода было использовано на первичной обмотке и, следовательно, сколько мне нужно намотать для вторичной обмотки большого калибра, я определил это экспериментально. Чтобы ускорить процесс, я намотал 10 витков более легкого провода (№14 из отрезка Romex) вокруг сердечника и измерил напряжение, когда первичная обмотка была подключена к линейному напряжению. Десять витков дали выходное напряжение чуть менее 5 В переменного тока, что составляет 0,5 В / виток. Поскольку в мире идеальных трансформаторов этот параметр одинаков для первичной обмотки, измеренное линейное напряжение 120 В переменного тока показало мне, что количество витков на первичной обмотке было приблизительно 240, что не имеет значения на данный момент, потому что вольт на виток — это все, что нужно. был нужен.

Поскольку я стремился к выходу 4 В, я планировал использовать вторичную обмотку на 8 полных витков. Я выбрал самый большой калибр многожильного провода, который мог уместить 8 витков в отверстии сердечника, который оказался однопроводным THHN №6, рассчитанным на 90C и 75 ампер в воздухе. При использовании этого провода не было проблем с номинальной температурой даже при работе с закрытой намоткой, учитывая низкий рабочий цикл.

Тяжелая проволока требует некоторого рабочего места для изгибов

Чтобы протянуть проволоку через отверстия в сердечнике, чтобы сделать аккуратно намотанную вторичную обмотку, потребовалось немного усилий, несколько деревянных брусков и резиновый молоток.Проволока была жесткой, и небольшой предварительный изгиб помог ей прилегать к первичной обмотке. Деревянные блоки и клинья помогали удерживать проволоку на месте, если время от времени приходилось откладывать сердечник.

Когда 8-витковая обмотка была на месте, четыре деревянных клина были вырезаны по размеру и забиты в промежутки между обмотками и сердечником, закрепив пружинящую катушку. Пара капель цианоакрилата приклеила подводящие и отводящие провода к их соседям. Быстрая проверка показала — неудивительно — выходное напряжение 3,97 В переменного тока.

Регулируемая мощность

Полнодиапазонный регулятор мощности позволяет вам устанавливать первичное напряжение трансформатора в пределах от нуля до полного линейного напряжения. Это, в свою очередь, изменяет вторичное напряжение от нуля до полного понижающего напряжения, позволяя регулировать ток пайки.

Я решил использовать регулируемый автотрансформатор (вариак) для управления мощностью, в первую очередь потому, что у меня был один под рукой. Он был рассчитан на 8 ампер (мне нужно было всего около 3 ампер), поэтому он был больше, чем необходимо, но в конце концов все сработало.Автотрансформатор фактически изменяет напряжение очень маленькими дискретными шагами и обеспечивает синусоидальный выходной сигнал с хорошим регулированием трансформатора .

Хотя я читал о других сборщиках, успешно использующих стандартные диммеры для управления выходной мощностью, я с подозрением относился к этому. Эти диммеры обычно определяют только резистивные нагрузки, и хотя первичная обмотка трансформатора действительно выглядит в значительной степени резистивной, когда вторичная нагрузка резистивно нагружена, первичная обмотка выглядит индуктивной, если вторичная обмотка не подключена или если ваш зонд или пинцет на мгновение соскальзывают с деталей.Если вы хотите пойти по этому пути, стоит провести небольшое исследование и посмотреть, что сработало успешно для других.

Электронные элементы управления, такие как диммеры, работают по-другому, поскольку они изменяют среднее значение напряжения, регулируя рабочий цикл сигнала линейного напряжения 60 Гц. Диск будет регулировать, какой процент от каждого цикла включается выходное напряжение, и из-за этого выход не является синусоидальным и может содержать гармоники.Резкое время нарастания или спада усеченных циклов может привести к выбросам высокого напряжения с индуктивными нагрузками. Неиндуктивные нагрузки (например, лампы, для которых предназначены диммеры lamp ) не заботятся — они реагируют только на среднее напряжение.

