Зарядное устройство для аккумулятора 12 в своими руками
Разряд аккумулятора — проблема, которая хорошо знакома любому автомобилисту. Особенно неприятно, когда чрезвычайное происшествие случается далеко от цивилизации, где нет автомагазинов, АЗС и/или СТО. Чтобы снова не попасть впросак, не бояться внезапной «усталости» АКБ, рано или поздно каждый приходит к идее сделать зарядное устройство для аккумулятора 12 в своими руками. Это логичное решение, так как покупные модели обойдутся в круглую сумму, а самодельное ЗУ, собранное из недорогих комплектующих, сулит приличную экономию. Другой плюс — простота устройства, обещающая результат независимо от степени квалификации «труженика». Сама работа отнимет всего несколько часов.
Почему оно необходимо?
Перед тем как собирать зарядное устройство для аккумулятора 12 в своими руками, будущему автору не мешает познакомиться с ним и его предназначением — восстановлением разряженных АКБ. ЗУ — источник постоянного тока, чье напряжение составляет 12-16 В.
Причина его необходимости — неспособность зарядить аккумуляторную батарею до предела от электрогенератора автомобиля: максимально допустимого значения для бортсети (14,1 В) недостаточно. Требуется немного большее напряжение — 14,4-14,5 В.
Хронический недостаточный заряд приводит к уменьшению ресурса аккумулятора. Другой плюс автономного зарядного устройства — эффективная борьба с сульфатацией пластин, так как крупные кристаллы сульфата свинца — одни из главных виновников деградации АКБ.
Близкое знакомство с ЗУ
«Пионерами» были зарядки, имевшие в составе два главных блока, — выпрямитель и трансформатор. Конструкцию отличают впечатляющие габариты и такой же вес, однако дешевизна, простота изделий — причина их популярности у автовладельцев даже сейчас. В роли выпрямителя в таком зарядном устройстве выступает полупроводниковый диод, адекватная замена ему — диодный мост.
Существенная разница между ними одна: во втором варианте меньше потребление мощности. Другие различия касаются расходов, которых потребует реализация моста, и большей сложности работы. Помимо выпрямителя, трансформатора компонентами зарядника являются амперметр (по желанию) и выключатель. Прибор, измеряющий силу тока, подключают, используя зажимы-крокодилы.
Есть и другой вариант, который можно соорудить самостоятельно, — импульсный, он обеспечивает надежную защиту от «скачек» напряжения, КЗ, переполюсовки АКБ. Вес и габариты таких устройств значительно меньше, чем у традиционных. «Виной» тому инверторный блок, он же — причина больших затрат на производство, так как стоимость импульсного прибора возрастает почти вдвое.
Самодельные устройства
Прежде чем приступать к «свершениям», готовят все, что необходимо для производства зарядного устройства. Все зависит от того, какие расходники есть в наличии, для каких именно целей предназначается ЗУ.
Элементарно: лампочка и диод
Это экспресс-вариант, подходящий способ, если требуется быстро завести не роскошь, а средство, реанимировав севший аккумулятор автомобиля, находящегося на вынужденном «причале» у дома.
- Обыкновенная лампа накаливания. От ее мощности зависит скорость зарядки аккумулятора, поэтому оптимальное значение — 100-150 Вт. Позволяется минимум (60 Вт), но максимум (200 Вт) станет причиной перегоревшего электронного элемента.
- Полупроводниковый диод, преобразующий напряжение из переменного в постоянное. Здесь тоже необходима достаточная мощность, иначе элемент попросту не выдержит нагрузки. Возможные «поставщики» диода — старые приемники, блоки питания и магазины.
- Провода и зажимы-крокодилы, с помощью которых устройство подключается к АКБ.
- Штекер для розетки.
При сборке мини-зарядника важно соблюдать правило: диод располагают таким образом, чтобы катод был направлен в сторону плюса батареи. Все контакты изолируют. Во избежание КЗ в цепь включают автомат (10 А). Если для устройства выбрана лампочка мощностью в 100 Вт, то величина тока, поступающего на АКБ, будет равняться 0,17 А. Для получения 2 А необходимо заряжать устройство в течение 10 часов.
Такой способ позволит вернуть к жизни внезапно севший аккумулятор, например, на даче. Для полноценной зарядки этот вариант не подходит. Главное требование можно сформулировать одной, но емкой, фразой — руки прочь от всех частей схемы работающей конструкции!
Лампа и адаптер ноутбука
Еще один простейший способ быстрой реанимации безжизненного аккумулятора. Устройство для питания этой техники оснащено преобразователем, выпрямителем, элементами сглаживания и стабилизации выходного напряжения. Для получения желаемого необходим ненужный (или используемый) зарядник от любого ноутбука (19 В, примерно 5 А), автомобильная лампочка (12 Вт), провода и «земноводные» зажимы. В роли ограничителя тока можно использовать не лампу, а резистор. Поступают так:
- Берут 2 медных провода, концы их зачищают, присоединяют к контактам штекера.
- «Минусовой» выход аккумулятора соединяют с проводом наружного контакта адаптера.
- Проводник от внутреннего контакта маленького устройства подключают к «плюсу» большого ЗУ.
- В разрыв провода-плюса устанавливают лампочку.
- Включают адаптационную конструкцию в сеть.
Полностью разряженное устройство восстановить не получится, однако для подзарядки севшего аккумулятора понадобится всего несколько часов.
В обоих описанных случаях рекомендуют «устраивать слежку» за процессом, по крайней мере, первые полчаса. Если обнаружится перегрев, зарядку отключают без промедления.
Просто: трансформатор и мост
Такую зарядку уже можно назвать полноценной, но для ее сборки придется озаботиться поисками трансформатора, который найти бывает крайне трудно. В этом случае источником деталей может стать старый телевизор. Марка подходящего трансформатора — ТС-180-2. Он имеет 2 вторичные обмотки с напряжением 6,4 В, силой тока — 4,7 А. Такая же двойная в этом трансформаторе первичная обмотка.
Для диодного моста требуется 4 элемента Д242, альтернативы — Д243, 245, 246. Для отвода от них тепла — такое же количество радиаторов, их площадь должна быть не менее 25 мм2. Понадобится пара предохранителей (0,5 и 10 А). В качестве проводников используют материал любого сечения, однако есть исключение: значение-минимум для входного кабеля составляет 2,5 мм2. В роли основы зарядного устройства выступает стеклотекстолитовая пластина.
Сборка ЗУ происходит по такому сценарию:
- Сначала по стандартной схеме собирают диодный мост. Места выводов опускают вниз, каждый элемент будет располагаться на «своем» радиаторе.
- Начинают трансформаторные работы. Для получения нужной разности потенциалов вторичные обмотки «соединяют воедино»: выход первой с входом второй (9, 9’), используют клеммник, еще лучше — пайку.
- Берут два отрезка медного провода с сечением 2,5 мм2 припаивают к выводам 10, 10’.
- Переходят к первичной обмотке: соединяют 1 и 1’, провода штекера припаивают к 2, 2’.
- Соединяют трансформатор с диодным мостом: к нему припаивают провода 10, 10 ’.
- Теперь к мосту фиксируют проводники, идущие к аккумулятору.
Устанавливают предохранители. Тот, что рассчитан на 10 А, крепят к плюсу моста, второй (0,5 А) устанавливают на трансформаторном выводе 2. На этом работы завершаются, следует тестирование зарядного устройства с помощью амперметра, а также вольтметра. Если сила тока не такая, как ожидалась, а несколько превосходит необходимую величину, то для «удаления» излишков в цепь рекомендуют устанавливать лампу мощностью 20-60 Вт (12 В).
Конструкцию крепят на стеклотекстолитовую пластину, обязательно отмечают «плюсовой» и «минусовой» провода. В противном случае переплюсовка станет причиной выхода устройства, собранного тяжким трудом, из строя. Основу помещают в корпус, изготовленный, например, из цинковой жести. В нем некоторые делают дополнительное отверстие, предназначенное для вентилятора.
Если «поставщик» микроволновка
Это другой способ получить вожделенную вещь — зарядное устройство для аккумулятора 12 в своими руками. Популярная микроволновая печь, имеющаяся почти в каждом доме, (как сломанная, так и пока работающая) часто становится жертвой домашних мастеров, самый привлекательный элемент для них — трансформатор. Автолюбители не исключение. Однако прибор, «украденный» у этого СВЧ агрегата, требует модификации, так как его приходится трансформировать из повышающего в понижающее устройство.
В этом случае в ход идет даже нерабочий трансформатор — тот, у которого сгорела вторичная обмотка, совершенно ненужная для сборки зарядного устройства. Переделка заключается в удалении вторички и замены ее новой. Ее роль исполняет провод с изоляцией, минимальное сечение его — 2 мм2, но большее значение предпочтительнее.
Для определения необходимого количества витков нужно готовиться к экспериментам, так как эту цифру некоторые мастера предпочитают находить опытным путем. Например, намотав определенное число витков на сердечник, к концам провода присоединяют вольтметр. Включив трансформатор в сеть, замеряют показания.
Другой путь — простой расчет. Если показания прибора выдали, что при 10 витках напряжение на выходе равняется 2 В, то 12 В обеспечат 60 витков. Каждые 5 витков — плюс один вольт, поэтому желаемый результат достигается просто.
«Расправившись» с намоткой, остальные действия совершают аналогично предыдущему способу: собирают диодный мост, пайкой соединяют все детали, затем проверяют эффективность свежеизготовленного автомобильного зарядника. Неожиданных подводных камней при сборке простого устройства можно не опасаться, если работа совершается качественно.
Зарядное устройство для аккумулятора 12 в своими руками — тема, которая достаточно обширна, поэтому вариантов обеспечить бесперебойную работу батареи придумано много. С одним из потенциальных «рецептов» можно познакомиться воочию, если посмотреть этот видеоролик:
youtube.com/embed/sY25E9v_PY0?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Была ли статья полезна?Мы хотим стать лучше. Спасибо за мнение!
Если вам понравилась статья, пожалуйста, поделитесь ей
Источник
Ремонт зарядного устройства для автомобильного аккумулятора
Добавил: Master,Дата: 08 Авг 2012Принесли мне делать зарядное устройство для автомобильных аккумуляторов заводского изготовления совсем новое. Проработало оно совсем не долго…
Причина простая — диодный мост на теплоотводящей пластинке (радиаторе) был прикручен к пластмассовой стойке, которая от нагрева расплавилась. В результате диодный мост отошёл от теплоотводящей пластинки, перегрелся и вышел из строя 🙁
Решение проблемыПрикручиваем диодный мост к теплоотводящей пластине (радиатору), а затем последнюю к корпусу зарядного устройства. Такого мощного диодного моста я не нашёл и собрал диодный мост из диодов типа Д242 – Д248.
Радиаторы я использовал от старых цветных телевизоров, находящихся в строчной развёртке (транзисторы КТ838, КТ846). Два диода, у которых аноды спаяны вместе прикручены через изоляционную слюду, взял там же из под транзисторов.
Кстати выключатель выбора режима зарядки рассчитан на ток 2А, а реально коммутирует до 10А. Поэтому его лучше заменить более мощным.
