Лабораторный блок питания двухполярный | 2 Схемы
Если нужен приличный блоком питания с регулируемым током и напряжением — редакция сайта «Две Схемы» советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты — тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП — это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.
Схема блока питания на uA723
Принципиальная схема БППрямому регулированию подвергается плечо положительного напряжения, в то время как отрицательная часть следует за положительной благодаря системе построенной на операционном усилителе TL081.
Описание работы
Стабилизатор U1 (uA723) включает в себя температурно компенсированный источник опорного напряжения, усилитель ошибки и выходной транзистор, обеспечивающий ток до 150 мА. Микросхема работает в типовой конфигурации, в которой его внутренний усилитель ошибки сравнивает напряжение с делителя R0 (5,6 k) — R3 (4,7 k) с напряжением, какое наличествует на выходе блока питания. Резисторы R4 (220R), R5 (6,8 k) и потенциометр P1 (50k) обеспечивают регулирование напряжения выхода.
Усилитель ошибки работающие в петле отрицательной обратной связи регулируется с помощью элементов R1 (560R), T1 (BD911) и T2 (BD139) меняя выходное напряжение так, чтобы его доля была равна установленному напряжению через делитель R0 — R3. Изменение положения ползунка P1 приведет к изменению выходного напряжения, поэтому усилитель ошибки, соответственно, изменит выходное напряжение, чтобы эти изменения компенсировать.
Например: перемещение ручки потенциометра в направлении R4 повысит напряжение на его ползунке, что заставит стабилизатор (через усилитель ошибки) снизить выходное напряжения так, чтобы потенциал регулятора снизился до уровня устанавливаемого делителем R0 — R3.
Резистор R2 (0.2 R/5W) вместе с транзистором Т6(BC548) работает в узле ограничения тока. Если ток, потребляемый от источника питания растет — падение напряжения на R2 также возрастает. Открытый транзистор Т6 при снижении напряжения равным примерно 600 мВ вызовет короткое замыкание между эмиттером и базой транзисторов управления и тем самым ограничит ток, протекающий через T1. Ток будет ограничен значением примерно 0.6/R2, что в данном случае дает 3 Ампера. Номинал резистора следует подобрать самостоятельно, учитывая трансформатор и его характеристики. В роли T1 в большинстве случаев потребуется применение нескольких транзисторов соединенных параллельно, чтобы распределить протекающий ток и мощность на несколько элементов.
За регулирование отрицательной половины питания отвечает операционный усилитель U2 (TL081). Его выход управляет транзисторами T3 (BD140) и T4(BD912). Резистор R9 (560R) ограничивает ток базы Т3, выполняя аналогичную роль, как R1 в положительной половине питания. Делитель R6 (100k), R7 (100k) и P2 (10k) подобран таким образом, чтобы в состоянии, установленном на регуляторе P2 был потенциал массы. Увеличение напряжения на выходе положительной части блока питания приведет к увеличению потенциала на ползунке потенциометра P2, одновременно ОУ U1 стремясь уровнять потенциал на обоих своих выходах приведет к снижению отрицательной половины питания с помощью регулировочных элементов T3 и T4. Напряжение на отрицательной половине, соответственно, будет следовать за положительным, если только делитель R6, R7, P2 будет установлен на деление 1:1.
К разъемам IN1 и IN2 подключаются две независимые обмотки трансформатора питания. Напряжение будет одинаково на мостах Br1 (5А) и Br2 (5А) и будет фильтроваться с помощью емкости C1, C2 (4700uF) и C3, C4 (100nF), после чего попадает на транзисторы T1 и T4 (напоминаем, что каждый из них может состоять из нескольких транзисторов, соединенных параллельно). На выходе напряжение фильтруют конденсаторы C6, C7 (470uF) и C9, C10 (100nF). Выходом блока является разъем OUT на котором и будет регулируемое напряжение симметрично относительно массы. Кроме того, на плате можно установить делитель R10-R13, благодаря которому возможно измерение выходного напряжения с помощью микроконтроллера с преобразователем ADC.
На вход схемы необходимо подключить трансформатор с двумя обмотками напряжением 2×24 В и мощности в зависимости от ваших потребностей.