Контроль скорости маршрутизатора, подобный этому, может работать для контроля нагрева — см. Текст

Я все же считаю целесообразным попробовать диммер лампы или пойти еще дальше и использовать один из электронных регуляторов скорости маршрутизатора, которые время от времени доступны примерно за 15 долларов.Они рассчитаны на индуктивные нагрузки, а номинальный ток 15 А должен представлять собой достаточный избыток, чтобы выдержать практически любые злоупотребления. Имейте в виду, что изображенный элемент управления маршрутизатором (доступный в Harbour Freight и который я не пробовал для пайки сопротивлением) не достигает нуля при самом низком значении. Где-то в сети опубликован твик, который расширяет нижний диапазон.

ВНИМАНИЕ: ни вариак, ни электронное управление скоростью не обеспечивают изоляцию сетевого напряжения.

Паяльный щуп и пинцет

Пинцет самодельный для пайки

С самого начала я знал, что пинцет и угольный зонд будут необходимы.Пинцет, в частности, очень быстро подходит для пайки структур вместе, например, для проволоки, арматуры скульптур, миниатюрных перил и ферм и т. Д. Углеродный зонд используется меньше, но он работает так же, как обычный паяльник, и он быстро пылает.

Показанный здесь пинцет был смоделирован на основе коммерческих моделей, которые были найдены в Интернете. Пружинная ручка / петля изготовлена ​​из свернутой ленты из фосфористой бронзы 0,050 с прикрепленными к ней двумя фенольными полосками толщиной 0,125 дюйма.

Латунные блоки, удерживающие наконечники пинцетов, устанавливаются на фенол (изолированы друг от друга и пружинного шарнира), а провода впаиваются в отверстия, просверленные на концах блоков.

Отверстия для игл просверливаются под углом так, чтобы кончики зондов соприкасались, а установочный винт плотно удерживает каждый кончик на месте.

Сами наконечники изготовлены из сварочного прутка из нержавеющей стали 3/32 ″, отрезанного до нужной длины и с плоским или заостренным концом. Плоские наконечники немного проще в использовании, потому что они более устойчивы для захвата деталей.Стержни из нержавеющей стали вставляются в медные трубки с внешним диаметром 1/8 дюйма, которые затем плотно зажимаются в латунных блоках с помощью установочных винтов. Медные втулки служат одной цели: они улучшают электропроводность до самого конца нержавеющего стержня и добавляют немного жесткости наконечникам. Можно купить наконечники зондов из нержавеющей стали с медным покрытием, но они, сделанные из сварочного прутка, практически ничего не стоят, и при необходимости можно без колебаний настроить их с помощью напильника.

Использование флюсов, активирующих нержавеющую сталь, позволяет припою прилипать к наконечникам и, как правило, склеивать их.Тонкий плоский напильник можно зажать между кончиками пинцета и работать взад и вперед, чтобы подпилить новые чистые и параллельные поверхности.

Пинцет самодельный — вид сверху

Наконечники для сварочных стержней из нержавеющей стали с медными втулками

Для проводов я пошел немного на легкую сторону для гибкости и использовал сверхгибкий силиконовый провод 14 калибра. Этот провод можно приобрести в магазинах для хобби для использования в сильноточных электродвигателях для радиоуправляемых машин, самолетов и вертолетов. Возможно, было бы лучше использовать калибр 12, но я использовал то, что у меня было.

Показанный узел пинцета с кабелями, закороченными вместе на концах, имеет общее сопротивление 0,05 Ом, что дает максимальный ток пайки 80 ампер — много для большинства вещей, но трансформатор может безопасно подавать больший ток. На самом деле, лучшим решением было бы поставить дополнительный виток на обмотке трансформатора, чтобы получить немного более высокое напряжение, чтобы компенсировать потери в проводах 14 калибра.

Самодельный зонд с угольным наконечником и одинарным выводом

Зонд с угольным наконечником сделать проще.В то время как другие успешно использовали недорогие ручки паяльника, изображенная ручка была получена из куска ацеталевого стержня. Диаметр был уменьшен в области захвата, и силиконовый рукав был наложен на него, чтобы сделать захват мягким.

Латунный стержень 1/2 дюйма был повернут до показанной формы и просверлен на каждом конце. Конец латуни внутри ручки был просверлен, чтобы образовалась чашка припоя для крепления провода №10, а конец наконечника был просверлен до диаметра 5/32 дюйма. Сплошной алюминиевый радиатор был расточен для посадки с натягом на латунной втулке и запрессован оправочным прессом.Радиатор предотвращает перегрев рукоятки.