Схема зарядного устройства простая — трансформатор, диодный мост. Регулируется ток гасящим сопротивлением из нихрома через выключатель, защита от кз и переполюсовок — автоматический предохранитель.
А. Зотов, Волгоградская обл.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Самодельный складывающийся гараж
- Как показать температуру двигателя в Renault и Driving Eco2 в MediaNav?
- Как установить парктроник и камеру на Рено Логан Stepway самостоятельно?
Гараж — это необходимый объект обладателей автомобилей и мотоциклов. Нередко гараж — это заветная мечта, а иногда ещё гараж бывает проблемой.
В этой статье рассмотрим необычный складывающийся гараж, занимающий минимум места.
Подробнее…
На сайте drive2 можно встретить ни одну активацию различных функций в MediaNav, в прочем и в других блоках тоже.
Обладателям бензиновых версий автомобилей Renault в комплектации со штатным автозапуском и MediaNav повезло больше — с завода у них в машине установлен блок BIC 283468105R который коммутирует две шины автомобиля: CAN1 и CAN2, передавая данные бортового компьютера и температуры окружающей среды на экран MediaNav.
Подробнее…
Доброго времени суток, Уважаемые читатели сайта Мастер Винтик! Появилось у меня желание оснастить свой новый авто Renault Logan StepWay дополнительным удобством и безопасностью — парктроником и камерой заднего вида. Купил я парктроник и регистратор с камерой заднего вида.
Поискал я в Интернете про установку данных девайсов, но подробного объяснения не нашел на данную модель авто. Вот и решил подробнее, пошагово с фото поделиться процессом установки, возможно кому-то пригодится.
Подробнее…
Популярность: 29 923 просм.
Электрические схемы бесплатно. Какие диоды применяют для зарядного устройства
Схема простого зарядного для аккумулятора авто
В старых телевизорах, которые работали еще на лампах а не микрочипах, есть силовые трансформаторы ТС-180-2
В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками
Читаем
Схема устройства:
У ТС-180-2 есть две вторичные обмотки, рассчитанные на напряжение 6.4 В и ток 4.7 А, если их соединить последовательно, то получим выходное напряжение 12.8 В. Этого напряжения достаточно, чтобы зарядить аккумулятор. На трансформаторе нужно соединить толстым проводом выводы 9 и 9 штрих, а к выводам 10 и 10 штрих, тоже толстыми проводами припаять диодный мост, состоящий из четырех диодов Д242А или других рассчитанных на ток не менее 10 А.
Диоды нужно установить на большие радиаторы. Конструкцию диодного моста можно собрать на стеклотекстолитовой пластине подходящего размера. Первичные обмотки трансформатора тоже необходимо соединить последовательно, перемычку нужно поставить между выводами 1 и 1 штрих, а к выводам 2 и 2 штрих припаять шнур с вилкой для сети 220 В. Желательно в первичную и вторичную цепи установить предохранители, в первичную – 0.5 А, во вторичную 10 А.
Провода, которые вы используете при изготовлении зарядного устройства, должны быть сечением не менее 2.5 мм2. Площадь радиатора для диода, не менее 32 см2 (для каждого). В нашем случае вторичные обмотки рассчитаны на ток 4.7 А, поэтому нельзя чтобы зарядный ток продолжительное время превышал это значение. Напряжение на клеммах аккумулятора во время заряда не должно превышать 14.5 В, особенно если заряжается необслуживаемая батарея.
В нашем устройстве зарядный ток ограничен за счет небольшого выходного напряжения трансформатора (12.8 В), но величина выходного напряжения зависит от величины входного. Если у вас в сети напряжение больше 220 В, то соответственно и на выходе трансформатора будет больше 12.8 В.
Ограничить зарядный ток можно включив последовательно с аккумулятором в разрыв минусового провода 12 вольтовою лампу мощностью от 21 до 60 Вт. Чем меньше мощность лампы, тем меньше будет зарядный ток. Чтобы контролировать ток и напряжение необходимо подключить к зарядному устройству амперметр с пределом измерения не менее 10 А, и вольтметр с пределом измерения не менее 15 В. Или можно пробрести мультиметр с пределом измерения тока не менее 10 А и периодически контролировать параметры с его помощью.
Внимательно подсоединяйте аккумулятор. Не допускается даже кратковременно перепутать при подключении аккумулятора плюс с минусом. Также нельзя проверять работоспособность устройства кратковременным замыканием выводов («проверка на искру»). Зарядное устройство во время подсоединения, отсоединения аккумулятора должно быть обесточено. При изготовлении и использовании зарядного устройства будьте осторожны, соблюдайте правила пожарной и электро безопасности. Не оставляйте работающее устройство без присмотра.
Смотрите схему еще одного зярядного устройства для
Схема десульфатирующего зарядного устройства предложена Самунджи и Л. Симеоновым. Зарядное устройство выполнено но схеме одпополупериодного выпрямителя на диоде VI с параметрической стабилизацией напряжения (V2) и усилителем тока (V3, V4). Сигнальная лампочка Н1 горит при включенном в сеть трансформаторе. Средний зарядный ток приблизительно 1,8 А регулируется подбором резистора R3. Разрядный ток задается резистором R1. Напряжение на вторичной обмотке трансформатора равно 21 В (амплитудное важность 28 В). Напряжение на аккумуляторе при номинальном зарядном токе равно 14 В. Поэтому зарядный ток аккумулятора возникает лишь тогда, когда амплитуда выходного напряжения усилителя тока превысит напряжение аккумулятора. Описание микросхемы 0401 За пора одного периода переменного напряжения формируется один импульс зарядного то-ка в течение времени Тi. Разряд аккумулятора происходит в течение времени Тз= 2Тi. Поэтому амперметр показывает среднее важность зарядного тока, равное примерно одной трети от амплитудного значения суммарного зарядного и разрядного токов. В зарядном ycтройстве можно использовать трансформатор ТС-200 от телевизора. Вторичные обмотки с обеих катушек трансформатора снимают и проводом ПЭВ-2 1,5 мм наматывают новую обмотку, состоящую из 74 витков (по 37 витков на каждой катушке). Транзистор V4 устанавливают на радиатор с эффективной площадью поверхности приблизительно 200 см кв. Детали: Диоды VI типа Д242А. Д243А, Д245А. Д305, V2 один или два включенных последовательно стабилитрона Д814А, V5 типа Д226: транзисторы V3 типа КТ803А, V4 типа КТ803А или КТ808А. При настройке…
Для схемы «Зарядное устройство для герметичных кислотно-свинцовых аккумуляторов»
Многие из нас для освещения в случае отключения электроэнергии используют импортные фонари и светильники. Источник питания в них — герметичные кислотно-свинцовые аккумуляторные батареи небольшой емкости, для зарядки которых встроенные примитивные зарядные устройства, не обеспечивающие нормального режима. В результате срок службы батареи немаловажно уменьшается. Поэтому надобно применять более совершенные зарядные устройства, исключающие возможную перезарядку батареи.Подавляющее большинство промышленных зарядных устройств ориентировано на эксплуатацию совместно с автомобильными аккумуляторными батареями, поэтому их применение для зарядки батарей малой емкости нецелесообразно. Применение специализированных импортных микросхем экономически невыгодно, поскольку цена(у) такой микросхемы порой в несколько раз превышает цена(у) самого аккумулятора.Автор предлагает свой вариант для подобных аккумуляторных батарей. Схемы конвертера радиолюбителя Мощность, выделяемая на этих резисторах, Р = R.Iзар2 = 7,5. 0,16 = 1,2 Вт.Для уменьшения степени нагрева в ЗУ применены два резистора по 15 Ом мощностью 2 Вт, включенных параллельно.Вычислим сопротивление резистора R9:R9=Uобр VT2 . R10/(Iзар. R — Uобр VT2)=0,6 . 200/(0,4 . 7,5 — 0.6) = 50 Ом.Выбираем резистор с ближайшим к рассчитанному сопротивлением 51 Ом.В устройстве применены импортные оксидные конденсаторы Реле JZC-20F с напряжением срабатывания 12 В. Можно применить и другое реле, имеющееся в наличии, однако в этом случае придется подкорректировать печатную плату. …
Для схемы «ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВ»
Автомобильная электроникаЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВПростейшее зарядное устройство для автомобильных и мотоциклетных аккумуляторных батарей, как правило, состоит из понижающего трансформатора и подключенного к его вторичной обмотке двухполупериодного выпрямителя . Последовательно с батареей включают мощный реостат для установки необходимого тока. Однако такая конструкция получается очень громоздкой и излишне энергоемкой, а другое способы регулирования тока обычно ее существенно усложняют. В промышленных зарядных устройствах для выпрямления зарядного тока и изменения его значения иногда применяют тринисторы КУ202Г. Здесь следует отметить, что прямое напряжение на включенных тринисторах при большом зарядном токе может добиваться 1,5 В. Симистор тс112 и схемы на нем Из-за этого они сильно нагреваются, а по паспорту температура корпуса тринистора не должна превышать +85°С. В таких устройствах приходится принимать меры по ограничению и температурной стабилизации зарядного тока, что приводит к дальнейшему их усложнению и удорожанию.Описываемое ниже сравнительно простое зарядное устройство имеет широкие пределы регулирования тока — практически от нуля до 10 А — и может быть использовано для зарядки различных стартерных батарей аккумуляторов на напряжение 12 В. В основу (см. схему) положен симисторный регулятор, опубликованный в , с дополнительно введенными маломощным диодны. ..