Сборка лабораторного блока питания
Плата печатная ЛБПСхема паяется на печатной плате (скачать). Монтаж не сложен, элементы на ней находятся далеко друг от друга. Однако необходимо определить значения R3, Р1 и R5. Резистор R3 определяет уровень напряжения на входе усилителя ошибки (pin 5 U1) и его подбор является простым. По расчётам резистор R3 равен 4,7 k, что дает напряжение на усилителе ошибки около 3,2 В. Второй шаг-это подбор значения потенциометра P1 и резистора R5, от которых зависит максимальное выходное напряжение блока питания. Предполагая, что требуемый диапазон регулирования выходного напряжения от 3 В до 26 В легко рассчитаем значение R5 чуть ниже 7к. Принимаем ближайшее значение из стандартного ряда и получаем R5 = 6,8 к.
После сборки мелких элементов на плате, пришло время для установки силовых транзисторов T1 и T4, они должны быть установлены на отдельный радиатор. Если по какой-то причине будет только один радиатор — примените изоляционные прокладки под транзисторы. Если потребление тока от блока питания не будет большим — до 0.5 А, можно поставить только один транзистор. Если таки нагрузки планируются несколько ампер — можно использовать параллельное соединение транзисторов в соответствии со схемой их соединения.
Регулированный блок питания 0-30В
cxema.org — Двухполярный лабораторный блок питания
Напряжение бп 0-30 Вольт. Ток срабатывания защиты 0-10 А.
Сидел я как-то на работе и решил сделать что-нибудь полезное. Порыскав в интернете в поисках стоящих девайсов, наткнулся на довольно простой блок питания и решил взяться за него.
Автор схемы leokri
Не знаю для чего нужна цепочка VD3,VD2, резистор на 3 кОма и электролит (видимо цепочка мягкого пуска), но с ними у меня блок питания не заработал и они были удалены из схемы. Емкость 20000 мкФ мной была заменена на 10000 мкФ, поскольку на нагрузку в 5 Ампер считаю что этого будет достаточно, да и вряд ли у меня будут такие токи в нагрузке блока питания.
Описания принципа работы схемы: При включении питания происходит заряд емкости конденсатора емкостью 20000 мкФ. Как только конденсатор зарядится, напряжение на выходе начнет расти до той поры, пока не сработает компаратор DA4 операционного усилителя LM324N. Как только напряжение на его 10 ноге превысит напряжение на 9 ножке, компаратор переключится и своим током через светодиод начнет открывать транзистор VT3. Напряжение на эмиттере транзистора VT1 понизится до заданного значения. Если напряжение на 9 ножке станет больше, чем на 10 компаратор переключится обратно и напряжение на эмиттере VT1 начнет повышаться. Срабатывание компаратора определяется напряжением на 9 ножке, которое выставляется подстроечным резистором на 4,7 к Ома.
Аналогично работает канал токового регулирования, подстройка которого производится подстроечным резистором на 1 кОм.
Вместо двух силовых транзисторов в канал я сделал один, так как для 5 ампер одного КТ827А вполне будет достаточно.
В качестве линейных стабилизаторов напряжения использованы LM7808 и LM7815. Стабилизатор LM7815 запитывался непосредственно с электролитического конденсатора сразу после выпрямительного моста, а стабилизатор LM7808 запитывался с LM7815.
Операционный усилитель LM324N мне в магазине продали такой, что минимальный ток срабатывания на нем 40 мА, пришлось искать операционный усилитель данного типа с лазерной гравировкой, только после этого все стало регулироваться как положено. А второй операционный усилитель я достал из платы управления UPSа, корпус которого был использован.
В качестве шунта я использовал два керамических резистора на 0,1 Ома на 5Wвключенных параллельно друг другу.
Разработав монтажную плату и удостоверившись в работоспособности платы, собрал вторую такую же, чтобы обеспечить второй канал. Плата разрабатывалась в Visio.
Для визуального получения информации о напряжении и токе на блоке питания было решено сделать ампервольтметр на базе контроллера Atiny13Aи дисплея от сотового телефона Nokia 1200, поскольку у меня валялась целая куча этих телефонов.
Вольтметр+амперметр+ваттметр для блока питания
Также как и в случае с платой блока питания, мной были разработана плата для ампервольтметров и плата под два дисплея, чтобы все влезало в переднюю панель корпуса UPSа.
автор данного девайса pavel-pervomaysk
A JonnS переделал прошивку под большие символы на дисплее
Силовой трансформатор был задействован от того же UPSa. Трансформатор был разобран и перемотан на напряжение 18 Вольт переменки. После выпрямительного моста и конденсатора у меня получилось 25 Вольт постоянки. Если кто будет повторять, то рекомендую намотать две дополнительные обмотки на напряжение 12 Вольт для питания ампервольтметров.