Выводная проволока впаяна в латунную втулку и пропущена через рукоятку из ацеталя. Затем в рукоятку вдавливали латунную гильзу.

Покрытые медью карбоновые наконечники 5/32 ″ изготавливаются из стержней для строжки, доступных в магазинах сварочных материалов или в McMaster-Carr.

Углеродный стержень с медным покрытием, заточенный для точечного нагрева

Стержни для строжки с медным покрытием, доступные у поставщиков сварочных материалов

О проводах и соединениях

Самая важная вещь, которую следует помнить при создании оборудования для пайки сопротивлением, — это убедиться, что наибольшее сопротивление в цепи возникает на паяном соединении и наконечниках пробников.Особое внимание следует уделять минимизации сопротивления каждого соединения и кабеля на пути тока вторичной цепи.

При синусоидальной форме волны переменного тока среднеквадратичное рассеивание мощности в ваттах на любом сопротивлении во вторичной цепи составляет I 2 R / 2 , где I — пиковый ток в амперах, а R — сопротивление в омах. Мощность, рассеиваемая в сопротивлении, приведет к повышению температуры в зависимости от удельной теплоемкости материала и его тепловой массы, теплового рассеяния паяемой структуры и некоторых других факторов.

Если вы наматываете вторичную обмотку собственного трансформатора, подумайте об использовании медного провода самого большого диаметра, который поместится в доступном пространстве с необходимым количеством витков. Это минимизирует сопротивление вторичной обмотки, что сделает ее лучшим источником напряжения и увеличит ток короткого замыкания. Не рекомендуется использовать алюминиевый провод из-за его низкой проводимости и трудностей при пайке к соединительным наконечникам.

Спроектируйте соединения для датчиков так, чтобы они не были слабым звеном на текущем пути.Забудьте об использовании любого типа банановых разъемов или обычных клемм — думайте о больших и массивных и учитывайте площади поперечного сечения каждого сегмента каждого проводника, через который проходит ток.

Изготовленные на заказ конические латунные штекерные соединители, используемые на зонде пинцета

Я решил сделать сплошные латунные конические муфты с наружной и внутренней резьбой, чтобы обеспечить низкое сопротивление, исходя из коммерческих образцов, которые были скопированы. Конус уникален, и воспроизвести его будет сложно, поэтому были сделаны дополнительные приспособления на случай, если в какой-то момент потребуются дополнительные датчики.

Для более простого, но менее удобного соединения могут использоваться массивные латунные или медные шпильки и гайки на передней части корпуса силового блока с тяжелыми припаяными наконечниками на выводах зонда. Соединения следует паять, а не обжимать, а паяные соединения должны быть больше, чем сечения жил кабеля, с большими галтелями. Низкую проводимость паяного соединения необходимо компенсировать, убедившись, что площадь поперечного сечения припоя соответственно больше.

Даже если медные и латунные соединения вам недоступны, можно использовать стальную арматуру большого размера.Нержавеющая сталь будет наихудшим выбором, поскольку ее теплопроводность и электрическая проводимость хуже, чем у простой стали. Хорошее место для поиска медной и латунной фурнитуры — это онлайн-магазин McMaster-Carr или около служебных входных панелей и оборудования в магазинах товаров для дома.

Те же правила действуют для соединений на датчиках — убедитесь, что нет обжимных соединений и нет сужений в области поперечного сечения любых путей тока. Выберите самый большой калибр проволоки, который, по вашему мнению, обеспечит гибкость для эффективного управления датчиками.Для максимальной гибкости ищите провода с мягкой изоляцией (например, силикон) и очень большим количеством жил отдельных проводов небольшого сечения. И держите кабели короткими. Вставьте слабое место в проводящем тракте в место пайки.

Большие латунные домкраты на передней части имеют сужение изнутри для установки вилок

Подключение трансформатора к передним разъемам — массивные и хорошо припаянные

Первичная токовая защита

Не забудьте добавить предохранитель или автоматический выключатель на горячей стороне линии

Плавкий предохранитель

A и выключатель питания или выключатель / автоматический выключатель должны быть добавлены последовательно с горячей стороной сетевого напряжения, где оно подается на ваше устройство управления мощностью (управление вариатором или тиристором).Отправной точкой для определения номинального тока предохранителя или прерывателя будет номинальное значение тока трансформатора, разделенное на напряжение сети. Если вы используете очень большой трансформатор (увеличенного размера для ваших типичных нужд), вы можете подключить его до уровня ниже его мощности.