Для схемы «Простой терморегулятор»
Для схемы «Устройство удержания телефонной линии»
ТелефонияУстройство удержания телефонной линии Предлагаемое устройствовыполняет функцию удержания телефонной линии («HOLD»), чтопозволяет во час разговора положить трубку на рычаг и перейти кпараллельному телефонному аппарату. Устройство не перегружает телефонную линию (ТЛ) ине создает в ней помех. Во час срабатывания вызывающий абонент слышитмузыкальную заставку. Схема устройства удержания телефонной линиипоказана на рисунке. Выпрямительный мост на диодах VD1-VD4 обеспечиваетнужную полярность питания устройства независимо от полярности подключенияего к ТЛ. Переключатель SF1 связан с рычагом телефонного аппарата (ТА) изамыкается при поднятии трубки (т.е. блокирует кнопку SB1 при положенной трубке). Если во час разговора нужно перейти к параллельному ТА, надократковременно нажать кнопку SB1. При этом срабатывает реле K1 (замыкаются контакты K1.1, а контакты K1. 2 размыкаются), к ТЛ подключается эквивалентнагрузки (цепь R1R2K1) и отключается ТА, с которого велся разговор. Как подключить реостат к зарядному устройству Теперьможно положить трубку на рычаг и перейти к параллельному ТА. Падение напряжения на эквиваленте нагрузкисоставляет 17 В. При поднятии трубки на параллельном ТА напряжение в ТЛпадает до 10 В, реле K1 отключается и эквивалент нагрузки отключается отТЛ. Транзистор VT1 должен иметь коэффициент передачине менее 100, при этом амплитуда переменного напряжения звуковой частоты,выдаваемого в ТЛ, достигает 40 мВ. В качестве музыкального синтезатора (DD1)использована микросхема УМС8, в которой «зашиты» две мелодии исигнал будильника. Поэтому вывод 6 («выбор мелодии») соединен свыводом5. В этом случае воспроизводится один раз первая мелодия, а затемвторая бесконечно. В качестве SF1 можно использоватьмикропереключатель МП или геркон, управляемый магнитом (магнит должен быть приклеен к рычагу ТА). Кнопка SB1 — КМ1.1, светодиод HL1 — любой из серииАЛ307. Диоды…
Для схемы «Ремонт зарядного устройства для MPEG4-плеера»
После двух месяцев эксплуатации вышло из строя «безымянное» зарядное устройство к карманному проигрывателю MPEG4/MP3/WMA. Схемы его, конечно, не было, поэтому пришлось составить ее по монтажной плате. Нумерация активных элементов на ней (рис.1) — условная, остальные соответствуют надписям на печатной плате.Узел преобразователя напряжения реализован на маломощном высоковольтном транзисторе VT1 типа MJE13001, узел стабилизации выходного напряжения произведен на транзисторе VT2 и оптроне VU1. Кроме того, транзистор VT2 защищает VT1 от перегрузки. Транзистор VT3 предназначен для индикации окончания зарядки аккумуляторов.При осмотре изделия оказалось, что транзистор VT1 «ушел на обрыв», a VT2 — пробит. Сгорел также резистор R1. На поиск и устранение неисправностей ушло не более 15 минут. Но при грамотном ремонте любою радиоэлектронного изделия обычно недостаточно одного лишь устранения неисправностей, надобно ещё узнать причины их возникновения, чтобы подобное не повторилось. Структурная схема микросхемы 251 1НТ Как оказалось, во час работы более того при отключенной нагрузке и открытом корпусе транзистор VT1, выполненный в корпусе ТО-92, разогревался до температуры приблизительно 90°С. Поскольку, поблизости не было более мощных транзисторов, подходящих на замену MJE13001, я решил приклеить к нему небольшой теплоотвод.Фотография зарядного устройства показана на рис.2. Дюралюминиевый радиатор размерами 37x15x1 мм приклеен к корпусу транзистора теллопроводящим клеем «Радиал». Этим же клеем можно приклеить радиатор и к монтажной плате. С теплоотводом температура корпуса транзистора снизилась до 45…..
Для схемы «Зарядное устройство для малогабаритных элементов»
ЭлектропитаниеЗарядное устройство для малогабаритных элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для «обновления» элемента через 1,5…3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Схемы таймер для периодического включения нагрузки Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 — один такой диод, а вместо диодной матрицы — любые диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 — бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали смонт…
Для схемы «ТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕ»
Бытовая электроникаТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕТерморегулятор, схема которого изображена на рисунке, предназначен для поддержания постоянной температуры воздуха в помещения, воды в аквариуме и т. п. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т1). электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в поставленная проблема подачи напряжения на базу транзистора Т1 порогового устройства. Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового закрыт, а Т1 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Очень мошне зарядне устройство схема Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а T2 — закроется. Это приведет к открыванию транзистора T3. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет довольно для открывания его. Напряжение сети через тиристор и диоды Д6-Д9 поступит на нагреватель.Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры. В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр1 выполнен на сердечнике Ш12Х25. Обмотка I его содержит 8000 витков провода ПЭВ-1 0,1, а обмотка II-170 витков провода ПЭВ-1 0,4.А.СТОЯНОВ г. Загорск…
Для схемы «БЛОКИРАТОР МЕЖГОРОДА»
ТелефонияБЛОКИРАТОР МЕЖГОРОДАДанное устройство предназначено для запрещения междугородной связи с телефонного аппарата, который через него подключен к линии. Устройство собрано на ИМС серии К561 и питается от телефонной линии. Потребляемый ток — 100 150 мкА. При его подключении к линии надобно соблюдать полярность. Устройство работает с АТС, имеющими напряжение на линии 48 60В. Некоторая сложность схемы вызвана тем, что алгоритм работы устройства реализован аппаратно, в отличие от похожих устройств , где алгоритм реализуется программно с использованием однокристальных ЭВМ или микропроцессоров, что не вечно доступно радиолюбителю. Функциональная схема устройства приведена на рис.1. В исходном состоянии ключи SW открыты. ТА подключен через них к линии и может принимать вызывной сигнал и осуществлять набор номера. Если после снятия трубки первая набранная цифра окажется индексом выхода на междугородную связь, в схеме менеджмента срабатывает ждущий мультивибратор, который закрывает ключи и разрывает шлейф, производя таким образом отбой АТС. Т160 схема регулятора тока Индекс выхода на межгород может быть любым. В данной схеме задана цифра «8». Время отключения аппарата от линии можно установить от долей секунды до 1,5 мин. Принципиальная схема устройства приведена на рис.2. На элементах DA1, DA2, VD1…VD3, R2, С1 собран источник питания микросхемы напряжением 3,2 В. Диоды VD1 и VD2 защищают устройство от неправильного подключения к линии. На транзисторах VT1…VT5, резисторах R1, R3, R4 и конденсаторе С2 собран преобразователь уровня напряжения телефонной линии в уровень, необходимый для работы МОП-микросхем. Транзисторы в данном случае включены как микромощные стабилитроны с напряжением стабилизации 7…8 В при токе несколько микроампер . На элементах DD1.1, DD1.2, R5, R3 собран триггер Шмитта, обеспечивающий необходимую кр…
Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.
Вот эти компоненты:
Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.
Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.
Сборка зарядного устройства
Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.
Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:
- Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
- Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).
Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.
Настройка выходного напряжения и зарядного тока
На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.
Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.
Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.
Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.
Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.
Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.
Как заряжать аккумулятор
Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.
Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.
Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле
где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.
Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.
В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.
В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.
Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).
Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.
Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.
Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.
Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.
На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.
Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.
Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:
В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.
Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).
Примечание:
Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.
Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.
В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:
Примечание:
Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.
В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.
Делаем самостоятельно зарядные устройства для автомобильного аккумулятора. Как сделать зарядку для автомобильного аккумулятора из трансформатора Зарядное устройство свитязь инструкция и схема ремонт
Иногда случается так, что аккумулятор в машине садиться и завести ее уже не получается, так как стартеру не хватает напряжения и соответственно тока, чтобы провернуть вал двигателя. В этом случае можно «прикурить» от другого владельца авто, чтобы двигатель заработал и аккумулятор стал заряжаться от генератора, однако для этого нужны специальные провода и человек, желающий вам помочь. Можно так же зарядить аккумулятор самостоятельно посредством специализированного зарядного устройства, однако они достаточно дорогие, и пользоваться ими приходится не особо часто. Поэтому в данной статье мы подробно рассмотрим устройство самоделки, а также инструкцию о том, как сделать зарядное устройство для автомобильного аккумулятора своими руками.
Устройство самоделки
Нормальное напряжение на аккумуляторе, отключенном от автомобиля, находится в пределах между 12,5 в и 15 в. Поэтому зарядное устройство должно выдавать такое же напряжение. Ток заряда должен быть равен примерно 0,1 от емкости, он может быть и меньше, но это увеличит время зарядки. Для стандартной батареи емкостью 70-80 а/ч ток должен быть равен 5-10 амперам в зависимости от конкретного аккумулятора. Наше самодельное зарядное устройство для АКБ должно соответствовать этим параметрам. Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются следующие элементы:
Трансформатор. Нам подойдет любой из старого электроприбора или купленный на рынке с габаритной мощностью порядка 150 Ватт, можно больше, но не меньше, иначе он будет сильно нагреваться и может выйти из строя. Отлично, если напряжение его выходных обмоток составляет 12,5-15 В, а ток порядка 5-10 ампер. Посмотреть эти параметры можно в документации к вашей детали. Если же нужной вторичной обмотки нет, то необходимо будет перемотать трансформатор под другое выходное напряжение. Для этого:
Таким образом мы нашли или собрали идеальный трансформатор, чтобы сделать зарядное устройство для аккумулятора своими руками.
Нам также понадобятся:
Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.
Технология сборки
Чтобы сделать зарядное устройство для автомобильного аккумулятора своими руками, необходимо следовать пошаговой инструкции:
- Создаем схему самодельной зарядки для АКБ. В нашем случае она будет выглядеть следующим образом:
- Используем трансформатор ТС-180-2. Он имеет несколько первичных и вторичных обмоток. Для работы с ним нужно соединить последовательно две первичные и две вторичные обмотки, чтобы получить нужное напряжения и ток на выходе.
- С помощью медного провода соединяем между собой выводы 9 и 9’.
- На стеклотекстолитовой пластине собираем диодный мост из диодов и радиаторов (как показано на фото).
- Выводы 10 и 10’ подключаем к диодному мосту.
- Между выводами 1 и 1’ устанавливаем перемычку.
- К выводам 2 и 2’ с помощью паяльника крепим сетевой шнур с вилкой.
- В первичную цепь подключаем предохранитель на 0,5 А, 10-амперный соответственно во вторичную.
- В разрыв между диодным мостом и аккумулятором подключаем амперметр и отрезок нихромовой проволоки. Один конец которой закрепляем, а второй должен обеспечивать подвижный контакт, таким образом будет меняться сопротивление и ограничиваться ток, подаваемый на аккумулятор.
- Изолируем все соединения термоусадкой или изолентой и помещаем устройство в корпус. Это необходимо, чтобы избежать поражения электрическим током.
- Устанавливаем подвижный контакт на конец проволоки, чтобы ее длинна и соответственно сопротивление были максимальны. И подключаем аккумулятор. Уменьшая и увеличивая длину проволоки, необходимо выставить нужное значение тока для вашего аккумулятора (0,1 от его емкости).
- В процессе зарядки сила тока, подаваемая на аккумулятор, будет сама уменьшаться и когда она достигнет 1 ампера можно сказать, что аккумулятор зарядился. Желательно также контролировать непосредственно напряжение на батарее, однако для этого его необходимо отключить от з/у, так как при зарядке оно будет немного выше реальных значений.
Первый запуск собранной схемы любого источника питания или ЗУ всегда производят через лампу накаливания, если она загорелась в полный накал — или где-то ошибка, или первичная обмотка замкнута! Лампу накаливания устанавливают в разрыв фазного или нулевого провода, питающих первичную обмотку.
Данная схема самодельного зарядного устройства для АКБ имеет один большой недостаток – она не умеет самостоятельно отключать аккумулятор от зарядки после достижения нужного напряжения. Поэтому вам придется постоянно следить за показаниями вольтметра и амперметра. Есть конструкция, лишенная этого недостатка, однако для ее сборки потребуется дополнительные детали и больше усилий.
Наглядный пример готового изделия
Правила эксплуатации
Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит. Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.
Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.
Вот эти компоненты:
Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.
Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.
Сборка зарядного устройства
Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.
Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:
- Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
- Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).
Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.
Настройка выходного напряжения и зарядного тока
На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.
Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.
Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.
Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.
Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.
Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.
Как заряжать аккумулятор
Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.
Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.
Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.
Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и использование подобных зарядок приводит к повреждению аккумуляторной батареи!
Как сделать простейшее трансформаторное устройство
Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.
По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.
Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.
Главная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:
Отматываем при этом обмотку между клеммами 7-8.