Чтобы коллекторы не замыкались друг с другом была поставлена диэлектрическая пластина, в которой выпилено большое отверстие для транзисторов и на которую были закреплены радиаторы.
На одном из радиаторов закреплены также 2 кренки для запитки ампервольтметров.
Конечный результат получился такой. Второй дисплей инвертированный, поэтому видно хуже, но перепрошивать контроллер было уже лень.)))
Сзади были установлены предохранители для каждого канала в отдельности и оставлены все разъемы. С одного из задних разъемов я питаю свою самодельную паяльную станцию. Очень кстати удобно провода не болтаются по всему полу.
Для программирования контроллеров был собран самый простой, как мне кажется, программатор, который был найден на просторах интернета.
Порыскав на заводе в старом хламе, был найден нужный разъем и сделано такое чудо.
Прошивка без проблем была вшита в контроллер программой Uniprof. Вот пожалуй и все!
Все исходники можно скачать тут
Автор Роман Соболев
Доброе время суток, уважаемые радиолюбители! Все когда-то начинают собирать усилители НЧ — сначала это простые схемы на микросхемах c однополярным питанием, затем это микросхемы с двухполярным питанием (TDA 7294, LM3886 и прочие) — бывает приходит время УНЧ на транзисторах, по крайней мере у меня происходит именно так! Так вот, какие бы не были схемы усилителей, объединяет их одно — это питание. При первых запусках нужно, как все знают, подключать источник питания через лампочку и, при возможности, меньшим питанием по вольтажу, чтобы предостеречь от сгорания дорогостоящих деталей при ошибке в монтаже. А почему бы не сделать универсальный блок питания для пробных запусков или ремонта усилителей? Я это всё к тому что у меня это был трансформатор подключенный через лампу, диодный мост с конденсаторами и целая куча проводов, занимающая весь стол. В общем в один прекрасный момент мне это всё надоело и решил БП облагородить — сделать компактным и мобильным! Также решил добавить в него простую схемку для подбора или проверки стабилитронов. И вот что у нас получается: СхемотехникаКорпус использовал от нерабочего блока питания компьютера. На штатном месте остался выключатель и разъём для сетевого шнура. Трансформатор у меня такой. Информацию про него в интернете не нашёл, и поэтому сам искал первичную, вторичную обмотку.
В моём случае выяснилось что он имеет 4 обмотки по 10 вольт. Соединил обмотки последовательно — получилось 2 по 20 вольт или 1 на 40 вольт. Диодных мостов у меня два: один на +/-28 вольт и второй +/-14, сделал для проверки схем на операцинниках (фнч, темброблоки и прочие). Для проверки стабилитронов была выбрана самая простая хорошо рабочая схемка, которая есть на другом сайте. Изменил только номиналы резисторов R1 и R2: R1 — 15k, R2 — 10k. И соответственно питается она у меня от 56 вольт. Разместил на небольшой кусочек текстолита. Платку изготовил путем прорезания дорожек. Кнопку взял советскую, так как её проще прикрепить к передней панели. Контакты для подсоединения стабилитронов вывел на переднюю панель. Вольтметр не стал размещать на панели, вывел 2 клеммы для подсоединения мультиметра. Диодные мосты с конденсаторами разместил также на кусочках текстолита: можно было конечно разместить на одну плату, просто было несколько «обрезков», вот на них и разместил. Выходы питания, для подсоединения тестируемых устройств, реализовал на зажимах для проводки. В общем получилась такая схематика. Фото сборки блока питанияВидеоНапряжение 220 вольт идет через лампу на выключатель, с выключателя на трансформатор. Далее на диодные мостики и конденсаторы. Также в корпусе было место, и я прикрутил розетку — для проверки тех же неизвестных трансформаторов или при наладке импульсных блоков питания. Патрон для лампочки прикрепил на верхнюю крышку корпуса, с помощью трубки с резьбой от люстры. Внутри блока питания просто ни как её не разместишь, поэтому пришлось сделать именно так. Итого получилась такая схема, подробнее можно рассмотреть на картинках. Простой блок питания с несколькими функциями, а самое главное занимает немного места на столе. Казалось бы — простая примитивная конструкция, но очень полезная тем, кто занимается изготовлением или ремонтом аудиоаппаратуры, а главное, экономит время и нервы. |
РАДИО для ВСЕХ — Лаборат. 2-х полярный БП