Корпус и охлаждение

Я сложил индивидуальный корпус из стального листа 0,040 дюйма и приварил несколько кронштейнов на месте, чтобы установить трансформатор и заблокировать половинки корпуса. Верхняя часть корпуса прикручивается к нижней части теми же четырьмя винтами, которые удерживают резиновые ножки на месте.

У меня нет охлаждающих отверстий, потому что 1) я ненавижу сверлить много отверстий и 2) стендовые испытания трансформатора под нагрузкой показали очень небольшое тепловыделение даже при довольно интенсивном использовании. Если вы используете трансформатор меньшего размера и сильно надавите на него, в обмотках будет выделяться тепло, и вам потребуется вентиляция. Предвидите необходимость в корпусе с перфорированными или расширенными металлическими крышками и дном, чтобы обеспечить конвекционный поток воздуха.

Циферблат ручки Variac был нарисован с помощью TurboCad, напечатан на глянцевой фотобумаге и ламинирован защитной пленкой.После того, как он был вырезан немного завышенного размера, его приклеили к алюминиевому диску, отшлифовали и прикрутили к передней части металлического корпуса.

Кстати, буквы PA были инициалами доменного имени, которого у меня больше нет. Декаль была вырезана резаком для винила и была помещена туда, потому что чехол выглядел так, как будто ему нужно было чем-то заполнить это место.

Нижняя часть удалена

Другой вид снизу

Общие советы и мелочи по трансформатору — запоздалые мысли

Примечание: некоторые из приведенных ниже концепций применимы к трансформаторам ideal ; это теоретические модели без потерь, идеальной связи и бесконечной индуктивности.