Простое зарядное устройство с электронной регулировкой
Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.
Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.
Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.
При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.
Видео: Самое простое зарядное устройство для АКБ
Переделка зарядного устройства от ноутбука
Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:
В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.
Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.
Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками
Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.
Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:
Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:
Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.
В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.
Обычное зарядное устройство с мостовым выпрямителем и понижающим прерывателем
Контекст 1
… базовый тип зарядного устройства, который может работать для зарядки аккумуляторов, показан на рис. 1. Обычное зарядное устройство для аккумуляторов состоит из двух различных схем преобразователя, которые представляют собой мостовой выпрямитель и понижающий прерыватель. …
Контекст 2
… обычный мостовой выпрямитель показан на рис. 9, как показано ниже. Мостовой выпрямитель преобразует входное синусоидальное напряжение переменного тока в постоянное через диод моста.Если конденсатор не добавлен в схему выпрямителя, синусоидальное входное напряжение преобразуется в напряжение постоянного тока, как показано на рис. 11. Выходное напряжение мостового выпрямителя рассчитывается по формуле. …
Контекст 3
… это пиковое напряжение. Если конденсатор добавлен, но к выходному напряжению не подключена нагрузка, выходное напряжение будет выглядеть, как показано на рисунке 12 (NL). Конечное выходное напряжение без нагрузки представляет собой прямую линию. Однако, когда он загружен, выходное напряжение (WL) колеблется.Если входной ток схемы мостового выпрямителя проверяется на полное гармоническое искажение, значение THD составляет 199,2%, как показано на рис. 14. Это значение слишком далеко от ожидаемого, потому что это может иметь обратную связь …
Контекст 4
… нагрузка подключена к выходному напряжению, выходное напряжение будет выглядеть как на Рис. 12 (NL). Конечное выходное напряжение без нагрузки представляет собой прямую линию. Однако, когда он загружен, выходное напряжение (WL) колеблется. Если входной ток схемы мостового выпрямителя проверить на полное гармоническое искажение, значение THD составит 199.2%, как показано на рис. 14. Это значение слишком далеко от ожидаемого, потому что это может вызвать обратный шум в сеть переменного тока. …
Контекст 5
… Второй элемент предлагаемого зарядного устройства представляет собой многоуровневый инвертор, как показано на рис. 15. Первоначально многоуровневый инвертор будет использовать напряжение питания постоянного тока для входа и производят переменное напряжение на выходе. Однако для этого конкретного приложения для зарядки аккумулятора (как в зарядном устройстве) на инвертор подается напряжение конденсатора от мостового выпрямителя на входе и вырабатывается напряжение переменного тока на выходе.Многоуровневый …
Context 6
… инвертор будет использовать постоянное напряжение питания на входе и вырабатывать переменное напряжение на выходе. Однако для этого конкретного приложения для зарядки аккумулятора (как в зарядном устройстве) на инвертор подается напряжение конденсатора от мостового выпрямителя на входе и вырабатывается напряжение переменного тока на выходе. Многоуровневый инвертор выдает выходной сигнал, показанный на рис. 16. Однако, если выходной сигнал фильтруется, он создает синусоидальное напряжение. Входной ток этого многоуровневого инвертора показан на рис.17 ниже. Если входной переменный ток проверяется на THD, результат будет показан на рис. 18. Значение THD составляет 3,15%, и это приемлемо. …
Контекст 7
… (как в зарядном устройстве для аккумуляторов) инвертор питается конденсаторным напряжением от мостового выпрямителя на входе и вырабатывает переменное напряжение на выходе. Многоуровневый инвертор выдает выходной сигнал, показанный на рис. 16. Однако, если выходной сигнал фильтруется, он создает синусоидальное напряжение. Входной ток этого многоуровневого инвертора показан на рис.17 ниже. Если входной переменный ток проверяется на THD, результат будет показан на рис. 18. Значение THD составляет 3,15%, и это приемлемо. …
Контекст 8
… выпрямитель на входе и выдает переменное напряжение на выходе. Многоуровневый инвертор выдает выходной сигнал, показанный на рис. 16. Однако, если выходной сигнал фильтруется, он создает синусоидальное напряжение. Входной ток этого многоуровневого инвертора показан на рисунке 17 ниже. Если входной переменный ток проверяется на THD, результат будет показан на рис.18. Значение THD составляет 3,15%, и это приемлемо. …
Контекст 9
… третьим элементом предлагаемого зарядного устройства является понижающий прерыватель, как показано на Рис. 19 ниже. Задача понижающего прерывателя — регулировать уровень выходного напряжения до желаемого напряжения для зарядки аккумулятора. IGBT используется для прерывания входного напряжения, чтобы получить желаемое напряжение на выходе понижающего прерывателя. Катушка индуктивности используется для задержки тока, а конденсатор — для задержки напряжения….
Контекст 10
… Были созданы две имитационные модели для исследования производительности каждого зарядного устройства, как показано на рисунках 21 и 22 ниже. Общее гармоническое искажение проверяется с использованием входного переменного тока для обоих зарядных устройств, и результат показан на рисунках 27 и 28. Многоуровневый выпрямитель имеет более низкий коэффициент нелинейных искажений, который составляет 4,68 по сравнению с мостовым выпрямителем, который составляет 49,63. …
Зарядное устройство DIY 6V — HomeOwnersHub
Показать текст цитаты
на самом деле главное требование — ограничить ток до значения, меньшего, чем десять часов емкости батареи, и пусть напряжение разберутся само.Это то же самое, что и ион лития.
Общий алгоритм — взять емкость в ампер-часах и разделить на (не менее 10), поэтому батарея на 70 Ач должна иметь ограничение по току до 7 А или меньше.
Затем убедитесь, что напряжение выключения никогда не превышает 2,2 В / элемент в течение свинцово-кислотный, или 4,2 В для иона лития или IIRC 3,3 В для LiFePo.
Никель другой. Там вы можете перейти на емкость / 3 для максимальной зарядки ток, и посмотрите на напряжение, как только напряжение начнет падать при постоянном токе заряда — на десятки мВ для NiCd или на несколько мВ для NiMh, аккумулятор практически полностью заряжен и немного больше.
Один из способов добиться разумной постоянной подзарядки — это зарядить зарядное устройство. при ограничивающем напряжении и вставьте резистор последовательно. Итак, источник питания 7,2 В и резистор в порядке для свинцово-кислотного 6v .. все, что делает перезарядка, это производят водород и кислород во взрывоопасных количествах … 🙂
Сегодня все это проще всего сделать с помощью комбинации напряжения и измерение тока и питание НН через прерыватель и дроссель к обеспечить относительную плавность постоянного тока в батарее и гарантировать, что она никогда не пропадет вне пределов.
Для домашнего использования используйте регулятор 7,2 В или подходящие сельскохозяйственные размеры, и резистор примерно 0,5 Ом обеспечит пиковый ток 15 А. на короткое замыкание (предохранить на 5А) и пару ампер на разряженный аккумулятор.
Подходящие регуляторы будут включать в себя массив, например, транзисторы 2N3055 в Конфигурация эмиттерного повторителя Дарлингтона, питаемая от более или менее стабильный опорный стабилитрон напряжением около 8,4 В, позволяющий использовать базу 0,6 В. эмиттер падает дважды
Если работает предполагаемый источник постоянного тока 18 В, это эквивалентно перегоранию предохранителя. уровни рассеивания 55 Вт или около того.Twin 3055s сделает это на большом радиатор.
На 1-2А они просто греются по-настоящему.
Резисторы 0,5 Ом сорта 5-10Вт можно сделать из старого огня элементы, или купленные.
И действительно, существуют регуляторы, предназначенные для работы на радиаторах.
ссылка на форматирование
LM317 может быть очень просто сконфигурирован как зарядное устройство 6cv — см. примечание по применению — практически от любого источника постоянного тока до 25 В.
качество в крохотной дорогой упаковке
Разборка миниатюрного зарядного устройства для iPhone размером с кубический дюйм от Apple показывает технологически продвинутый импульсный источник питания с обратным ходом, который выходит за рамки обычного зарядного устройства.Он просто принимает входной сигнал переменного тока (от 100 до 240 вольт) и производит 5 ватт плавной мощности 5 вольт, но схема для этого на удивление сложна и новаторская.Как это работает
Адаптер питания iPhone — это импульсный источник питания, в котором входное питание включается и выключается примерно 70 000 раз в секунду, чтобы получить точное требуемое выходное напряжение. Благодаря своей конструкции импульсные источники питания, как правило, компактны и эффективны и выделяют меньше тепла по сравнению с более простыми линейными источниками питания.Более подробно, мощность линии переменного тока сначала преобразуется в постоянное напряжение высокого напряжения [1] с помощью диодного моста. Постоянный ток включается и выключается транзистором, управляемым микросхемой контроллера источника питания. Прерванный постоянный ток подается на обратноходовой трансформатор [2], который преобразует его в переменный ток низкого напряжения. Наконец, этот переменный ток преобразуется в постоянный ток, который фильтруется для получения плавной мощности без помех, и эта мощность выводится через разъем USB. Схема обратной связи измеряет выходное напряжение и отправляет сигнал на контроллер IC, который регулирует частоту переключения для получения желаемого напряжения.
На приведенном выше виде сбоку показаны некоторые из более крупных компонентов. Зарядное устройство состоит из двух печатных плат, каждая размером чуть меньше одного дюйма [3]. Верхняя плата является первичной и имеет схему высокого напряжения, а нижняя плата, вторичная, имеет схему вывода низкого напряжения. Входной переменный ток сначала проходит через плавкий резистор (полосатый), который разорвет цепь в случае катастрофической перегрузки. Входной переменный ток преобразуется в высоковольтный постоянный ток, который сглаживается двумя большими электролитическими конденсаторами (черный с белым текстом и полосой) и катушкой индуктивности (зеленый).
Затем высоковольтный постоянный ток прерывается с высокой частотой переключающим транзистором MOSFET, который представляет собой большой трехконтактный компонент в верхнем левом углу. (Второй транзистор фиксирует скачки напряжения, как будет объяснено ниже.) Прерванный постоянный ток поступает на обратноходовой трансформатор (желтый, едва видимый за транзисторами), у которого есть выходные провода низкого напряжения, идущие к вторичной плате ниже. (Эти провода были обрезаны во время разборки.) Вторичная плата преобразует низкое напряжение трансформатора в постоянный ток, фильтрует его, а затем подает через разъем USB (серебряный прямоугольник в нижнем левом углу).Серый ленточный кабель (едва виден в правом нижнем углу под конденсатором) обеспечивает обратную связь от вторичной платы к микросхеме контроллера, чтобы поддерживать стабилизированное напряжение.
На приведенном выше рисунке более четко показан обратноходовой трансформатор (желтый) над разъемом USB. Большой синий компонент представляет собой специальный Y-образный конденсатор [4] для уменьшения помех. Микросхема контроллера видна над трансформатором в верхней части первичной платы. [5]
Схема в деталях
Первичная
На первичной печатной плате с обеих сторон размещены компоненты для поверхностного монтажа.На внутренней стороне (диаграмма вверху) находятся большие компоненты, а на внешней стороне (диаграмма внизу) — микросхема контроллера. (Крупные компоненты были удалены на схемах и обозначены курсивом.) Входное питание подключается к углам платы, проходит через 10 & Ом; плавкий резистор и выпрямляется до постоянного тока четырьмя диодами. Две демпфирующие цепи R-C поглощают электромагнитные помехи, создаваемые мостом. [6] Постоянный ток фильтруется двумя большими электролитическими конденсаторами и катушкой индуктивности, создавая 125–340 В постоянного тока.Обратите внимание на толщину дорожек на печатной плате, соединяющих эти конденсаторы и другие сильноточные компоненты, по сравнению с тонкими дорожками управления.
Блок питания управляется 8-контактной микросхемой квазирезонансного SMPS-контроллера STMicrosystems L6565. [7] Микросхема контроллера управляет переключающим транзистором MOSFET, который прерывает постоянный ток высокого напряжения и подает его на первичную обмотку обратноходового трансформатора. Контроллер IC принимает множество входных сигналов (обратная связь по вторичному напряжению, входное напряжение постоянного тока, первичный ток трансформатора и измерение размагничивания трансформатора) и регулирует частоту переключения и синхронизацию для управления выходным напряжением через сложную внутреннюю схему.Резисторы считывания тока позволяют ИС узнать, сколько тока проходит через первичную обмотку, которая определяет, когда транзистор должен быть выключен.
Второй переключающий транзистор, вместе с некоторыми конденсаторами и диодами, является частью резонансной фиксирующей цепи, которая поглощает скачки напряжения на трансформаторе. Эта необычная и инновационная схема запатентована Flextronics. [8] [9]
Контроллер IC требует питания постоянного тока для работы; это обеспечивается вспомогательной цепью питания, состоящей из отдельной вспомогательной обмотки трансформатора, диода и конденсаторов фильтра.Поскольку микросхема контроллера должна быть включена, прежде чем трансформатор сможет начать генерировать энергию, вы можете задаться вопросом, как решается эта проблема с курицей и яйцом. Решение состоит в том, что высоковольтный постоянный ток снижается до низкого уровня с помощью резисторов пусковой мощности, чтобы обеспечить начальную мощность для ИС до тех пор, пока трансформатор не запустится. Вспомогательная обмотка также используется ИС для определения размагничивания трансформатора, которое указывает, когда следует включить переключающий транзистор. [7]
Вторичная
На вторичной плате переменный ток низкого напряжения от трансформатора выпрямляется высокоскоростным диодом Шоттки, фильтруется катушкой индуктивности и конденсаторами и подключается к выходу USB.Конденсаторы танталовых фильтров обеспечивают высокую емкость в небольшом корпусе.USB-выход также имеет определенные сопротивления, подключенные к контактам для передачи данных, чтобы указать iPhone, какой ток может обеспечить зарядное устройство, через собственный протокол Apple. [10] IPhone отображает сообщение «Зарядка не поддерживается с этим аксессуаром», если зарядное устройство имеет неправильное сопротивление.
Вторичная плата содержит стандартную схему обратной связи импульсного источника питания, которая контролирует выходное напряжение с помощью регулятора TL431 и обеспечивает обратную связь с микросхемой контроллера через оптрон.Вторая цепь обратной связи отключает зарядное устройство для защиты, если зарядное устройство перегревается или выходное напряжение слишком высокое. [11] Ленточный кабель обеспечивает эту обратную связь с основной платой.
Изоляция
Поскольку источник питания может иметь внутреннее напряжение до 340 В постоянного тока, безопасность является важной проблемой. Строгие правила регулируют разделение между опасным линейным напряжением и безопасным выходным напряжением, которые изолированы сочетанием расстояния (называемого утечкой и зазором) и изоляции.Стандарты [12] несколько непонятны, но между двумя цепями требуется расстояние примерно 4 мм. (Как я уже говорил в «Крошечном, дешевом, опасном»: внутри (поддельного) зарядного устройства для iPhone дешевые зарядные устройства полностью игнорируют эти правила безопасности.)Вы можете ожидать, что на первичной плате будет опасное напряжение, а на вторичной плате — безопасное напряжение, но вторичная плата состоит из двух областей: опасной зоны, соединенной с первичной платой, и зоны низкого напряжения. Граница изоляции между этими областями составляет около 6 мм в зарядном устройстве Apple, что можно увидеть на приведенной выше диаграмме.Эта граница изоляции гарантирует, что опасные напряжения не могут достичь выхода.
Есть три типа компонентов, которые пересекают границу изоляции, и они должны быть специально разработаны для обеспечения безопасности. Ключевым компонентом является трансформатор, который обеспечивает подачу электроэнергии на выход без прямого электрического подключения. Изнутри трансформатор хорошо изолирован, как будет показано ниже. Второй тип компонентов — это оптопары, которые отправляют сигнал обратной связи от вторичной обмотки к первичной.Внутри оптопара содержит светодиод и фототранзистор, поэтому две стороны соединены только светом, а не электрической цепью. (Обратите внимание на силиконовую изоляцию на вторичной стороне оптопар, чтобы обеспечить дополнительную безопасность.) Наконец, Y-конденсатор — это конденсатор особого типа [4], который позволяет избежать электромагнитных помех (EMI) между высоковольтной первичной и низковольтной. напряжение вторичное.
На рисунке выше показаны некоторые методы изоляции.На вторичной плате (слева) установлен синий Y-конденсатор. Обратите внимание на отсутствие компонентов в середине вторичной платы, образующих границу изоляции. Компоненты справа от вторичной платы подключены к первичной плате серым ленточным кабелем, поэтому они находятся под потенциально высоким напряжением. Другое соединение между платами — это пара проводов от трансформатора обратного хода (желтый), подающего выходную мощность на вторичную плату; они были вырезаны, чтобы разделить доски.
Схема
Я собрал примерную схему, показывающую схему зарядного устройства.[13] Щелкните, чтобы увеличить версию.Эти схемы очень маленькие
Глядя на эти изображения, легко потерять представление о том, насколько эти компоненты очень малы и как зарядное устройство вмещает всю эту сложность в один дюйм. На следующем слегка увеличенном изображении показаны четверть, рисовое зерно и горчичное зерно для сравнения размеров. Большинство компонентов представляют собой устройства для поверхностного монтажа, которые припаяны непосредственно к печатной плате. Самые маленькие компоненты, такие как резистор, показанный на рисунке, известны как размер «0402», потому что они есть.04 дюйма на 0,02 дюйма. Резисторы большего размера слева от горчичного зерна обрабатывают большую мощность и известны как размер «0805», так как их размер составляет 0,08 x 0,05 дюйма.Разборка трансформатора
Обратный трансформатор является ключевым компонентом зарядного устройства, самым большим и, вероятно, самым дорогим компонентом. [14] Но что внутри? Я разобрал трансформатор, чтобы узнать.Трансформатор имеет размеры примерно 1/2 на 1/2 на 1/3 дюйма. Внутри трансформатора есть три обмотки: первичная обмотка высокого напряжения, вспомогательная обмотка низкого напряжения для подачи питания на схемы управления и обмотка высокого напряжения. -токовая низковольтная выходная обмотка.Выходная обмотка подключается к черному и белому проводам, выходящим из трансформатора, а другие обмотки подключаются к контактам, прикрепленным к нижней части трансформатора.
Снаружи трансформатор покрыт парой слоев изоляционной ленты. Вторая строка начинается с «FLEX» для Flextronics. Две заземленные жилы провода намотаны вокруг трансформатора с внешней стороны для обеспечения экранирования.
После удаления экрана и ленты две половинки ферритового сердечника можно снять с обмоток.Феррит — довольно хрупкий керамический материал, поэтому при снятии сердечник сломался. Сердечник окружает обмотки и содержит магнитные поля. Размер каждого сердечника составляет примерно 6 мм x 11 мм x 4 мм; этот стиль ядра известен как EQ. Круглая центральная часть немного короче концов, что создает небольшой воздушный зазор, когда части сердечника соединяются. Этот воздушный зазор 0,28 мм сохраняет магнитную энергию для обратноходового трансформатора.
Под следующими двумя слоями ленты находится обмотка из 17 витков тонкой лакированной проволоки, которая, как мне кажется, является еще одной защитной обмоткой, возвращающей на землю паразитные помехи.
Под экраном и еще двумя слоями ленты находится 6-витковая вторичная выходная обмотка, подключенная к черному и белому проводам. Обратите внимание, что эта обмотка представляет собой провод большого сечения, так как она питает выход 1 А. Также обратите внимание, что обмотка имеет тройную изоляцию, что является требованием безопасности UL, чтобы гарантировать, что первичная обмотка высокого напряжения остается изолированной от выхода. Это то место, где обманывают дешевые зарядные устройства — они просто используют обычный провод вместо тройной изоляции, а также экономят на ленте.В результате вас мало что защитит от высокого напряжения, если есть дефект изоляции или скачок напряжения.
Под следующим двойным слоем ленты находится 11-витковая первичная силовая обмотка большого калибра, которая питает ИС контроллера. Поскольку эта обмотка находится на первичной стороне, тройная изоляция не требуется. Его просто покрывают тонким слоем лака.
Под последним двойным слоем ленты находится первичная входная обмотка, состоящая из 4 слоев примерно по 23 витка в каждом.На эту обмотку подается высоковольтный ввод. Поскольку сила тока очень мала, провод может быть очень тонким. Поскольку у первичной обмотки примерно в 15 раз больше витков, чем у вторичной обмотки, вторичное напряжение будет 1/15 первичного напряжения, но в 15 раз больше тока. Таким образом, трансформатор преобразует вход высокого напряжения в выход низкого напряжения с высоким током.
На последней картинке показаны все компоненты трансформатора; слева направо показаны слои от внешней ленты до самой внутренней намотки и шпульки.
Огромная прибыль Apple
Я был удивлен, узнав, насколько огромна прибыль Apple от этих зарядных устройств. Эти зарядные устройства продаются примерно за 30 долларов. (если не подделка), но это почти вся прибыль. Samsung продает очень похожие Зарядное устройство для куба примерно за 6-10 долларов, которое я тоже разобрал (подробности напишу позже). Зарядное устройство Apple более качественное, и, по моим оценкам, внутри него стоят дополнительные компоненты на сумму около доллара. [14] Но он продается на 20 долларов дороже.Отзыв о безопасности зарядного устройства Apple в 2008 году
В 2008 году Apple отозвала зарядные устройства для iPhone из-за дефекта, когда штыри переменного тока могли выпасть из зарядного устройства и застрять в розетке. [15] К неисправным зарядным устройствам были прикреплены штыри с помощью того, что было описано как не более чем клей и «выдавать желаемое за действительное». [15] Apple заменила зарядные устройства модернизированной моделью, обозначенной зеленой точкой, показанной выше (которая неизбежно имитирует поддельные зарядные устройства).
Я решил посмотреть, какие улучшения безопасности Apple внесла в новое зарядное устройство, и сравнить с другими аналогичными зарядными устройствами.Я попытался вытащить штыри из зарядного устройства Apple, зарядного устройства Samsung и поддельного зарядного устройства. Поддельные зубцы достали с помощью плоскогубцев, так как их практически ничем не закрепляло, кроме трения. Штыри Samsung пришлось долго тянуть и крутить плоскогубцами, так как у них есть маленькие металлические язычки, удерживающие их на месте, но в конце концов они вышли.
Когда я перешел к зарядному устройству Apple, зубцы не сдвинулись с места, даже когда я очень сильно тянул плоскогубцами, поэтому я вытащил Dremel и протер его через корпус, чтобы выяснить, что удерживает зубцы.У них есть большие металлические фланцы, встроенные в пластик корпуса, поэтому штырь не может вырваться из-за разрушения зарядного устройства. На фотографии показана вилка Apple (обратите внимание на толщину пластика, удаленного с правой половины), контакт поддельного зарядного устройства, удерживаемый только за счет трения, и контакт Samsung, удерживаемый небольшими, но прочными металлическими язычками.
Я впечатлен усилиями Apple по повышению безопасности зарядного устройства после отзыва. Они не просто немного улучшили штыри, чтобы сделать их более безопасными; очевидно, кому-то было сказано сделать все возможное, чтобы убедиться, что зубцы не могут вырваться снова ни при каких обстоятельствах.
Что делает зарядное устройство Apple для iPhone особенным
Адаптер питания Apple, безусловно, представляет собой высококачественный источник питания, предназначенный для выработки тщательно отфильтрованной мощности. Apple явно приложила дополнительные усилия, чтобы уменьшить помехи от электромагнитных помех, вероятно, чтобы зарядное устройство не мешало работе сенсорного экрана. [16] Когда я открыл зарядное устройство, я ожидал найти стандартный дизайн, но я сравнил зарядное устройство с зарядным устройством Samsung и несколькими другими высококачественными промышленными разработками [17], и Apple выходит за рамки этих разработок по нескольким направлениям.Входной переменный ток фильтруется через крошечное ферритовое кольцо на пластиковом корпусе (см. Фото ниже). Выход диодного моста фильтруется двумя большими конденсаторами и катушкой индуктивности. Два других демпфера R-C фильтруют диодный мост, который я видел только в других источниках питания аудио, чтобы предотвратить гудение 60 Гц; [6] возможно, это улучшает впечатление от прослушивания iTunes. В других разобранных мною зарядных устройствах не используется ферритовое кольцо, а обычно используется только один конденсатор фильтра. Плата первичной схемы имеет заземленный металлический экран над высокочастотными компонентами (см. Фото), которого я больше нигде не видел.Трансформатор имеет экранирующую обмотку для поглощения электромагнитных помех. В выходной цепи используются три конденсатора, включая два относительно дорогих танталовых [14] и катушку индуктивности для фильтрации, когда многие источники питания используют только один конденсатор. Конденсатор Y обычно не используется в других конструкциях. Резонансная зажимная схема является в высшей степени инновационной. [9]
Конструкция Apple обеспечивает дополнительную безопасность несколькими способами, о которых говорилось ранее: сверхсильными контактами переменного тока и сложной схемой отключения при перегреве / перенапряжении.Дистанция изоляции Apple между первичной и вторичной обмотками, похоже, выходит за рамки нормативных требований.
Выводы
Зарядное устройство для iPhone от Apple вмещает множество технологий в небольшом пространстве. Apple приложила дополнительные усилия, чтобы обеспечить более высокое качество и безопасность, чем зарядные устройства других известных брендов, но за это качество приходится платить.Если вас интересуют источники питания, ознакомьтесь с другими моими статьями: крошечный, дешевый, опасный: внутри (поддельного) зарядного устройства для iPhone, где я разбираю 2 доллара.79 зарядное устройство для iPhone и обнаружите, что оно нарушает многие правила безопасности; не покупайте ни одного из них. Также обратите внимание на то, что Apple не произвела революцию в источниках питания; новые транзисторы сделали, что исследует историю импульсных источников питания. Чтобы увидеть, как адаптер Apple разобран, посмотрите видеоролики, созданные scourtheearth и Ladyada. Наконец, если у вас есть интересное зарядное устройство, которое вам не нужно, отправьте его мне, и, возможно, я опишу его подробный разбор.
Также смотрите комментарии к Hacker News.
Примечания и ссылки
[1] Вы можете задаться вопросом, почему напряжение постоянного тока внутри блока питания намного выше, чем напряжение в сети. Напряжение постоянного тока примерно в sqrt (2) раз больше напряжения переменного тока, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение от 100 до 240 вольт переменного тока преобразуется в постоянное напряжение от 145 до 345 вольт внутри. Этого недостаточно, чтобы официально считаться высоким напряжением, но для удобства я назову это высоким напряжением. Согласно стандартам, все, что ниже 50 В переменного тока или 120 В постоянного тока, считается сверхнизким напряжением и считается безопасным при нормальных условиях.Но для удобства я буду называть выход 5 В низким напряжением.[2] В источнике питания Apple используется обратная схема, в которой трансформатор работает «в обратном направлении», чем вы могли ожидать. Когда в трансформатор подается импульс напряжения, выходной диод блокирует выход, поэтому выход отсутствует — вместо этого создается магнитное поле. Когда подача напряжения прекращается, магнитное поле разрушается, вызывая выход напряжения из трансформатора. Источники питания с обратной связью очень распространены для источников питания с малой мощностью.
[3] Размер первичной платы составляет около 22,5 мм на 20,0 мм, а вторичной платы — около 22,2 мм на 20,2 мм. [4] Для получения дополнительной информации о конденсаторах X и Y см. Презентацию Kemet и Проектирование источников питания с низким током утечки.
[5] Для наглядности перед тем, как делать снимки в этой статье, была снята изоляция. Конденсатор Y был покрыт черной термоусадочной трубкой, сбоку цепи была обмотана лента, плавкий резистор был покрыт черной термоусадочной трубкой, а над разъемом USB была черная изолирующая крышка.
[6] Демпфирующие цепи могут использоваться для уменьшения шума 60 Гц, создаваемого диодным мостом в источниках питания аудиосистемы. Подробный справочник по демпферам R-C для диодов источника питания аудиосигнала — в разделе «Расчет оптимальных демпферов», а в качестве образца дизайна — «Проектирование источника питания усилителя аудиосигнала».
[7] Источник питания управляется микросхемой контроллера квазирезонансного SMPS (импульсного источника питания) L6565 (техническое описание). (Разумеется, чип мог быть чем-то другим, но схема точно соответствует L6565 и никакому другому чипу, который я исследовал.)
Для повышения эффективности и уменьшения помех в микросхеме используется метод, известный как квазирезонанс, который впервые был разработан в 1980-х годах. Выходная цепь спроектирована таким образом, что при отключении питания напряжение трансформатора будет колебаться. Когда напряжение достигает нуля, транзистор снова включается. Это известно как переключение при нулевом напряжении, потому что транзистор переключается, когда на нем практически нет напряжения, что сводит к минимуму потери мощности и помехи во время переключения.Схема остается включенной в течение переменного времени (в зависимости от требуемой мощности), а затем снова выключается, повторяя процесс. (Для получения дополнительной информации см. Исследование квазирезонансных преобразователей для источников питания.)
Одним из интересных следствий квазирезонанса является то, что частота переключения меняется в зависимости от нагрузки (типичное значение составляет 70 кГц). В ранних источниках питания, таких как блок питания Apple II, для регулирования мощности использовались простые цепи переменной частоты. Но в 1980-х годах эти схемы были заменены микросхемами контроллеров, которые переключались с фиксированной частотой, но изменяли ширину импульсов (известную как ШИМ).Теперь усовершенствованные ИС контроллеров вернулись к регулированию частоты. Но, кроме того, в сверхдешевых подделках используются схемы переменной частоты, практически идентичные Apple II. Таким образом, и высокопроизводительные, и недорогие зарядные устройства теперь вернулись к переменной частоте.
Мне потребовалось много времени, чтобы понять, что маркировка «FLEX01» на микросхеме контроллера указывает на Flextronics, а X на микросхеме был от логотипа Flextronics: . Я предполагаю, что на чипе есть такая маркировка, потому что он производится для Flextronics.Маркировка «EB936» на микросхеме может быть собственным номером детали Flextronics или кодом даты.
[8] Я думал, что Flextronics — это просто сборщик электроники, и я был удивлен, узнав, что Flextronics делает много инновационных разработок и имеет буквально тысячи патентов. Я думаю, что Flextronics заслуживает большего признания за свои разработки. (Обратите внимание, что Flextronics — это другая компания, чем Foxconn, которая производит iPad и iPhone и вызывает разногласия по поводу условий работы).
Изображение выше взято из патента Flextronics 7 978 489: «Интегрированные преобразователи мощности» описывает адаптер, который выглядит так же, как зарядное устройство для iPhone.Сам патент представляет собой сумку из 63 различных пунктов формулы (пружинные контакты, экраны EMI, термоклейкий материал), большинство из которых фактически не имеют отношения к зарядному устройству iPhone.
[9] Патент Flextronics 7 924 578: Квазирезонансная схема резервуара с двумя выводами описывает резонансную схему, используемую в зарядном устройстве iPhone, которая показана на следующей диаграмме. Транзистор Q2 приводит в действие трансформатор. Транзистор Q1 является фиксирующим транзистором, который направляет скачок напряжения от трансформатора на резонансный конденсатор C13.Инновационная часть этой схемы заключается в том, что Q1 не требует специальной схемы управления, как другие схемы с активными фиксаторами; он питается от конденсаторов и диодов. В большинстве источников питания зарядных устройств, напротив, используется простой зажим резистор-конденсатор-диод, который рассеивает энергию в резисторе. [18]
Более поздние патенты Flextronics расширяют резонансный контур с помощью еще большего количества диодов и конденсаторов: см. Патенты 7 830 676, 7 760 519 и 8,000 112
[10] Apple указывает тип зарядного устройства с помощью запатентованной технологии сопротивлений на выводах USB D + и D-.Подробнее о протоколах зарядки USB см. В моих предыдущих ссылках.
[11] Одна загадочная особенность зарядного устройства Apple — вторая цепь обратной связи, отслеживающая температуру и выходное напряжение. Эта схема на вторичной плате состоит из термистора, второго регулятора 431 и нескольких других компонентов для контроля температуры и напряжения. Выход подключен через второй оптрон к другим схемам на другой стороне вторичной платы. Два транзистора подключены к SCR-подобной защелке лома, которая закорачивает вспомогательное питание, а также отключает микросхему контроллера.Эта схема кажется чрезмерно сложной для этой задачи, тем более что многие микросхемы контроллеров имеют эту функцию. Я могу неправильно понять эту схему, потому что кажется, что Apple излишне занимала место и дорогие компоненты (возможно, стоимостью 25 центов), реализуя эту функцию в таких условиях. сложный способ.
[12] Обратите внимание на загадочную надпись «Для использования с оборудованием информационных технологий» на внешней стороне зарядного устройства. Это указывает на то, что зарядное устройство соответствует стандарту безопасности UL 60950-1, в котором указаны различные необходимые изоляционные расстояния.Краткий обзор изоляционных расстояний см. В разделе «Разделение цепей i-Spec» и в некоторых из моих предыдущих ссылок.
[13] Некоторые примечания к используемым компонентам: На первичной плате корпус JS4 представляет собой два диода в одном корпусе. Входные диоды с маркировкой 1JLGE9 представляют собой диоды 1J 600V 1A. Коммутационные транзисторы представляют собой N-канальные полевые МОП-транзисторы 1HNK60, 600 В, 1 А. Значения многих резисторов и конденсаторов указываются с помощью стандартной трехзначной маркировки SMD (две цифры, а затем мощность десять, что дает Ом или пикофарады).
На вторичной плате конденсатор «330 j90» представляет собой танталовый полимерный конденсатор 300 мФ 6,3 В Sanyo POSCAP (j означает 6,3 В, а 90 — код даты). 1R5 указывает на индуктивность 1,5 мкГн. GB9 — это прецизионный шунтирующий регулятор с низким катодным током AS431I, регулируемый по низкому катодному току, а 431 — это обычный регулятор TL431. SCD34 — это выпрямитель Шоттки на 3 А, 40 В. YCW — это неопознанный транзистор NPN, а GYW — неопознанный транзистор PNP. Конденсатор Y с маркировкой «MC B221K X1 400V Y1 250V» представляет собой Y-конденсатор 220 пФ.Конденсатор «107A» представляет собой танталовый конденсатор емкостью 100 мкФ 10 В (A означает 10 В). Оптопары PS2801-1. (Все эти обозначения компонентов следует рассматривать как предварительные, наряду со схемой.)
[14] Чтобы получить приблизительное представление о том, сколько стоят компоненты в зарядном устройстве, я посмотрел цены на некоторые компоненты на сайте octopart.com. Эти цены — лучшие цены, которые я смог найти после краткого поиска, в количестве 1000 штук, пытаясь точно сопоставить детали. Я должен предположить, что цены Apple значительно лучше этих цен.
Компонент | Цена |
---|---|
0402 Резистор SMD | $ 0,002 |
0805 Конденсатор SMD | $ 0,007 |
SMD 9025 9025 9025 9025 9025 9025 0,025 1A, 600 В (1 Дж), диод | $ 0,06 |
термистор | $ 0,07 |
Конденсатор Y | $ 0,08 |
3.Электролитический конденсатор 3 мкФ 400 В | $ 0,10 |
TL431 | $ 0,10 |
Дроссель 1,5 мкГн | $ 0,12 |
SCD 34 диод | |
SCD 34 диод | 9025 9025 9025 9025 9025 9025 9025 9025 9025 9025 9025 9025$ 0,22 |
Разъем USB | $ 0,33 |
Танталовый конденсатор 100 мкФ | $ 0,34 |
L6565 IC | $ 0.55 |
Тантал-полимерный конденсатор 330 мкФ (Sanyo POSCAP) | $ 0,98 |
Обратный трансформатор | $ 1,36 |
Несколько заметок. Подходящие трансформаторы обычно изготавливаются по индивидуальному заказу, и цены везде разные, поэтому я не очень уверен в этой цене. Я думаю, что цена POSCAP высока, потому что я искал точного производителя, но танталовые конденсаторы в целом довольно дороги. Удивительно, насколько дешевы резисторы и конденсаторы SMD: доли копейки.
[15] Об отзыве зарядных устройств Apple было объявлено в 2008 году. Сообщения в блогах показали, что штыри на зарядном устройстве были прикреплены только с помощью 1/8 дюйма металла и небольшого количества клея. Apple отзывает адаптеры питания iPhone 3G в проводной сети, предоставляет более подробную информацию.
[16] Низкокачественные зарядные устройства мешают работе с сенсорными экранами, и это подробно описано в Noise Wars: Projected Capacity наносит ответный удар. (Клиенты также сообщают о проблемах с сенсорным экраном из-за дешевых зарядных устройств на Amazon и других сайтах.)
[17] Существует множество промышленных конструкций для USB-преобразователей переменного / постоянного тока в диапазоне 5 Вт.Образцы образцов доступны в iWatt, Fairchild, STMicroelectronics, Texas Instruments, ON Semiconductor и Maxim.
[18] Когда диод или транзистор переключается, он создает всплеск напряжения, которым можно управлять с помощью демпферной цепи или схемы ограничения. Для получения дополнительной информации о демпферах и зажимах см. «Пассивные демпферы без потерь для высокочастотного преобразования ШИМ» и «Справочное руководство по импульсным источникам питания».
Велосипедная втулка Dynamo USB Charger
Цель этого проекта — позволить использовать динамо-концентратор SON как для освещения, так и для зарядки сторонних устройств, таких как смартфон.Эти динамо-концентраторы выдают мощность около 3 Вт, поэтому их нельзя использовать для быстрой зарядки смартфонов, но они по-прежнему являются полезным механизмом для зарядки устройства во время движения. Ограниченная мощность динамо-втулки означает, что их нельзя использовать для зарядки и освещения одновременно.
Без нагрузки мой динамо-втулка SON выдает переменное напряжение, превышающее 16 В. Выходное напряжение динамо-машины падает при увеличении нагрузки и обычно выдает 6 В при максимальной мощности около 3 Вт.
Эта мощность подается на трехпозиционный переключатель включения-выключения, чтобы отводить питание на свет, зарядное устройство или оба выключены.
Выпрямитель напряжения
Поскольку моя динамо-машина SON28 выдает переменное напряжение, необходим мостовой выпрямитель, чтобы преобразовать его в постоянное напряжение, необходимое для зарядного устройства USB и для управления светодиодным освещением. Диоды мостового выпрямителя создают падение напряжения (0,7 В для обычных кремниевых диодов с p-n-переходом и 0,3 В для диодов Шоттки). Поскольку выходная мощность динамо-машины нарастает со скоростью, очень важно не допустить слишком большого падения напряжения на диодах в цепи выпрямителя.Большее падение напряжения означает, что велосипеду придется ехать быстрее, чтобы достичь полной мощности.
Я использую диод Шоттки 1N5822 3 А, потому что он имеет низкое прямое падение напряжения (0,3 В) и может выдерживать токи до 3 А.
Примечание: Эти диоды довольно большие и, вероятно, излишни для этого приложения, но те, которые в настоящее время используются на моем велосипеде, служат уже более 10 лет, поэтому я придерживаюсь их.
Примечание: Выпрямительные диоды не включены в печатную плату, потому что в моем случае они используются как для освещения, так и для зарядки, и поэтому они находятся между динамо-втулкой и переключателем.Если вы используете стандартные светильники, то в них, вероятно, будет выпрямитель внутри, и эта диодная схема должна быть на стороне зарядного устройства переключателя.
Мои выпрямительные диоды запечатаны в радиаторе и вставлены в линию в кабеле питания.
Регулятор напряжения
Для зарядки через USB требуется стабилизатор на 5 В. Как и диоды в мостовом выпрямителе, регуляторы напряжения также вызывают падение напряжения. Обычно это может быть от 2,0 до 2.5 В, а это просто слишком много для этого приложения. К счастью, вы можете приобрести стабилизаторы напряжения с малым падением напряжения или LDO-стабилизаторы, которые значительно снижают падение напряжения в цепи.
Я использую Micrel Semiconductor MIC29300-5.0WT (техническое описание в формате PDF). Это фиксированное напряжение 3 А (+5 В постоянного тока) с очень низким падением напряжения, обычно около 250 мВ. Этот регулятор может работать с входным напряжением до 26 В постоянного тока, поэтому его можно будет подключить к динамо-втулке без нагрузки.
Для стабильности и минимального выходного шума необходим конденсатор на выходе регулятора.Величина этого конденсатора зависит от выходного тока. Для MIC29300 рекомендуется конденсатор 10 мкФ.
Регуляторы MIC29300 предназначены для конечных нагрузок. Если выходной ток слишком мал, преобладают токи утечки и выходное напряжение возрастает. Для MIC29300 требуется минимальная нагрузка 7 мА, и этого можно достичь, подключив к выходу резистор 680 Ом. Это расходует немного энергии, но гарантирует, что регулятор работает в соответствии со своими техническими характеристиками и не повредит никакие устройства, подключенные к этой схеме.
Примечание: При более высоких входных напряжениях микросхема регулятора MIC29300 должна рассеивать больше мощности и нагреваться. К счастью, динамо-втулка под нагрузкой выдает только около 6 В, поэтому для регулятора не нужен радиатор. Я решил добавить еще один, чтобы он всегда работал надежно и в самых разных условиях, в том числе в очень жарких странах.
«Вкладка» MIC29300-5.0WT в корпусе TO-220 также является выводом GND.
Зарядка iPhone
Зарядка iPhone через порты USB требует, чтобы iPhone «видел» правильное сопротивление на контактах порта USB.Если эта сеть отсутствует, iPhone не будет заряжаться. Значение резистора говорит iPhone, сколько тока он может потреблять. Учитывая, что концентратор выдает только 3 Вт, мы можем ожидать, что iPhone будет заряжаться только со стандартной «медленной» скоростью зарядки 500 мА, поэтому мы используем такое расположение резисторов, чтобы сигнализировать об этом.
Эта сеть резисторов будет необязательной. На практике я использую резисторы на 51 кОм, поскольку они ближе всего к 49,9 кОм.
Дизайн печатной платы
Я разработал специальную печатную плату с помощью Autodesk Eagle для этого приложения и собираюсь ее изготовить.Это значительно повысит надежность. Печатная плата размером всего 38 мм × 28 мм принимает выпрямленное напряжение от динамо-втулки (2 провода) через переключатель.
Причина, по которой регулятор выходит за пределы печатной платы, заключается в том, что он складывается для установки на радиатор, расположенный над этой печатной платой. Два отверстия диаметром 3 мм предназначены для удержания радиатора на месте.
Корпус
Я использовал Autodesk Fusion 360 для проектирования и 3D-печати исходного корпуса, который имеет размеры 42 мм (Д) × 36 мм (Ш) × 13 мм (Г) и принимает алюминиевую « крышку » размером 40 × 32 мм (1.Толщиной 5 мм) в качестве радиатора. Электроника будет покрыта смолой, чтобы сделать ее полностью водонепроницаемой.
Печатная плата и детали уже доставлены, поэтому я собрал одну для тестирования.
Корпус, напечатанный на 3D-принтере, имеет размеры 42 мм (Д) × 36 мм (Ш) × 13 мм (Г). Я напечатал его белым здесь, но это может быть практически любой цвет.
С тех пор, как этот товар был напечатан, я немного изменил отверстие для ввода кабеля питания. Теперь это два отдельных отверстия диаметром 2 мм.
Чтобы проверить размер радиатора и расположение отверстий, я напечатал его на 3D-принтере.Это сработало отлично, поэтому моя следующая работа — вырезать его из алюминиевого листа толщиной 1,5 мм.
Я бегаю по этой трассе на своем нынешнем байке уже более 10 лет, поэтому я уверен, что она работает надежно. Основное тестирование, которое осталось сделать, — это тестирование новой конструкции и упаковки печатной платы.
Для проверки моей схемы я использую мультиметр Muker TM-103 USB и детектор заряда. Это позволяет мне проверять напряжение USB-порта и мощность, подаваемую на заряжаемое устройство. Это очень удобное оборудование для тестирования для подобных проектов.
- Проверьте, что USB выдает стабильное напряжение 5 В при входном 6 В постоянного тока в схему регулятора. Напряжение упадет чуть ниже 5,0 В, и это нормальное явление.
- Проверьте подаваемый ток с помощью Muker TM-103 и убедитесь, что микросхема регулятора не нагревается. Он немного нагревается, поэтому я собираюсь добавить в свой дизайн радиатор, чтобы быть на 100% уверенным, что он не перегреется даже в самые жаркие дни.
- Тестовая зарядка работает на некоторых телефонах Android.
- Тестовая зарядка работает с некоторыми моделями Apple iPhone. Мой iPhone 6S отлично заряжается при 4,7 В и 0,7 А.
- Последний тест — проверка цепи зарядки с более широким набором USB-устройств. Это будет включать аккумуляторы USB и камеру GoPro 6.
Этот небольшой зарядный модуль должен позволять заряжать широкий спектр устройств через порт USB с питанием от динамо-концентратора. Это особенно полезно при поездке на велосипеде или просто в однодневной поездке.
Меня попросили сделать это устройство для нескольких друзей, поэтому я делаю его с ограниченным тиражом.Стоимость будет менее 20 фунтов стерлингов, включая почтовые расходы в Великобритании.
Принципиальная схема простого зарядного устройства 12 В для батареиПростая электрическая схема зарядного устройства на 12 В, разработанная с использованием нескольких легко доступных компонентов, и эта схема подходит для различных типов аккумуляторов, требующих 12 В. Вы можете использовать эту схему для зарядки батареи 12 В SLA или гелевой батареи 12 В и так далее. Эта схема предназначена для обеспечения зарядного тока до 3 ампер, и в этой схеме нет защиты от обратной полярности или защиты от перегрузки по току, поэтому, пожалуйста, проверьте эту схему перед тем, как приступить к зарядке аккумулятора.
Эта простая принципиальная схема зарядного устройства на 12 В дает вам общее представление о стандартном зарядном устройстве, и вы можете добавить в эту схему дополнительные функции, такие как защита от обратной полярности, установив диод на выходе. (Диодный анод для вывода положительного источника питания и диодный катод как выходной положительный вывод) и установка защиты от перегрузки по току с использованием транзисторов. Следующая схема зарядного устройства представляет собой необработанный прототип, обеспечивающий выходную мощность 12 В на батарею.
Схема подключения
Необходимые компоненты
- Понижающий трансформатор (0–14 В переменного тока / 3 А) — выбор зависит от ваших требований.
- Мостовой выпрямительный модуль BR1010
- Конденсаторы 0,01 мкФ, 100 мкФ / 25 В каждый
- Резистор 1 кОм (для обычных светодиодов используйте 0,25 Вт)
- Светодиод
Строительство и работа
Используйте понижающий трансформатор необходимого тока для целевой батареи, здесь мы использовали понижающий трансформатор 0–14 В переменного тока / 3 А, а для выпрямления переменного тока в постоянный мы использовали модуль мостового выпрямителя BR1010, который обеспечивает высокоэффективный источник постоянного тока с высоким номинальным током.
BR1010
Этот модуль мостового выпрямителя будет иметь четыре клеммы, две для входа питания переменного тока, отмеченные знаком, и две клеммы для выхода постоянного тока, отмеченные положительным и отрицательным знаком.
КонденсаторыC1 и C2 работают как фильтры в этой цепи, тогда светодиод указывает на наличие источника постоянного тока на выходе. Подключите целевой аккумулятор к выходу для зарядки.
Проектирование и разработка модифицированного преобразователя BL Luo для улучшения PQ в зарядном устройстве для электромобилей
ПОКАЗЫВАЕТ 1-10 ИЗ 13 ССЫЛКИ
СОРТИРОВАТЬ по релевантностиСамые популярные статьи Недавность
Улучшенное зарядное устройство для электромобилей с высоким коэффициентом мощности
- R.Кушваха, Бхим Сингх
- Компьютерные науки, Материаловедение
- Ежегодное собрание Общества отраслевых приложений IEEE (IAS), 2018 г. , что значительно снижает потери проводимости за счет уменьшения количества полупроводниковых компонентов, проводящих ток в течение одного цикла переключения во время зарядки. Развернуть
- Просмотреть 1 отрывок, справочная информация
Безмостовой преобразователь ZETA PFC для низковольтного сильноточного драйвера светодиода
- A.Джа, Бхим Сингх
- Материаловедение
- 2017 6-я Международная конференция по компьютерным приложениям в последних достижениях электротехники (CERA)
- 2017
В этой статье рассматривается коррекция коэффициента мощности (PFC) при низковольтном высоком токе (LVHC) многожильный светоизлучающий диод (LED) с использованием безмостового (BL) ZETA. Это приложение предназначено для больших… Развернуть
- Просмотреть 1 отрывок, справочная информация
Обзор однофазных преобразователей переменного тока в постоянный с улучшенным качеством электроэнергии
В этом документе содержится всесторонний обзор улучшенных конфигураций преобразователей качества электроэнергии, подходов к управлению , конструктивные особенности, выбор компонентов, другие связанные соображения, а также их пригодность и выбор для конкретных приложений.Развернуть- Просмотреть 1 отрывок, справочная информация
Потенциальные преимущества электромобилей для качества электроэнергии
Электромобили, вероятно, будут и дальше присутствовать на рынке легковых автомобилей в ближайшие несколько десятилетий. В результате зарядка электромобилей создаст дополнительную нагрузку на распределительную сеть и… Развернуть
- Просмотреть 1 отрывок, справочная информация
Преобразователи Luo с положительным выходом: метод повышения напряжения
Метод повышения напряжения — популярный метод, который является широко применяется в проектировании электронных схем.Из-за влияния паразитных элементов выходное напряжение и эффективность передачи мощности… Развернуть
- Просмотреть 2 выдержки, справочную информацию и методы
Понижающий преобразователь с высоким коэффициентом мощности без моста
Выпрямитель с безмостовой понижающей коррекцией коэффициента мощности, который существенно Повышение эффективности на низкой линии в универсальном линейном диапазоне вводится путем устранения входных диодов моста, что увеличивает полезную энергию конденсатора большой емкости после падения напряжения в линии.Развернуть- Просмотреть 1 отрывок, справочная информация
Анализ преобразователей Luo со схемой повышения напряжения
Методика повышения напряжения с использованием схемы повышения напряжения была успешно применена к нескольким сериям преобразователей Luo постоянного тока в постоянный. Тем не менее, схема повышения напряжения определенно имеет неизбежное… Развернуть
- Просмотреть 1 отрывок, справочная информация
Оценка производительности безмостовых повышающих выпрямителей с PFC
В этой статье проводится систематический обзор повышения безмостовой коррекции коэффициента мощности (PFC). представлены выпрямители, также называемые выпрямителями с двойным усилением PFC.Сравнение производительности обычных… Развернуть
- Просмотреть 1 выдержку, справочная информация
Нетрадиционное бортовое зарядное устройство для силовых батарей электромобилей
- L. Solero
- Computer Science
- IEEE Trans. Veh. Technol.
- 2001
- Просмотреть 1 отрывок, справочная информация
Самодельный беспроводной смартфон Зарядное устройство 5 В Схема DIY
Самодельное беспроводное зарядное устройствоВ этом уроке я покажу вам схему базового беспроводного зарядного устройства, передатчика и приемника. Посмотрите, как адаптировать резонанс и мощность передачи. Тогда как отрегулировать выход приемника на 5 В, чтобы мы могли заряжать смартфон через USB. Надеюсь, ты узнаешь что-то новое.
Часть 1 — Что нам нужно?
Ниже у вас есть все детали, необходимые для этой схемы, как передатчик, так и приемник.Выберите размер, который вам нужен для просверленной печатной платы. Конденсаторы передатчика неполяризованные и полипропиленовые. Для приемника мы используем поляризованные шапки Elecrtolytic. Я сделал свои катушки на круглой бутылке и использовал суперклей, чтобы удерживать провода на месте.
Часть 1 — Схема передачи
Это схема передатчика энергии. В зависимости от того, как вы сделаете катушку, она будет влиять на резонансную частоту вместе с конденсатором 220 нФ, который создает резервуар LC.Важен диаметр и количество витков катушки. В моем случае для моих тестов диаметр был 8 см, и я использовал 6 петель с центральным отводом посередине, так что 3 петли до средней точки и еще 3 после нее. Эта схема автоматически создаст резонансную частоту, и даже если мы изменим нагрузку, схема автоматически адаптируется. Поскольку затвор полевого МОП-транзистора подключен к катушке. каждый раз, когда напряжение колеблется, он будет включать и выключать транзистор и, таким образом, создавать колебания.Светодиод служит только для индикации того, что цепь включена.
Часть 3 — Прототип Tx
Я соединил все на просверленной печатной плате для прототипирования. Использование двух толстых проводов в качестве входа, а затем подключение к полевому МОП-транзистору. Чтобы припаять катушку, я использовал несколько штырей на печатной плате. Чтобы сделать катушку, я спаял вместе два одинаковых медных провода, а затем сделал 3 петли с одной стороны и еще 3 с другой. Таким образом, у нас есть центральная лента, равная по сторонам ботинка.
Часть 4 — Схема приемника
Это схема приемника. Я сделал катушку с 10 витками, поэтому она будет выдавать немного большее напряжение. Затем первым делом необходимо исправить сигнал с помощью диодного моста. Мы фильтруем выбросы с помощью этих конденсаторов, а затем регулируем выход на уровне 5 В с помощью регулятора AMS1117 или любого другого. Добавляем на выходе колпачок фильтра и все на ресивере. Даже если напряжение на катушке приемника составляет 16 В, AMS1115 всегда будет поддерживать максимальное напряжение на выходе 5 В.
Часть 5 — Rx Прототип
Я соединил все на просверленной печатной плате для прототипирования. Я снова использовал штыри PCB для подключения катушки приемника, которая в данном случае имеет 10 витков. Я использовал диоды и сделал выпрямитель, добавил конденсатор и стабилизатор напряжения сзади и все. Теперь мы могли подключить USB-провод к выходу и запитать мой смартфон.
Часть 6 — Тест
В тестовом видео ниже вы можете увидеть, как выходной сигнал мультиметра ограничен 5В.Также как с помощью USB-кабеля я могу заряжать свой смартфон и передавать больше энергии, чем коммерческое зарядное устройство, которое я купил на eBay. Схема работает нормально, но ее всегда можно улучшить, проведя больше тестов, изменив параметры катушки и добавив в схему еще несколько компонентов.
Часть 7 — Обучающее видео
Пожалуйста, смотрите больше в видеоуроке. Я надеюсь, что вам понравилось это видео и, что более важно, вы узнали что-то новое о беспроводных зарядных устройствах, зарядке смартфонов и регуляторах напряжения.Если да, то, возможно, поставьте лайк на видео ниже и подумайте о подписке. Если мои видео вам помогут, подумайте о поддержке моей работы над PATREON или о пожертвовании через PayPal. Еще раз спасибо и увидимся позже, ребята.
.