Лабораторный двухполярный блок питания с раздельной регулировкой напряжения от 0 до 30В по каждому каналу и уровнем ограничения по току от 0 до 2А с индикацией режима ограничения
ВНИМАНИЕ!!! Входное напряжение постоянного тока от 14 до 35 В. Эксперимент показал, что при Uвх=35В максимальные выходные токи для указанных на схеме транзисторов составляют: при Uвых=3В/Iвых=0,2А; при Uвых=30В/2А поскольку мощность рассеиваемая коллектором 2Вт без радиатора и порядка 8Вт с радиатором. Увеличить выходные токи можно применив транзисторы TIP147/TIP142 или можно уменьшить входное напряжение. Можно применить переключение отводов вторичной обмотки трансформатора, т.е. можно сделать несколько отводов. Но Uвх=35В это максимум! Блок питания отлично работает при Uвх порядка 24В, поэтому я рекомендовал бы использовать его при входных напряжениях не более 24В ;-( (это моё мнение и может не совпадать с авторами схемы)
Печатные платы с маской и маркировкой:
Лабораторный двухполярный стабилизированный блок питания с раздельной регулировкой напряжения в диапазоне от 0 до 30 В и тока в диапазоне от 0 до 2 А с функцией ограничения тока и индикацией режима ограничения по току для каждого канала. Диапазон входных напряжений от 14 до 35 В. Плата выполнена таким образом, что переменные резисторы можно закрепить непосредственно на передней панели блока питания при помощи штатных гаек переменных резисторов, расстояния между переменными резисторами выбраны с учётом удобства эксплуатации. Между переменными резисторами канала 30 мм, а между крайними переменными резисторами каналов 40 мм, что очень удобно, в отличие от предлагаемых на рынке. Возможные места установки монтажных стоек приведены на фотографиях ниже (стойки и радиатор в комплект набора не входят и при необходимости заказываются отдельно). Подключение выполняется через винтовые клеммники.
Стоимость печатной платы с маской и маркировкой: временно закончились
Стоимость набора для сборки блока питания: временно отсутствует в продаже
Краткое описание, комплектация и схема здесь >>>
Стоимость собранной и настроенной платы блока питания без радиатора: временно отсутствует в продаже
Всем кто хочет купить платы, наборы или готовые блоки просьба обращаться сюда >>>
Двухполярный блок питания +/- 12В – Поделки для авто
Этот двухполярный блок питания имеет симметричный выход +12В и -12В с током до 100мА. Он был построен для питания 3-х операционных усилителей OPA627 моего аудио ЦАП-а на чипах PCM1792 и PCM1794.
Описание схемы
Схема имеет в первичной цепи только один предохранитель. Я не смог найти меньше, чем 50мА. Мы можем подключить шнур питания непосредственно к разъему X1 или с помощью выключателя питания на шасси. Ко вторичной обмотке трансформатора подключены два предохранителя по 100 мА и после них идет выпрямительный мост. Конденсаторы C1 и C2 для сглаживания пульсаций выпрямленного напряжения.
Далее идут положительный и отрицательный интегральные стабилизаторы напряжения 78L12 и 79L12 с конденсаторами развязки С3-С6, припаянных близко к выводам стабилизаторов. Далее идут небольшие конденсаторы фильтра, а также сигнальные светодиоды, подключенные через резисторы. Выходные напряжения выведены на 3-х контактный разъем. Для сигнализации наличия напряжения достаточен только один светодиод. Также можно использовать 2-х контактные разъемы для подключения светодиодов.
Монтаж
Сначала мы проверяем, все ли отверстия просверлены правильно. Припаиваем детали в порядке от малогабаритных к крупным. Начинаем с резисторов, небольших конденсаторов, светодиодов, регуляторов, предохранителей и выпрямителя. Далее – разъемы, трансформатор и большие конденсаторы. Будьте внимательны с полярностью электролитических конденсаторов, ориентацией диодов и стабилизаторов.
Печатная плата
Плата односторонняя. Это позволит сделать ее в любительских условиях. Я постарался спроектировать ее симметрично.
Если напряжение на больших конденсаторах не выше14.5В, то следует использовать трансформатор с вторичными обмотками 2 х 15В, чтобы получить 12В на выходе. При использовании светодиодов с током 2мА, следует увеличить номинал резисторов до 1.5кОм.
Правильно собранный блок не нуждается в наладке и работает при первом же включении.
Если требуется другое напряжение, например +/- 15В, то надо заменить трансформатор и стабилизаторы, а также обратить внимание на допустимое рабочее напряжение электролитических конденсаторов.
И ещё хочу отметить один момент, если у вас автомобиль RENAULT Duster и вы хотите немного его усовершенствовать или сделать так сказать тюнинг, то есть отличный ресурс, который поможет вам в этом плане. Заходите, смотрите и выбирайте, много чего интересного.
Похожие статьи:
Двухполярный блок питания схема которого • Питание
Двухполярный блок питания внешний вид монтажа которого показан на рисунке.
Технические характеристики:
- Регулируемые выходные напряжения 1,2 … 25 В постоянного тока
- максимальный длительный выходной ток: 2 ✕ 1,5A
- индикаторы выходного напряжения – светодиоды
- защита от короткого замыкания и тепловая защита
- размеры платы: 45 ✕ 81 мм
Двухполярный блок питания схема которого классическая, выходное напряжение устанавливается с помощью потенциометров PR1 и PR2.
LM317 – используется как положительный стабилизатор напряжения, а LM337 – стабилизирует отрицательное напряжение.
Для стабилизаторов LM требуется небольшое количество рассыпухи и еще они имеют встроенную тепловую защиту, а также ограничение тока при коротком замыкании. Диапазон выходного напряжения составляет от ± 1,25 В до ± 25 В. Микросхемы LM317 и LM337 имеют встроенную кратковременную защиту от короткого замыкания. При выборе трансформатора обратите внимание на номинальное напряжение конденсаторов C1, C2. Трансформатор должен быть выбран таким образом, чтобы его вторичное напряжение после выпрямления не превышало номинальное напряжение конденсаторов.
Печатная плата двухполярный блок питания показана на рисунке.
Сборка не представляет особого труда, а последние установленные элементы должны быть конденсаторы C1, C2, сразу после установки микросхем на радиатор. Стабилизаторы US1 и US2 должны быть изолированы от радиатора с помощью слюды или силиконовой прокладки. Схема собранная из заведомо исправных элементов, не требует какой-либо регулировки, и после подключения трансформатора работает сразу же.
Двухполярный лабораторный блок питания с защитой на МК — Блоки питания — Источники питания
Необходимость в двухполярном лабораторном источнике питания с возможностью регулировки выходного напряжения и порога срабатывания защиты по току потребления нагрузкой возникла давно.
Еще давно собирал схему Сухова (из журнала «Радио», наверное 80-х годов). Работала нормально….. Но сейчас уже не устраивает по некоторым критериям…..
Так что пришло время замены старого девайса. После поиска по интернету остановился на двух вариантах.
Первый на ардуино. Собрал на макетной плате. Работает, напряжение регулирует, ток ограничивает. Но… На нагрузке проскакивают какие-то импульсы (при токе от 0,5А), что ни есть очень хорошо. Ссылка на статью, кому интересно: https://rcl-radio.ru/?p=57730.
Вторая схема понравилась больше. Вот оригинал.
Выходное напряжение подходит, а выходной ток до 3А. Собрал, характеристики устраивают. Приступаем к сборке.
Характеристики БП, который будем собирать, следующие – выходное напряжение 0-25 вольт, (двухполярное), ток до 1А, индикация на LCD индикаторе, защита от перегрузки (ограничение точно нужно, а триггерная на любителя), защита от перегрева, отключение нагрузки от БП.
Размеры корпуса зависят от габаритов транса. Вспомнил, что когда-то приносили на разборку муз.центр, там был подходящий транс. Долго лежал в загашнике, вот и пригодился. Замерил напряжения на выходе – почти все подходит, две обмотки по 22V (провод сечения около 0,7), одна 12V, провод такой же. Высота самого транса 35мм.
Теперь можно определиться и с размерами корпуса. По предварительным прикидкам размеры корпуса будущего блока питания 40х250х200мм. Радиатор силовых транзисторов на задней панели, охлаждение естественное.
Разработал платы БП, размеры 80х40. Собрал, проверил работоспособность. Ограничение тока установил на уровне 1А (реально 1,15-1,2А), для моих требований вполне достаточно. Это блок питания с «плавной» регулировками выходного напряжения, регулировкой ограничения по току и индикацией режима работы. В качестве регулирующего элемента используется полевой транзистор IRLZ44N.
Дальше определяемся с индикатором. Решил собирать схему на индикаторе Wh2602 и на МК мега-8 с индикацией тока и напряжения в обеих каналах из ранее публиковавшейся на этом сайте этой статьи.
Сделал для него только другие платы. Сам вольтметр; Схема
Печатная плата вольтметра;
Внешний вид платы вольтметра с установленными на ней деталями;
Собираем схему, вместо MC602 ставим LM358 (при проверке и настройке АВ-метра выяснилось, что нулевые показания амперметра при отсутствии нагрузки не выставляются, при установке LM358 дефект устранился).
Блок питания на 5 вольт для вольтметра сделал на отдельной плате. Собрана она на интегральном стабилизаторе 7805, который установлен на небольшую пластину из алюминия, толщиной 2-3 мм.
Плата, размеры видны на картинке. Все это можно уже ставить в корпус.
Для регулировки выходного напряжения использовал переменные многооборотные резисторы (заказывал на али). Для регулировки ограничения тока использовал сдвоенный резистор на 500 Ом (линейный).
Блок питания для схемы термозащиты, собран на интегральном стабилизаторе 7812. Схема включения типовая, рекомендуемая заводом изготовителем. 7812 устанавливается на общий радиатор.
Блок термозащиты и включения нагрузки. Схема.
На микроконтроллере PIC12F629, собрана схема контроля температурного режима радиаторов мощных транзисторов блока питания. Также осуществляется контроль за исправностью вентилятора и термозащита.
Внимание, в схеме применен датчик DS18S20, а не более популярный DS18B20. Эти датчики не взаимозаменяемые и не совместимы. Но в схеме так же можно использовать датчик DS18B20, в архиве лежат две прошивки, как под DS18S20, так и под DS18B20. Схемы включения их абсолютно одинаковые.
При включении питания – кратковременно включается вентилятор и проверяется его исправность (по сигналу датчика тахогенератора), если вентилятор исправен и температура в норме – включается реле, подавая питание на контролируемое устройство. По мере прогрева радиатора выходных транзисторов БП (при подключении к БП нагрузки) до температуры около 50оС) – включается вентилятор, а если температура упала ниже 45оС – кулер выключается. Т.е. имеется гистерезис в 5оС. Когда температура достигнет 75оС – срабатывает термозащита, нагрузка отключается, а если будет зафиксирована неисправность вентилятора – то термозащита срабатывает уже при 60оС.
Транзистор Q1 управляет питанием реле. При срабатывании устройства на МК, питание с реле снимается. После остывания радиаторов подается снова.
Работа триггера на К1533ТМ2.
При подачи питания на МС триггер устанавливается в состояние «1» по входу S (цепочка R8 и С8 формирует уровни установки). На выходе Q1 устанавливается лог. «0» (0,2-0,5В). Транзистор Q3 закрыт, реле обесточено, нагрузка БП отключена (т.е. при включении БП на выходных клеммах напряжения нет).
При нажатии кнопки «POWER» конденсатор С9 заряжается через R7 и формирует импульс на входе С триггера. Триггер переключается в состояние «0». на выходе Q1 появляется лог. «1» (+4,5-4,8В). Транзистор Q3 открывается и включает реле, нагрузка БП подключается (при срабатывании термозащиты транзистор Q1 закрывается, тем самым отключает от «земли» эмиттер Q3, реле обесточивается, нагрузка отключается).
При повторном нажатии на кнопку»POWER» триггер переключается в исходное состояние, нагрузка отключается. Индикация на светодиоде. Одной из функций блока на 1533ТМ2 – реализация «триггерной» защиты при перегрузке (отключение обоих каналов БП, что не выполняется при ограничении тока).
Кнопка SB1 (с фиксацией) отключает «триггерную» защиту. Можно вместо неё поставить малогабаритный тумблер. SRD-05VDC-SL – используемое реле (ток до 5А, напряжение работы 5В).
Плата.
Датчик должен быть установлен именно на радиаторе, желательно применение термоконтактной пасты. Вентилятор пригоден только 3-х проводной, который с таходатчиком (большинство компьютерных кулеров).
Настройка блоков:
– платы стабилизаторов, настройка заключается в установки питания LM324 +6V (если использовать 7806 то настройка заключается в проверке напряжения), при условии, что все элементы исправны.
– плата АВ-метра, если МК прошита правильно, все элементы исправны, то настройка заключается в калибровке показаний на Wh2602.
– плата блока питания на +12V и +5V. Только проверка выходных напряжений.
– плата блок термозащиты и включения нагрузки. Если МК прошита правильно, то схема работает при условии, что все элементы исправны, настройки не требуется. Схема на К1533ТМ2 тоже настройки не требует.
Да, при программировании МК необходимо не затереть калибровочную константу. Я пользуюсь программатором GTR-USB, он при программировании её не трогает, а EXTRA-PIC удаляет, ранее уже были эксцессы.
Скачать файлы блока питания.