  • Предполагая, что ваши требования не являются чрезмерно легкими или тяжелыми, в идеале трансформатор, подходящий для использования без модификации в блоке питания для пайки сопротивлением, должен иметь линейное напряжение (110 или 220 В переменного тока) на первичной обмотке, вторичное напряжение около 6 В переменного тока, номинальный ток от 20 до 50 ампер (или более) и номинальный ток не менее 100 ВА (вольт-ампер), предпочтительно 250 ВА. Более высокие вторичные напряжения, такие как более распространенные 12 В переменного тока, также могут использоваться, если ток или номинальные значения ВА по-прежнему соответствуют требованиям, хотя низкие напряжения, как правило, вызывают меньшее искрение и точечную коррозию в точках пробника.
  • Не используйте автотрансформаторы независимо от номинальной мощности в ВА или номинального выходного тока; они не обеспечивают изоляцию от сети и представляют опасность поражения электрическим током. Трансформатор должен обеспечивать изоляцию между первичной обмоткой сетевого напряжения и вторичной обмоткой низкого напряжения.
  • Просто чтобы вы знали, что искать, подходящие трансформаторы для пайки сопротивлением, как правило, находятся на большем конце трансформаторов, которые вы обычно найдете в небольших магазинах излишков.Трансформатор на 350 ВА, который я модифицировал в этом проекте, имел ламинированный сердечник размером 4,5 дюйма в высоту x 3,75 дюйма в ширину x 2 дюйма в высоту, не считая размера катушек. Высокие значения ВА означают более тяжелый провод и больше железа. Нет никакого вреда в использовании трансформатора несколько большего размера с более высоким ВА или более высоким номинальным током, кроме проблем с размером / портативностью и необходимостью предохранять его должным образом, чтобы избежать перегрузки того, что вы используете для кабелей датчиков.
  • Трансформаторы зарядных устройств аккумуляторов — один из наиболее доступных источников недорогих трансформаторов, которые можно снимать и использовать без изменений (ищите зарядное устройство на 6 В, но можно использовать и 12 В).Еще одна возможность — это более крупные трансформаторы накаливания для питания электронных ламп, но их, очевидно, становится все труднее найти.
  • Первичная обмотка понижающего трансформатора будет состоять из множества витков (N p ) провода. Вторичная обмотка будет состоять из меньшего количества витков (N s ) провода. Число витков первичной обмотки, деленное на число витков вторичной обмотки, составляет передаточное число витков (Н). Следовательно, N p / N s = N. В качестве примера предположим, что для первичной обмотки N p составляет 240 витков, а для вторичной обмотки N s составляет 8 витков. Передаточное число N составляет 240/8 = 30.
  • Трансформаторы двунаправленные: понижающий трансформатор можно реверсировать и использовать для повышения напряжения. Используемый в обратном порядке понижающий трансформатор с соотношением 10: 1, первичная обмотка 120 В и вторичная обмотка 12 В, будет выводить 120 В из первичной обмотки, если напряжение 12 В составляет подается на вторичную обмотку.
  • Коэффициент трансформации также представляет собой отношение входного и выходного напряжения в нашем идеальном понижающем трансформаторе. Если приложенное входное напряжение составляет 120 В, выходное напряжение будет 1/30 от этого, или 4 В. Повышение или понижение всегда относится к преобразованию первичного напряжения во вторичное.
  • В то время как номенклатура повышения и понижения относится к преобразованию напряжения, преобразование тока является противоположным. Любой ток во вторичной обмотке понижающего трансформатора будет выглядеть как меньший ток в первичной обмотке, равный вторичному току , деленному на отношение витков N.Обратное верно для повышающего трансформатора.
  • Идеальная модель трансформатора не учитывает такие вещи, как влияние сопротивления обмотки, но настоящий трансформатор имеет эти потери. Вот почему в реальном трансформаторе для обмоток с более высоким напряжением (с низким током) будет использоваться провод более легкого калибра, чем для обмоток с более низким напряжением, у которых будет провод большего сечения для пропускания большего тока.
  • Трансформаторы также используются для согласования и преобразования импеданса.В то время как напряжение и токи между первичной и вторичной обмотками масштабируются с коэффициентом отношения витков N, импедансы масштабируются с коэффициентом N 2 . Рассмотрим нагрузочный резистор 5 Ом, подключенный ко вторичной обмотке (обмотка нижнего витка) понижающего трансформатора с N = 10. Если посмотреть на первичную обмотку трансформатора (обмотка верхнего витка), полное сопротивление переменного тока будет иметь вид 5 x N 2 или 5 x 100 = 500 Ом. Напряжение переменного тока, приложенное к первичной обмотке, приведет к тому же току, который протекает через резистор 500 Ом, подключенный к этому напряжению.
  • Как продолжение предыдущей концепции, настоящий трансформатор без нагрузки на вторичной обмотке будет потреблять очень небольшой ток на первичной обмотке и потреблять очень мало энергии. Применяя это к предыдущему примеру, разомкнутая вторичная обмотка (без нагрузки, бесконечный импеданс) будет видна на первичной обмотке понижающего трансформатора с N = 10 как бесконечное сопротивление x N 2 = бесконечное сопротивление . Это означает, что ток через первичную обмотку равен нулю, если вторичная обмотка разгружена.В реальном трансформаторе будут некоторые потери и некоторые токи, но они низкие. Вот почему простые трансформаторные источники питания с защитой от бородавок, которые являются обычными для питания и зарядки электронных устройств, потребляют мало тока и будут охлаждаться, если они отключены от устройства.
  • Регулировка трансформатора — это мера того, насколько стабильным источником напряжения является выход трансформатора под нагрузкой (не путать с активным регулированием напряжения, используемым в источниках питания).Трансформатор с регулировкой 99% приведет к очень небольшому падению напряжения под нагрузкой по сравнению с трансформатором с регулировкой 50%. Примерами трансформаторов с хорошей регулировкой являются линейные (силовые) трансформаторы и трансформаторы питания. Трансформаторы дверных звонков и неоновых вывесок плохо регулируются.

Простой припой MK936 SMD. Паяльная станция на SMD-компонентах своими руками / Sudo Null IT News

В этой статье мы хотим познакомить вас с проектом паяльной станции, которую каждый может собрать своими руками.

Представляет собой паяльник с блоком установки и регулировки температуры. В статье вы найдете схемы, платы, прошивки для микроконтроллера, а также рекомендации по сборке и настройке.

Собрав его, вы получите опыт работы с компонентами поверхностного монтажа (SMD) и, конечно же, полезным устройством.

Описание


Паяльная станция отличается от простого сетевого паяльника тем, что имеет температурную стабилизацию.И это очень важно при работе с разными мелочами. Сетевой паяльник всегда рассеивает одинаковую мощность. То есть, если он лежит на месте, он может даже нагреваться до 500 градусов, а когда начинаешь паять, резко остывает.

С другой стороны, если в паяльник встроена термопара, то можно организовать обратную связь. Это позволяет регулировать мощность нагревателя для поддержания стабильной температуры.

Нашей целью было разработать паяльную станцию ​​на основе обычного и дешевого паяльника с термопарой.Он имеет следующие характеристики:

  1. Питание от источника постоянного напряжения 12-24В
  2. Потребляемая мощность, при напряжении 24В: 50Вт
  3. Сопротивление паяльника: 12Ω
  4. Время выхода в рабочий режим: 1-2 минут в зависимости от напряжения питания
  5. Максимальное отклонение температуры в режиме стабилизации, не более 5 градусов
  6. Регулировка алгоритма: PID
  7. Отображение температуры на семисегментном индикаторе
  8. Тип нагревателя: нихром
  9. Тип температуры датчик: термопара
  10. Возможность калибровки температуры
  11. Установка температуры с помощью энкодера
  12. Светодиод для отображения состояния паяльника (нагрев / работа)

Печатная плата


Доска двусторонняя, но адаптирована для изготовления в домашних условиях.В конце статьи вы найдете ссылку на файл для SprintLayout.

Если вас интересует схема устройства, то вы можете найти ее здесь. На нем различаются только условные обозначения элементов и номера выводов микроконтроллера. По сути, все сделано на микроконтроллере Atmega8, к которому подключены семисегментный индикатор, энкодер, нагреватель через переключатель и сигнал с термопары, усиленный операционным усилителем.

Список компонентов


Для сборки печатной платы и корпуса требуются следующие компоненты и материалы:
  1. BQ1. Кодировщик EC12E24204A8
  2. C5. Конденсатор танталовый 35 В, 10 мкФ, размер C
  3. C1-C4, C7-C9. Конденсаторы керамические 0,1 мкФ в корпусе 0805
  4. C6. Конденсатор танталовый 16 В, 22 мкФ, размер C
  5. DD1. Микроконтроллер ATmega8A-AU в корпусе TQFP32
  6. DA1. Стабилизатор L7805ACD2T-TR на 5В в пакете D2PAK
  7. DA2.Операционный усилитель LM358ADT в корпусе SO8
  8. HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA. Также на плате предусмотрено место для дешевого аналога.
  9. HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54 мм
  10. R1, R6. Резисторы 300 Ом, корпус 0805 — 2шт
  11. R4, R7-R20. Резисторы 1кОм, корпус 0805 — 15шт
  12. R3. Резистор 100кОм, корпус 0805
  13. R5. Резистор 1Ω, корпус 0805
  14. R2.Подстроечный резистор 3296Вт 100кОм
  15. VT1. Транзистор полевой ИРФ3205СПБФ в корпусе Д2ПАК
  16. VT2-VT4. Транзисторы BC547BTA в упаковке SOT323 — 3шт
  17. XS2. Двухконтактный зажим с шагом выводов 5,08 мм
  18. Xs1. Двухконтактный зажим с шагом выводов 3,81 мм
  19. XS3. Трехконтактный зажим с шагом выводов 3,81 мм
  20. XS4. Разъем для программирования PLS-06
  21. Разъем для паяльника
  22. Power Switch SWR-45 BW (13-KN1-1)
  23. Паяльник.Об этом напишем позже
  24. Детали из оргстекла для корпуса (ссылки на файлы для резки оргстекла в конце статьи)
  25. Ручка энкодера. Вы можете купить его, а можете распечатать на 3D-принтере. Файл для скачивания модели в конце статьи
  26. Стойки
  27. . На них тоже можно напечатать, но можно использовать обычные рукава с отверстием 3 мм и высотой 10 мм.
  28. Винт M3x60 — 4 шт.
  29. Гайка M3 — 8 шт.
  30. Шайба M3 — 4 шт.
  31. Шайба M3 увеличенная — 8 шт.
  32. Шайба горизонтальная M3 — 8 шт.
    Вот набор всех деталей:

    Монтаж на плату


    При сборке удобно использовать сборочные чертежи:

    необходимо начать с установки SMD компонентов.Установите элементы на плату согласно перечню элементов. При установке элементов важно соблюдать ориентацию танталовых конденсаторов и операционного усилителя. Первый вывод DA2 определяется скосом на корпусе.

    Если все собрано правильно, плата должна выглядеть так.

    Обратите внимание, что мы использовали резисторы на 1кОм без маркировки.
    Далее необходимо установить элементы вывода на плату в соответствии с перечнем элементов.Длинный светодиодный выход — это плюс. Семисегментный индикатор выставлен «точками» вниз.

    Вот лицевая сторона печатной платы в сборе:

    Сборка корпуса и объемная установка


    Подключение питания и паяльника производится следующим образом:

    Перед сборкой корпуса необходимо подготовить переключатель и разъем. Выключатель необходимо подключить к обрыву красного провода так, чтобы на одном контакте выключателя был короткий отрезок красного толстого провода, а на втором — длинный.

    К первому и пятому контактам разъема паяльника нужно подключить короткие красные провода, а остальные черные.

    Термоусадочную трубку нужно надеть на выключатель и разъем и залудить все свободные концы проводов, чтобы потом было удобнее вкручивать их в клеммы.

    Далее необходимо установить переключатель и разъем паяльника на лицевую панель. Обратите внимание, что коммутатор может быть установлен плотно и может потребоваться доработка разъема для него напильником.

    Затем следует подключить первый контакт разъема к первому контакту платы, второй — ко второму и так далее. в соответствии с приведенным выше рисунком. К блоку питания на плате необходимо подключить красный короткий провод от переключателя, а минусовой провод — черный провод.

    Прошивка микроконтроллера и первый запуск


    В левом верхнем углу платы находится стандартный ISP-разъем для прошивки микроконтроллеров AVR.

    Вы можете прошить микроконтроллер любым программатором, который у вас есть, например USBasp.Если в программаторе предусмотрены блоки питания 5В, то подключать внешние не требуется. Вы также можете найти файл прошивки в конце статьи.

    Конфигурационные биты! Вы должны включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN! То есть изменение настроек по умолчанию требуется для запуска контроллера на тактовой частоте 2 МГц.

    Теперь можно подключить паяльник и подать входное напряжение питания (от 12 до 24В). После включения паяльник должен начать нагреваться, а показание температуры на индикаторе должно возрасти.При вращении вала энкодера значение требуемой температуры должно измениться.

    Завершение сборки


    Теперь можно прикрутить плату к лицевой панели. Допускается использование обычных стоек высотой 10 мм, но мы подготовили специальные стойки, обеспечивающие лучшую фиксацию доски. Модель для 3D-печати также можно найти в конце статьи.

    Боковые стенки устанавливаются без каких-либо креплений. Теперь осталось только вставить в пазы заднюю крышку, затянуть гайки, протянуть через отверстие провода питания и закрепить их хомутами. Помните, что детали из оргстекла довольно хрупкие и не перетягивают крепеж!

    Калибровка


    Триммер используется для точной настройки температуры. На передней панели есть специальное отверстие для доступа к нему.

    При калибровке в первую очередь необходимо довести жало до температуры плавления припоя. Вы можете просто сразу установить очень высокую температуру с помощью энкодера. Затем, собрав шарик припоя на жало, требуется прогреть термопару.Для таких целей есть специальные измерительные приборы, но подойдет и обычный мультиметр с термопарой. Затем, вращая подстроечный вал, убедитесь, что измеренное значение паяльной станции совпадает с показаниями внешней термопары.

    Во время калибровки помните, что чем больше времени вы дадите паяльнику для стабилизации температуры, тем точнее вы сможете ее отрегулировать. Также обратите внимание, что триммер многопетлевой, и один оборот очень незначительно изменяет температуру.То есть крутить нужно смело и много.

    Видео


    Также мы подготовили видеоинструкцию:


    Ссылки


    Прямые ссылки на все необходимые для скачивания файлы можно найти на главной странице проекта.

    Это устройство также имеет версию на односторонней плате, использующую только штыревые компоненты. Вы можете найти это здесь.

    Еще раз хочу подчеркнуть, что мы предоставляем всю необходимую и очень подробную информацию для самостоятельного изготовления данного устройства, а также дополнительно даем возможность приобрести его в виде набора (раз, два, три).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *