Частотник однофазный своими руками: Скалярный частотник для однофазного асинхронного двигателя / Хабр

Содержание

частотный преобразователь своими руками, как сделать

Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. В наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что

сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт

.

Стабилизатор на 5 вольт.

Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

После сборки частотника можете приступать к его проверке.

В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

Однофазный преобразователь частоты для водоснабжения.

Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т.ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

1. ОСНОВНЫЕ ПОНЯТИЯ

Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster. ru

Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер. ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др., передаются Пользователем Администрации Сайта с согласия Пользователя.

3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

  • Обработка информации осуществляется на законной и справедливой основе;
  • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
  • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
  • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
  • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

4. 5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

для физического лица:

  • номер основного документа, удостоверяющего личность Пользователя или его представителя;
  • сведения о дате выдачи указанного документа и выдавшем его органе;
  • дату регистрации через Форму обратной связи;
  • текст обращения в свободной форме;
  • подпись Пользователя или его представителя.

для юридического лица:

  • запрос в свободной форме на фирменном бланке;
  • дата регистрации через Форму обратной связи;
  • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

  • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
  • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
  • защита от вредоносных программ;
  • обнаружение вторжений и компьютерных атак.

5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

  • в целях удовлетворения требований, запросов или распоряжения суда;
  • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
  • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

частотный преобразователь своими руками, как сделать


Общая информация

Целесообразнее всего снабжать преобразователем частоты (ЧП) те устройства, которые обладают довольно высоким показателем мощности. Основная цель, для которой используется такое оборудование, — это изменение пускового тока. ЧП дает возможность задавать величину для этого параметра, что и обеспечивает более плавную остановку и запуск двигателя.

Также можно отметить, что эти два устройства, работающие в паре, позволяют заменить такие устройства, как электроприводы постоянного тока. С одной стороны, регулировать скорость у такой системы очень просто, однако есть и слабое место в такой сети — сам электродвигатель. В электроприводах постоянного тока именно это устройство является наиболее дорогим и ненадежным. А если сравнивать асинхронное оборудование с прибором постоянного тока, то тут можно выделить явные преимущества: более простое и надежное устройство; масса, стоимость и габариты асинхронного приспособления будут гораздо ниже, чем у аппарата постоянного тока с той же мощностью.

Фильтрующие элементы

После выпрямителя идет фильтр. Его основное предназначение – это отсечка всей переменной составляющей выпрямленного тока. Для более ясной картины нужно составить схему замещения. Итак, плюс проходит через катушку. А затем между плюсом и минусом включен электролитический конденсатор. Вот он-то и интересен в схеме замещения. Если катушка замещается реактивным сопротивлением, то конденсатор при наличии различного тока может быть либо проводником, либо разрывом.

Как было сказано, в выпрямителе на выходе постоянный ток. А при подаче его на электролитический конденсатор не происходит ничего, так как последний является разрывом цепи. Но вот есть небольшая переменная в токе. А если течет переменный ток, то в схеме замещения конденсатор становится проводником. Следовательно, происходит замыкание плюса на минус. Данные выводы сделаны по законам Кирхгофа, которые являются основными в электротехнике.

Что такое частотный преобразователь

Стоит сказать о том, что регулировать числовое значение тока можно и вручную. Однако на это будет уходить определенное количество времени, так как человек не способен моментально среагировать на любое изменение, как машина. А это приведет к тому, что некоторое количество энергии будет уходить впустую, а энергетический ресурс двигателя выработается быстрее.

Частотный преобразователь для электродвигателя — это практически необходимая деталь, так как те устройства, которые не имели его, обладали значением тока, превышающим номинальное значение напряжение в 5-7 раз. Такая разница не позволит создавать приемлемые условия для эксплуатации двигателя.

Принцип работы частотного преобразователя кроется в том, что в нем используется специальный электронный механизм, который и управляет работой асинхронного двигателя. Также важно отметить, что ЧП позволяет не только настроить плавный запуск, но и выбрать оптимальный показатель между напряжением и частотой. Эта характеристика рассчитывается по определенной формуле.

Основное преимущество применения частотного преобразователя для двигателя — это экономия электрической энергии, значение которой доходит до 50 %. Еще одно важное преимущество ЧП — это возможность настроить его работу так, чтобы она максимально подходила под каждую отрасль производства. Применение такого устройства основывается на принципе работы двойного преобразования напряжения.

Первый этап — это регулировка напряжения, поступающего из сети. Оно выпрямляется и фильтруется. Эти операции осуществляются посредством системы конденсаторов.

Второй этап — включение в работу электронного управления системой. Этот элемент выставляет значение тока, которое будет соответствовать частоте, а также ранее выбранному режиму работы.

Как можно заметить, принцип работы частотного преобразователя довольно прост.

Как выбирать

Для производителей преобразователей частоты и другого электронного оборудования основным инструментом завоевания рынка является цена. С целью её уменьшения они создают приборы с минимальным набором функций. Соответственно, чем универсальнее конкретная модель, тем выше её цена. Для нас это имеет большое значение по той причине, что для эффективной и долгой работы двигателя может потребоваться ПЧ с определенными функциями. Давайте рассмотрим основные критерии, на которые следует обращать внимание.

Управление

По способу управления частотные преобразователи делят на векторные и скалярные. Первые на сегодня встречаются гораздо чаще, однако имеют более высокую цену по сравнению со вторыми. Преимущество векторного управления заключается в высокой точности регулировки. Скалярное управление очень просто, оно может лишь удерживать соотношение выходного напряжения и частоты на заданной величине. Такой преобразователь целесообразно ставить на небольшой прибор без высокой нагрузки на двигатель, например, вентилятор.

Мощность

Безусловно, чем это значение выше, тем лучше. К слову, в данном вопросе цифры не столь важны. Обратите большее внимание на фирму- ваше оборудование друг к другу, тем более эффективно оно будет работать. Кроме того, использование нескольких преобразователей от одного бренда поддерживает принцип взаимозаменяемости и простоты обслуживания. Подумайте и наличии в вашем городе соответствующего сервисного центра.

Сетевое напряжение

В данном случае действует тот же принцип, что и в предыдущем разделе – чем шире рабочий диапазон напряжения, тем лучше для нас. Отечественные электросети, к сожалению, слабо знакомы с понятием «стандарт», поэтому лучше максимально обезопасить аппаратуру от вероятных перепадов. Падение напряжения едва ли приведет к серьезным последствиям (преобразователь, скорее всего, просто отключится), а вот большое повышение опасно – оно может привести поломке устройства в результате взрыва электролитических сетевых конденсаторов.

Диапазон частотной регулировки

В данном случае следует опираться исключительно на требования производства и конкретных устройств. Так, например, для такого оборудования, как шлифовальные машины важно значение максимальной частоты (от 1000 Гц). Стандартом нижнего предела считается соотношение 1 к 10 по отношению к верхнему. На практике чаще всего используются преобразователи с диапазоном от 10 до 100 Гц. Заметьте, что широким диапазоном регулировки обладают только модели преобразователей с векторным управлением.

Входы управления

Для передачи команд управления в преобразователях предназначены дискретные входы. С помощью них осуществляется запуск двигателя, остановка, торможение, обратное вращение и т.д. Для сигналов обратной связи, осуществляющих текущий контроль и настройку привода непосредственно во время работы, используются аналоговые входы. А цифровые используются для передачи сигналов с высокой частотой, генерируемых энкодерами (датчиками угла поворота).

Фактически, чем больше вводов, тем лучше, однако большое их количество не только делает сложной настройку прибора, но и повышает его стоимость.

Количество выходных сигналов

Дискретные выходы преобразователя необходимы для вывода сигналов, сообщающих о возникновении проблем, таких как, перегрев устройства, отклонение величины входного напряжения от нормы, авария, ошибка и т.п. Аналоговые выходы необходимы для передачи обратных связей в сложных системах. Принцип выбора тот же: ищите баланс между количеством сигналов и стоимость прибора.

Шина управления

В поиске подходящей шины управления поможет схема подключения преобразователя частоты – количество выходов и входов должно быть, как минимум, равным, но лучше купите шину с небольшим запасом – значительно облегчите себе дальнейшее усовершенствование устройства.

Перегрузочные способности

Нормой считается, если мощность частотного преобразователя выше мощности двигателя на 10-15%. Ток тоже должен быть немного выше номинала двигателя. Однако такой подбор «на глаз» рекомендуется только в случае, когда нет необходимой технической документации на двигатель. При ее наличии – тщательно ознакомьтесь с требованиями и подберите соответствующий преобразователь. Если важны ударные нагрузки, пиковый ток преобразователя должен быть больше указанного значения на 10%.

Материалы для сборки

На сегодняшний день распространение и улучшение технологий и оборудования привело к тому, что, имея некоторые знания в электронике и умения, можно собрать ЧП для однофазного двигателя собственноручно.

Для того чтобы собрать это устройство, понадобятся такие материалы, как:

  • драйвер трехфазного моста модели IR2135 или 2133;
  • понадобится микроконтроллер, который будет использоваться как генератор PWM, модели AT90SPWM3B;
  • еще одна важная деталь — программатор;
  • три пары транзисторов;
  • жидкокристаллический индикатор;
  • шесть кнопок для управления системой.

Сборка устройства

Для начала работы необходимо иметь схему частотного преобразователя. Осуществлять сборку будет намного удобнее и быстрее, имея этот документ.

Первый шаг сборки — соединение обмоток двигателя. Для этого нужно использовать вариант подключения, который в электротехнике называется треугольник.

В сборке частотного преобразователя своими руками основой будут выступать две платы. Одна из них (первая) будет являться основой для размещения таких элементов, как блок питания, драйвер, транзисторы. Силовые клеммы также будут подключаться к этой плате. Вторая же плата необходима для крепления микроконтроллера и индикатора. Для того чтобы соединить эти два элемента между собой, нужно использовать гибкий шлейф. Чтобы изготовить импульсный блок, можно использовать самую простую схему.

Для того чтобы осуществлять контроль над работой двигателя, нет необходимости в добавлении внешних устройств. Однако если такое желание все же есть, то можно добавить схему IL300 в конструкцию.

Следующим важным элементом в сборке частотного преобразователя своими руками станет общий радиатор. В схеме этих устройств данный элемент используется для того, чтобы разместить на нем транзисторы и диодный мост. Один из обязательных шагов — это установка оптронов ОС2-4. Основное предназначение этих элементов — дублирование кнопок управления.

При изготовлении частотного преобразователя своими руками для двигателя с мощностью до 400 Вт можно обойтись без термодатчика. Для того чтобы измерять напряжение, можно использовать обычный усилитель (DA-1-2). Необходимо также защитить все кнопки управления. Для этого используются пластиковые толкатели. Управление устройством осуществляется при помощи опторазвязки.

Последнее, что необходимо сделать при изготовлении частотного преобразователя своими руками, — это позаботиться о подавлении помех. Это необходимо делать лишь в том случае, если в системе используются слишком длинные провода. Когда ротор двигателя уже запущен, то можно выбрать любою скорость вращения, которая лежит в пределах частоты от 1 до 40.

Подключение

Собрать ЧП — это лишь половина дела. Вторая половина — это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения — это треугольник. Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %.

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления.

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды,
  • в машиностроении,
  • в текстильной промышленности,
  • в топливно-энергетической области,
  • для скважинных и канализационных насосов,
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Обслуживание устройства

Как уже говорилось ранее, просто собрать ЧП и подключить его — мало. Еще одна важная часть, которая гарантирует длительный срок службы устройства, — это обслуживание прибора. Частотный преобразователь для насоса, двигателя или любого другого устройства, должен подвергаться тщательному уходу:

  1. Наиболее страшный враг электронного оборудования — это пыль. Важно следить, чтобы на внутренних контактах она не скапливалась. Для удаления этих частиц мусора можно использовать компрессор с невысокой мощностью. Пылесос использовать нежелательно, так как он не сможет убрать плотный слой пыли.
  2. Необходимо регулярно проверять работоспособность всех узлов. При возникновении неполадок сразу их менять. Нормальный срок эксплуатации электролитического конденсатора — 5 лет, для предохранителя — 10 лет. Вентиляторы, работающие внутри устройства, нужно менять каждые 2-3 года, внутренние шлейфы — каждые 6 лет.
  3. Очень важно следить за такими параметрами, как температура внутренних элементов, а также напряжение на шине постоянного тока. Если температура повысится слишком сильно, то термопаста с большой долей вероятности высохнет, что приведет к выходу из строя конденсаторов. Чтобы избежать этой проблемы, рекомендуется менять термопасту каждые три года.
  4. Важно соблюдать следующие правила эксплуатации: температура окружающего воздуха не выше +40 градусов; помещение должно быть сухим, повышенная влажность недопустима; повышенная запыленность также отрицательно скажется на приборе.

Структурное устройство ЧП

Для того чтобы точно ответить на вопрос, как сделать частотный преобразователь, необходимо разобраться еще в одном пункте. Это — структурное устройство данного прибора.

Так как ориентироваться при изготовлении нужно на покупные модели, то и схема должна быть соответствующей. А это значит, что работать он должен на структуре двойного преобразования. У этой схемы имеются основные части: звено постоянного тока, силовой импульсный инвертор и система управления.

Если рассматривать более детально, то часть с постоянным током состоит из двух соединений: неуправляемый выпрямитель и фильтр. Именно в этом элементе переменное напряжение, которое действует в сети, будет преобразовываться в постоянное.

Второй элемент — силовой импульсный инвертор. Он является трехфазным, а состоит из шести транзисторных ключей. Они предназначены для подключения соответствующей обмотки двигателя к каждому из ключей как положительному, так и отрицательному. Этот элемент отвечает за преобразование поступающего постоянного напряжения в трехфазное и переменное. Также это устройство задает нужную частоту и амплитуду.

Последний элемент — это система управления. Здесь используются силовые IGBT-транзисторы. Если сравнивать с обычными тиристорами, то частота переключения у транзисторов выше. Это позволяет вырабатывать выходной сигнал в форме синусоиды с минимальным искажением.

Инвертор своими руками

Наряду с выпуском промышленных инверторов многие изготавливают их своими руками. Особой сложности в этом нет. Такой частотник может преобразовать одну фазу в три. Электродвигатель с подобным преобразователем можно использовать в быту, тем более что мощность его не теряется.

Выпрямительный блок идет в схеме первым. Затем идут фильтрующие элементы, отсекающие переменную составляющую тока. Как правило, для изготовления таких инверторов используют IGBT-транзисторы. Цена всех составляющих частотника, изготовленного своими руками, намного меньше цены готового производственного изделия.

Частотники подобного типа пригодны для электродвигателей мощностью от 0,1 кВт до 0,75 кВт

Частотные преобразователи на микроконтроллере

Принцип работы таких устройств является следующим. Изначально характеристики всех микроконтроллеров (МК) настраиваются так, чтобы работать в паре с напряжением в 200 В, а также частотой поля в 50 Гц. Другими словами, они настроены по умолчанию для работы в паре с наиболее примитивными асинхронными двигателями 220 В/50 Гц. Также имеется такой показатель, как скорость набора частоты. По умолчанию это значение устанавливается как 15 Гц/сек. Это означает, что разгон МК до 50 Гц будет занимать чуть более чем 3 секунды, а, к примеру, до 150 Гц за 10 секунд ровно. Также важно отметить, что изначально ЧП является скалярным. Другими словами, чем выше будет выходная частота двигателя, тем выше будет его напряжение.

Ремонт и наладка прибора

Ремонт частотных преобразователей — неотъемлемая часть работы с этими устройствами. Довольно часто случается такая проблема, как выход из строя тормозного резистора. Если это происходит, то ЧП не сможет работать на полную мощность. Для того чтобы установить, вышел ли из строя тормозной элемент или нет, имеется таблица, в которой приведены все номинальные значения для всех типов элементов. Если после сверки с этим документом выяснилось, что какой-либо параметр не совпадает, то резистор нужно менять.

Также могут быть сбои в том случае, если ЧП оказался слишком мощным или же сеть слишком слабая для этой модели. Тут дело заключается в принципе работы элементов ЧП. Он рассчитан на эксплуатацию при постоянном высоком напряжении. Если параметры сети не дотягивают до минимальных показателей, требуемых для работы, то и выполнять свои функции он не сможет. Как таковой ремонт частотного преобразователя тут не требуется, необходимо купить менее мощный прибор.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей — от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип — это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор — это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети. Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Однофазный частотный преобразователь Danfoss — Статьи

Дата публикации: 25.06.2019

В настоящее время частотные преобразователи получили широкое распространение за счет:

  • простоты регулирования скорости вращения вала электродвигателя
  •  уменьшении пусковых токов
  •  защиты от токов к.з и перегрузок
  •  экономии электроэнергии
  • увеличения срока службы оборудования

Применяются для приводов транспортеров, станков, вентиляторов, в дымососах и насосных системах, дробилках и тд.

В случаях когда имеется 3-х фазная сеть 380 В, использование «частотников» не составляет труда, но зачастую не всегда есть возможность подключиться к 3-х фазной сети. Поэтому в таких случаях можно подключить трехфазный электродвигатель к частотному преобразователю с входным питанием 220 В.

Рисунок 1 — Схема подключения преобразователя частоты

Однофазный частотный преобразователь, подключается к однофазной сети с напряжением 220 В. При этом, на выходе частотного преобразователя получаем трехфазное напряжение с амплитудой 220 В. В таком случае обмотки электродвигателя переменного тока следует соединить по схеме тругольник.

Важно! Подключение однофазного электродвигателя к частотному преобразователю недопустимо!

Рисунок 2 — Подключение обмоток электродвигателя треугольником

 Преобразователи частоты Danfoss VLT Micro Drive FC-051 с однофазным питанием, выпускаются следующих номиналов: от 0,18 кВт до 2,2 кВт.

Монтаж и подключение преобразователей частоты следует выполнять соблюдая требования безопасности приведенные в инструкции по эксплуатации преобразователя частоты.  

 

Правильно подбирайте однофазный частотный преобразователь для трехфазного э.д.

 

Cмотрите так же:

Функция «Спящий режим» преобразователя частоты Danfoss FC-051 (Реализация на встроенном контроллере)

Управление частотным преобразователем Danfoss серии FC51 с панели оператора Weintek MT8121XE1WK

Режим поддержания постоянной температуры. Задание в цифровом виде. Видео инструкция

 

 

 

Частотник для трехфазного электродвигателя своими руками (схема)

С целью охраны окружающей среды везде вводятся правила, рекомендующие производителям электрооборудования выпускать продукцию, экономно расходующую электроэнергию. Зачастую это достигается эффективным управлением скорости электродвигателя.

Частотник для трехфазного электродвигателя или частотный преобразователь имеет множество наименований: инвертор, преобразователь частоты переменного тока, частотно регулируемый привод. На сегодняшний день частотники производят многие фирмы, но есть немало энтузиастов, создающих преобразователи своими руками.

Назначение и принцип работы инвертора

Инвертор управляет скоростью вращения асинхронных электродвигателей, т. е. двигателей, преобразующих энергию электрическую в механическую. Полученное вращение приводными устройствами трансформируется в другой вид движения. Это очень удобно и благодаря этому асинхронные электродвигатели приобрели большую популярность во всех областях человеческой жизни.

Важно отметить, что скорость вращения могут регулировать и другие устройства, но все они имеют множество недостатков:

  • сложность в использовании,
  • высокую цену,
  • низкое качество работы,
  • недостаточный диапазон регулирования.

Многим известно, что использование частотных преобразователей для регулировки скорости является самым эффективным методом. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Риск возникновения аварийных ситуаций, при использовании преобразователя частоты, крайне незначителен.

Для обеспечения плавной регулировки и быстродействия разработана специальная схема частотного преобразователя. Его использование в значительной мере увеличивает время непрерывной работы трехфазного двигателя и экономит электроэнергию. Преобразователь позволяет довести КПД до 98%. Это достигается увеличением частоты коммутации. Механические регуляторы на такое не способны.

Регулировка скорости инвертором

Первоначально он изменяет поступающее из сети напряжение. Затем из преобразованного напряжения формирует трехфазное, необходимой амплитуды и частоты, которое подается на электродвигатель.

Диапазон регулировки достаточно широкий. Есть возможность крутить ротор двигателя и в обратном направлении. Во избежание его поломки необходимо учитывать паспортные данные, где указаны максимально допустимые обороты и мощность в кВт.

Составные части регулируемого привода

Ниже представлена схема преобразователя частоты.

Он состоит из 3 преобразующих звеньев:

  • выпрямителя, формирующего напряжение постоянного тока при подключении к питающей электросети, который может быть управляемым или неуправляемым,
  • фильтра, сглаживающего уже выпрямленное напряжение (для этого применяют конденсаторы),
  • инвертора, формирующего нужную частоту напряжения, являющегося последним звеном перед электродвигателем.

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Подключение инвертора «звезда — треугольник»

После приобретения инвертора по доступной цене возникает вопрос: как подключить его к двигателю своими руками? Прежде чем это сделать будет нелишним поставить обесточивающий автомат. В случае возникновения короткого замыкания хотя бы в одной фазе, вся система будет немедленно отключена.

Подключение преобразователя к электродвигателю можно осуществить по схемам «треугольник» и «звезда».

Если регулируемый привод однофазный, клеммы электродвигателя подключают по схеме «треугольник». В этом случае потерь мощности не происходит. Максимальная мощность такого частотника 3 кВт.

Трехфазные инверторы более совершенны. Они получают питание от промышленных трехфазных сетей. Подключаются по схеме «звезда».

Чтобы ограничить пусковой ток и снизить пусковой момент во время запуска электродвигателя мощностью более 5 кВт используют вариант переключения «звезда-треугольник».

При пуске напряжения на статор используется вариант «звезда». Когда скорость двигателя станет номинальной, питание переключается на схему «треугольник». Но такой способ применяется там, где существует возможность подключения по обеим схемам.

Важно отметить, что в схеме «звезда-треугольник» резкие скачки токов неизбежны. В момент переключения на второй вариант скорость вращения резко снижается. Чтобы восстановить частоту оборотов, необходимо увеличить силу тока.

Наибольшей популярностью пользуются преобразователи для электродвигателей мощностью от 0,4 кВт до 7,5 кВт.

Инвертор своими руками

Наряду с выпуском промышленных инверторов многие изготавливают их своими руками. Особой сложности в этом нет. Такой частотник может преобразовать одну фазу в три. Электродвигатель с подобным преобразователем можно использовать в быту, тем более что мощность его не теряется.

Выпрямительный блок идет в схеме первым. Затем идут фильтрующие элементы, отсекающие переменную составляющую тока. Как правило, для изготовления таких инверторов используют IGBT-транзисторы. Цена всех составляющих частотника, изготовленного своими руками, намного меньше цены готового производственного изделия.

Частотники подобного типа пригодны для электродвигателей мощностью от 0,1 кВт до 0,75 кВт

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды,
  • в машиностроении,
  • в текстильной промышленности,
  • в топливно-энергетической области,
  • для скважинных и канализационных насосов,
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Однофазный частотник своими руками схема


31 августа 2021 г. 07:19

Преобразователи предназначены для управления общепромышленным приводом по закону там, где не требуется высокоточное поддержание скорости привод станочного. Ввиду отсутствия субъекта правоотношений должника, предъявление к нему правопритязаний лишено какоголибо смысла, так как даже при констатации судом нарушенного права восстановить его за счет несуществующего субъекта правоотношений невозможно. Пожалуйста, обновите ваш браузер, чтобы иметь доступ ко всем функциям этого вебсайта. Основным направлением деятельности компании является поставка преобразователей частоты под торговыми марками и, продукция которых отличается широкими функциональными возможностями, высоким качеством и доступной ценой. То есть фаервол по своему алгоритму определяет, что это атака. Мы предлагаем вам создать игрушки, пахнущие корицей, кофе, ванилью. Все права на материалы принадлежат их авторам. Также для прямого запуска на лицевой панели расположен графический интерфейс. В сочетании с коммутации над несколькими способами. Проверьте соединения на кабеле последовательной связи. Представьте, у нас некоторые по сорок лет отработали. Или более простым языком убирает некоторые недостатки мостового выпрямителя сетевого напряжения. В техническом плане они безоговорочно побеждают аналоговые сервоприводы. В третьей главе данного издания описываются характеристики асинхронных электродвигателей при их работе от преобразователей частоты. А начинка и там и там китайская. Плату автора взял как прототип и повторил практически за исключением опечаток в разводке автора. За более подробной информацией обратитесь к инструкции по эксплуатации соответствующей платы расширения. Подача команды определения частоты пройдет от многих источников. Теперь можно предложить клиенту выбор расплачиваться наличными или банковской картой. Преобразователи предназначены для плавного регулирования крутящего момента и ч астоты вращения электродвигателя в широком диапазоне скоростей. Применение конвейеры установка в местах, требующих мойки приводов применения с большой распределенностью двигателей, применения с большим количеством используемых приводов. Частотный преобразователь это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Модели этой марки отличаются универсальностью и весьма популярны. Эти два параметра используются для выбора переменных. А на фото мумия или тролль. При перегрузке сгорит предохранитель и вс отключится. Обкладки для пускателей подходят на полупроводниковой базе. В дальнейшем разрабатывали весной все участки под посадку, лопатой практически не пользовались в этом году. Нужно ещ, чтобы он умел стрелять. Ну так жители настолько нищие, что все равно платить не смогли бы. Устройство обеспечит плавный пуск и остановку техники, снизит энергопотребление, продлит срок эксплуатации приборов и защитит их от скачков напряжения. Промерил все напряжения транзисторов и указал на фотке. Гарантия действительна только при наличии гарантийного талона с указанием заводского номера изделия, гарантийного срока и печати поставщика. Для насосов, с помощью которых подключаются мощные устройства. Естественно, если аварийная цепь выполнена правильно, как я это рекомендую в статье по приведнной ссылке. Тиристорный блок для подачи тока на асинхронный электродвигатель. Но алгоритм настройки у всех практически одинаков. Да и русскоязычные поймут, просто прислушаться надо. Сфера применения индивидуальных приборов учета воды охватывает все области жизнедеятельности человека. Специальные цены на весь перечень оборудования. Задание пределов уставок частоты нижнего и верхнего. Более уместными в паре с таким нарядом будут леггинсы или плотные колготки с рисунком. Приводы позволяют осуществить плавный пуск и стоп конвейеров, при этом уменьшая механический износ и снижая затраты на обслуживание. После нескольких запусков и длительного простоя в системе силиконовых шлангов начали образовываться пузырьки воздуха, что является неприемлемым. Массажер для мяса вакуумный выполнен из пищевой нержавеющей стали. Двигатель вращается по инерции до остановки. После успешного прохождения теста параметр автоматически устанавливается на выполнено. Возможность установки, как на стенку, так и на рейку с адаптером крепления. И это еще не все итоги. С тех пор вопросов не было. При этом не будет наблюдаться ни повышенного шума, ни быстрого износа подшипников, ни перегрева обмоток высокочастотными токами. Частотные преобразователи применяются для регулирования скорости вращения асинхронных электродвигателей благодаря изменению частоты напряжения питания электродвигателя. Избирательная цепь служит для выделения составляющих спек тра выходного тока преобразова теля вблизи выбранной промежуточной частоты. Уставки задания частоты или технологической переменной. Для нивелирования этого явления можно использовать виброгасящие подкладки. Например, снижение перепада давления между всасывающим и напорным патрубками насосного агрегата увеличивает срок службы сальниковых уплотнений, практически исключая гидроудары и обеспечивает стабильность давлений в трубопроводах сетей, а также минимизирует затраты на обслуживание. Данные станки пользуются популярностью у мебельных производителей любых масштабов благодаря своей возможности быстро и ювелирно точно распиливать материал. Сегодняшние дети с малого возраста увлечены телефонами, смартфонами, компьютерами и другими информационными технологиями. Частотный преобразователь используется для изменения частоты напряжения, питающего трехфазный двигатель. Консультируйтесь с нашими специалистами по вопросам приобретения! Пуск двигателя при подключении через частотный преобразователь происходит плавно, без пусковых токов и ударов, что снижает нагрузку на двигатель и механизмы, увеличивает срок их службы. Ошибочная выдача управляющих сигналов вследствие колебаний напряжения может привести к серьезной аварии на трубопроводе или недотпуску воды потребителям. Требуется запроектировать возведение надземной части здания с несущими конструкциями из монолитного железобетона. Дискретные входы импульсные входы входы энкодера. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач контроль, диагностика, защита. В связи с этим, при наблюдении за работой сети водоснабжения необходимо учесть ряд факторов возникающих при использовании этого метода количество энергии, теряемое на задвижке потребление электроэнергии при работы электродвигателя качественное и своевременное измерение рабочих характеристик насоса. Сегодня наушники вытесняют классические устройства с проводами. Любые импортные сборы или сборы являются ответственностью покупателя. Присоединяется устройство к патрубку, тип соединения резьбовой. Поэтому скорость съема металла не возрастает. Жаровая труба для газовых горелок в комплекте. Вот там этой штуке применение в самый раз. Из этих двух методов, скалярное управление используют тогда, когда необходимо удерживать на определенном уровне или скорость вращения вала электродвигателя или какогото технологического параметра. Дизельные электростанции применяются для автономных объектов стройплощадки, различные производства, частные дома, строительство трубопроводов, комплектация земснарядов, вахтовые послки, фермы, буровые и т. В открывшемся окне с настройками для драйвера сделайте одну из следующих настроек. Запатентованная конструкция дросселя переменной индуктивности, обеспечивающая высокоэффективное подавление гармоник. Например, у погружных насосов ток двигателя заметно превышает ток поверхностных насосов той же мощности, что связано с различиями в их конструкции. Наши наблюдения показали, что родители чаще отдают своих детей в русскоязычные классы. Кроме перечисленных возможностей аналогоцифровые преобразователи, как и других семейств микроконтроллеров фирмы, имеют функцию окна, которая заключается в цифровом сравнении выходных кодов со значениями двух программно задаваемых регистров верхнего и нижнего порогов. Впечатляющие характеристики векторного режима, опциональная возможность подключения по любому протоколу делают отличным выбором за его приемлемую цену. Более подробно возможности станции по каналообразованию рассматриваются ниже. Если так отрабатывать торможение встроеным резистором то частотнику поплохеет. Упаковочные машины, пищевое оборудование, ленточные конвейеры, управление температурой влажностью в теплицах и оранжереях, миксеры, мельницы, буровые машины, гидравлические прессы малых размеров, транспортеры, красильное оборудование, прокатные станы и дробильные машины малых размеров, производство пленки, роботыманипуляторы, деревообрабатывающее оборудование двухсторонние станки, гибочные машины и т. Преобразователи частоты выпускаются заводом изготовителем с предустановленными настройками и возможностью свободного программирования. По счастливой случайности судьба решила свести двух героев вместе. Сочетание в обстановке нескольких натуральных оттенков дерева. Для того чтобы правильно установить настройки, необходимо ознакомиться с руководством по программированию. Безусловно, скорость вращения можно также регулировать и при помощи гидравлической муфты или механического вариатора и других. Частотный преобразователь для электродвигателя это устройство, которое позволяет успешно решать задачи по энергосбережению, синхронному управлению несколькими электродвигателями и насосами увеличению возможностей и технических функций оборудования, на котором он установлен. В нашем случае надо бы вернуться к исходному решению, т.

Ссылки по теме:

Частотный преобразователь

27.05.2019

Частотный преобразователь напряжения — это электрический прибор, служащий для преобразования напряжения и частоты переменного тока в напряжение с заданной амплитудой и частотой. Он также способен преобразовывать постоянное напряжение в переменное с заданными характеристиками.

Частотные преобразователь Toshiba

Для чего нужен частотный преобразователь?

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Насос водяной Канальный вентилятор

Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.

На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.

Асинхронный электрический двигатель

Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее.  Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.


Скорость вращения электродвигателя или число оборотов в минуту

Скорость вращения вала как асинхронных, так и синхронных электродвигателей определяется частотой вращения магнитного поля статора. Магнитное поле вращается соответственно подаваемому на обмотки статора переменному току по трем фазам. Именно это «вращение» электрического тока в статоре приводит к вращающемуся магнитному полю и определяется по формуле:

n = (60 • f / p) • (1 — s)

где n – номинальное число оборотов вала асинхронного электродвигателя, p – число пар полюсов (см. на паспортной табличке), s – скольжение (разность скоростей поля ротора и поля статора), f – частота переменного тока (например, 50 Гц). Число пар полюсов статора зависит от конструкции катушек статора. Скольжение зависит от нагрузки на валу электродвигателя. Таким образом, подключив электродвигатель к сети переменного тока, мы получим вращение с постоянной скоростью.

Зачем нужно регулировать скорость и как это делается?

Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.

Шильдик электродвигателя EQPIII Toshiba

Принцип работы частотного преобразователя

Вот тут и приходит на помощь частотный преобразователь, иначе говоря ЧРП (частотно-регулируемый привод). Он, как говорилось в самом начале, позволяет задавать на своем выходе заданные в настройках амплитуду напряжения и частоту переменного тока.

Частота вы выходе может регулироваться в диапазоне 0.01 — 590 Гц если брать инверторы серии AS3 Toshiba. Для серии S15 Toshiba диапазон регулирования находится в пределах 0.01 — 500 Гц. Для серии nC3E Toshiba диапазон регулирования находится в пределах 0.01 — 400 Гц. Это объясняется функциональным назначением разных серий ПЧ.

Напряжение на выходе может изменяться в диапазоне от 0 В до напряжения питания ПЧ, т.е. текущего напряжения на входе частотного преобразователя. Это свойство можно использовать для получения нужного выходного напряжения и частоты, что ценно, например, для испытания стендового оборудования. Правда для этого придется использовать специальный выходной синусный фильтр, чтобы получить чистые синусоидальное напряжение и ток.

С частотой все понятно, но зачем нужно изменять напряжение?

Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.

Также существует закон векторного регулирования. Векторное регулирование используется для оборудования, где требуется поддерживать необходимый крутящий момент на валу при низких скоростях электродвигателя, высокое быстродействие и точность регулирования частоты вращения. Векторное управление представляет собой математический аппарат в «мозге» частотного преобразователя, который позволяет точно определять угол поворота ротора по токам фаз двигателя.

Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.

Схема частотного преобразователя

Ниже представлена типовая схема частотного преобразователя. Входное сетевое трехфазное или однофазное напряжение подается через опциональный входной фильтр на клеммы диодного моста. Неуправляемый диодный (или управляемый тиристорный) мост преобразует переменное напряжение сети в постоянное пульсирующее напряжение. Для фильтрации пульсаций служит звено постоянного тока из одного или нескольких конденсаторов C.

Схема преобразователя частоты

Напряжение в звене постоянного тока после выпрямления трехфазного напряжения будет равно согласно формуле: 380*1,35 = 513 В.

Дроссель DCL в звене постоянного тока позволяет дополнительно сгладить пульсации напряжения после диодного моста и выполняет функции снижения гармоник выпрямителя, инжектируемых в питающую сеть.

Транзисторы T1-T6 инвертора с помощью специального алгоритма системы управления генерируют на клеммы электродвигателя 3 пакета импульсов, разнесенных по трем фазам на 120 градусов во времени. Ни рисунке ниже показана только одна фаза: пачка выходных импульсов широтно-импульсной модуляции (ШИМ), проходя через обмотку электродвигателя, сгладится до формы, напоминающей синусоиду. Частота импульсов ШИМ (опорная частота) в промышленных преобразователях обычно составляет 3-4 кГц, но для ПЧ малой мощности может доходить до 16 кГц. Чем выше частоты ШИМ, тем будет меньше гармонических искажений «синусоиды» на выходе инвертора. Но при этом возрастают тепловые потери на силовых транзисторах, что уменьшает КПД. В ПЧ Toshiba величину частоты можно изменять, регулируя таким образом тепловые потери.

ШИМ инвертора

Выходное напряжение частотного преобразователя будет всегда ниже входного сетевого напряжения. Это связано с потерями в силовом модуле и алгоритме получения ШИМ импульсов.

Между частотным преобразователем и электродвигателем можно установить дополнительный фильтр, позволяющий значительно улучшить форму выходного напряжения после частотника. Это необходимо для того, чтобы импульсы ШИМ не разрушали изоляцию обмоток двигателя и не вызывали перенапряжения на конце длинного кабеля. Подробнее о выходных фильтрах.

Тормозной прерыватель (Brake Chopper)

На схеме частотного преобразователя можно заметить еще один транзисторный ключ T7. Его назначение — сброс энергии звена постоянного тока при значительном превышении напряжения на конденсаторах. Перенапряжение возникает в том случае, когда частота вращения вала электродвигателя превышает частоту тока на клеммах электродвигателя (например, при торможении). Это часто встречается на кранах или крупных вентиляторах, когда невозможно быстро затормозить вращение.

При наступления события превышения напряжения DC, этот транзисторный ключ T7 замыкается, передавая энергию звена постоянного тока на тормозной резистор. Конечно, резистор при этом может очень сильно нагреться и даже разрушится, но при этом не пострадает наиболее дорогое оборудование — частотный преобразователь.

Тормозной резистор является опциональным оборудованием и подключается к специальным клеммам преобразователя частоты.

КПД частотного преобразователя

Такие важные параметры как КПД частотника и производительность воздушного потока для его охлаждения можно посмотреть в соответствующем столбце следующей таблицы на примере серии VF-AS3 TOSHIBA.

Питающая сеть Допустимая мощность двигателя (kW) Типоразмер частотника Размер корпуса КПД Мощность тепловыделения на радиаторе охлаждения (Вт) *1 Мощность тепловыделения передней части инвертора (Вт) *1 Требуемое значение потока воздушного охлаждения (м³/мин) Площадь стенок закрытой стальной оболочки без вентиляции (м²)
3-фазы 380/480 В 0.75 VFAS3-4004PC A1 0,89 56 26 0.32 1.13
1.5 VFAS3-4007PC A1 0,93 79 28 0.45 1.58
2.2 VFAS3-4015PC A1 0,94 100 30 0.57 2.00
4.0 VFAS3-4022PC A1 0,96 140 33 0.79 2.80
5.5 VFAS3-4037PC A1 0,96 192 37 1.09 3.83
7.5 VFAS3-4055PC A2 0,96 233 45 1.32 4.66
11 VFAS3-4075PC A2 0,97 323 53 1.84 6.47
15 VFAS3-4110PC A3 0,97 455 62 2.58 9.10
18.5 VFAS3-4150PC A3 0,97 557 70 3.16 11.14
22 VFAS3-4185PC A3 0,97 603 71 3.42 12.06
30 VFAS3-4220PC A4 0,97 770 94 4.37 15.40
37 VFAS3-4300PC A4 0,97 939 107 5.33 18.78
45 VFAS3-4370PC A4 0,97 1101 123 6.25 22.02
55 VFAS3-4450PC A5 0,98 1094 132 6.21 21.88
75 VFAS3-4550PC A5 0,98 1589 175 9.02 31.78
90 VFAS3-4750PC A5 0,98 1827 199 10.37 36.54
110 VFAS3-4900PC A6 0,97 2920 309 16.58 58.40
132 VFAS3-4110KPC A6 0,97 3457 358 19.62 69.13
160 VFAS3-4132KPC A6 0,97 4013 405 22.78 80.26
220 VFAS3-4160KPC A7 0,97 5404 452 30.68 108.08
250 VFAS3-4220KPC A8 0,97 6279 606 35.64 125.58
280 VFAS3-4250KPC A8 0,97 6743 769 38.28 134.86
315 VFAS3-4280KPC A8 0,97 7749 769 43.99 154.98

*1) В таблице приведены данные для нормального (не тяжелого) режима работы преобразователя частоты.


Области применения и экономический эффект использования частотных преобразователей

Сферы применения преобразователей частоты

  • Краны и грузоподъемные машины
    Крановые двигатели работают в старт-стопном режиме и переменной нагрузке. Применение частотных преобразователей позволяет убрать рывки и раскачивание груза при пусках и стопах. Также обеспечивается остановка крана точно в требуемом месте. При этом снижается нагрев электродвигателей и максимальный пусковой момент.
  • Привод нагнетательных вентиляторов в котельных и дымососах
    Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный КПД котельных агрегатов.
  • Транспортеры, прокатные станы, конвейеры, лифты
    Частотник позволяет регулировать скорость перемещения транспортного оборудования без рывков и ударов. Это увеличивает срок службы механических узлов и позволяет экономить электроэнергию на старт-стопных режимах по сравнению с прямым пуском.
  • Насосные агрегаты и вентиляторы
    Благодаря встроенным ПИД-регуляторам, частотники позволяют обойтись без задвижек и вентилей, регулирующих давление и расход. Также значительно увеличивается общий КПД линии водо- или воздухоподачи.
  • Перемоточные и намоточные станки
    Современные частотные приводы Toshiba содержат 2 встроенных ПИД-регулятора: контроля скорости намотки и контроля позиции в регуляторе натяжения. Таким образом можно обойтись без использования внешнего контроллера для управления скоростью и натяжением перемоточного станка.
  • Электродвигатели станков с ЧПУ и поворотных механизмов
    Использование частотника вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. Встроенное в серию AS3 Toshiba управление несколькими режимами точного позиционирования может быть использовано для построения системы управления без использования контроллера. Таким образом, ПЧ широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
  • Испытательные стенды
    В связи с тем, что ПЧ способен регулировать частоту и напряжение на своем выходе, то это можно использоваться для питания разного рода стендовой аппаратуры. Правда, для этого придется после ПЧ установить синусный фильтр для получения синусоидального выходного напряжения. Это позволит подавать на испытуемое оборудование широкий диапазон частот и напряжений.

Преимущества частотных преобразователей
  • Экономия электроэнергии
    Использование ПЧ позволяет уменьшить пусковые токи и оптимизировать потребляемую мощность благодаря встроенным алгоритмам управления.
  • Увеличение срока службы электрического оборудования и механизмов
    Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межсервисный интервал механизма и увеличить срок эксплуатации электродвигателей.
    Появляется возможность отказаться от редукторов, дросселирующих задвижек для регулирования потока, электромагнитных тормозов и прочей регулирующей аппаратуры, снижающей надежность и увеличивающей энергопотребление оборудования.
  • Отсутствие необходимости проводить техническое обслуживание
    Частотники не нуждающихся в регулярной чистке и смазке, как например, задвижки и редукторы.
  • Возможность удаленного управления и контроля параметров частотного преобразователя и подключенных к нему датчиков
    В частотниках Toshiba реализована возможность подключения удаленных устройств телеметрии и телемеханики. Это позволяет ПЧ встраиваться в системы автоматизации.
  • Широкий диапазон мощностей и типов двигателей
    Линейка ПЧ может применяться для двигателей мощностью от 100 Вт и до нескольких МВт, как на асинхронные, так и на синхронные электродвигатели.
  • Защита электродвигателя от аварий и перегрузок
    Частотные преобразователи содержат в себе защиту от перегрузок, коротких замыканий, обрыва фаз. Функции перезапуска при возобновлении подачи электроэнергии позволяют автоматически запускать двигатель.
  • Множество функциональных настроек приводов Toshiba
    Можно перечислить следующие востребованные функции ПЧ:
    • Автозапуск/перезапуск ПЧ при появлении напряжения питания
    • Возможность включения трехфазного частотника в однофазную сеть питания при определенном конфигурировании параметров
    • Множество тонких настроек для работы с подъемно-транспортным, насосным оборудованием, станками
    • Сохранение истории аварийных отключений
    • Встроенный функционал защиты двигателя от перегрева
    • Возможность работы с множеством протоколов связи
    • ПИД-регуляторы для различных областей применения
    • Работа на множестве предустановленных скоростях
    • Толчковая работа двигателя для сложного старта
    • Автоподхват вращающегося двигателя
    • Линейное, S-образное, 5-точечное задание разгона.
    • Пропуск проблемных частот (для насосного оборудования)
    • Широкий диапазон частот работы 0-400/500 Гц
    • Ручное задание диапазона частот работы электродвигателя
    • Легкий перенос настроек с одного частотника на другой
    • Работа с асинхронными и синхронными электродвигателями
    • Возможность трассировки работы преобразователя частоты для нахождения причины возникновения аварии или предупреждения
    • Траверс-контроль для текстильных машин
    • Защита от повышенного или пониженного момента (тока) двигателя
  • Замена двигателей постоянного тока
    Ранее для регулирования момента и скорости вращения часто использовались двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Их стоимость существенно дороже асинхронных двигателей и они подключаются с помощью дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные двигатели с частотным регулированием существенно уменьшает стоимость решения.

Внедрение частотных преобразователей дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и техническое обслуживание электродвигателей и оборудования. Появляется возможность использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до 3-х лет.


Частотные преобразователи Toshiba

Компания СПИК СЗМА как единственный официальный дилер Toshiba в России и СНГ предлагает купить частотные преобразователи серии VF-AS3 для решения задач регулирования скорости электродвигателя. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты. 

Высоковольтные преобразователи частоты ВПЧ

Выше рассмотрены низковольтные частотные преобразователи. Но также существует множество вариантов высоковольтных преобразователей частоты. Компания СПИК СЗМА является дистрибьютором ПЧ среднего напряжения TMEIC.

Высоковольтные преобразователи частоты MVe2 Цепь однофазного частотно-регулируемого привода

VFD

В посте обсуждается однофазная схема частотно-регулируемого привода или схема частотно-регулируемого привода для управления скоростью двигателя переменного тока, не влияя на их рабочие характеристики.

Что такое VFD

Двигатели и другие подобные индуктивные нагрузки особенно не «любят» работу с частотами, которые могут выходить за рамки их производственных спецификаций, и, как правило, становятся неэффективными, если вынуждены делать это в таких ненормальных условиях.

Например, двигатель, предназначенный для работы с частотой 60 Гц, не может быть рекомендован для работы с частотами 50 Гц или другими диапазонами.

Это может привести к нежелательным результатам, таким как нагрев двигателя, более низкие или высокие скорости, чем требуемые, и аномально высокое потребление, что делает работу очень неэффективной и снижает срок службы подключенного устройства.

Однако работа двигателей при различных условиях входной частоты часто становится вынужденной, и в таких ситуациях частотно-регулируемый привод или схема привода с переменной частотой могут стать очень удобными.

VFD — это устройство, которое позволяет пользователю управлять скоростью двигателя переменного тока, регулируя частоту и напряжение входного источника питания в соответствии со спецификациями двигателя.

Это также означает, что частотно-регулируемый привод позволяет нам управлять любым двигателем переменного тока через любую доступную сеть переменного тока, независимо от его характеристик напряжения и частоты, путем соответствующей настройки частоты и напряжения частотно-регулируемого привода в соответствии со спецификациями двигателя.

Обычно это делается с использованием данного элемента управления в виде регулируемой ручки, масштабируемой с помощью другой калибровки частоты.

Создание ЧРП в домашних условиях может показаться сложной задачей, однако взгляд на конструкцию, предложенную ниже, показывает, что, в конце концов, собрать это очень полезное устройство (разработанное мной) не так уж и сложно.

Работа схемы

Схема может быть принципиально разделена на два этапа: этап полубигового драйвера и этап логического генератора ШИМ.

В каскаде драйвера полумоста используется микросхема драйвера полумоста IR2110, которая в одиночку заботится о каскаде привода высокого напряжения, включающем в себя два МОП-транзистора с верхней и нижней стороны соответственно.

ИС драйвера, таким образом, является сердцем схемы, но для реализации этой важной функции требуется всего несколько компонентов.

Однако вышеуказанная ИС потребует высокой логики и низкой логики по частотам для управления подключенной нагрузкой на желаемой конкретной частоте.

Эти входные логические сигналы высокого и низкого уровня становятся рабочими данными для ИС драйвера и должны включать в себя сигналы для определения заданной частоты, а также ШИМ в фазе с сетевым переменным током.

Приведенная выше информация создается другим каскадом, состоящим из пары 555 микросхем и декадного счетчика.IC 4017.

Две микросхемы 555 отвечают за генерацию модифицированных синусоидальных ШИМ, соответствующих двухполупериодной выборке переменного тока, полученной с выхода понижающего мостового выпрямителя.

IC4017 функционирует как логический генератор на выходе тотемного полюса, чья переменная частота становится параметром, определяющим ОСНОВНУЮ частоту схемы.

Эта определяющая частота снимается с вывода №3 IC1, который также питает вывод запуска IC2, и для создания модифицированных ШИМ на выводе №3 IC2.

Модифицированные синусоидальные ШИМ сканируются на выходах микросхемы 4017 перед подачей на IR2110, чтобы наложить точную «печать» модифицированных ШИМ на выходе драйвера полумоста и, в конечном итоге, для двигателя, который работает.

Cx и значения потенциометра 180k должны быть соответствующим образом выбраны или отрегулированы, чтобы обеспечить правильную заданную частоту для двигателя.

Высокое напряжение на стоке МОП-транзистора верхнего плеча также должно быть рассчитано соответствующим образом и получено путем выпрямления доступного сетевого напряжения переменного тока после соответствующего повышения или понижения в соответствии со спецификациями двигателя.

Приведенные выше настройки определяют правильное значение вольт на герц (В / Гц) для конкретного двигателя.

Напряжение питания для обеих ступеней может быть объединено в общую линию, одинаковую для заземления.

TR1 — это понижающий трансформатор 0–12 В / 100 мА, который обеспечивает схемы необходимыми рабочими напряжениями питания.

Схема ШИМ-контроллера

Вам нужно будет соответствующим образом интегрировать выходы от IC 4017 из приведенной выше схемы во входы HIN и LIN на следующей схеме.Кроме того, подключите указанные диоды 1N4148 на приведенной выше схеме с затворами полевого МОП-транзистора нижнего уровня, как показано на схеме ниже.

Драйвер двигателя полного моста

Обновление:

Обсуждаемая выше простая конструкция с одним VFD может быть дополнительно упрощена и улучшена с помощью автоколебательной полной мостовой ИС IRS2453, как показано ниже:

Здесь IC 4017 полностью устранены, поскольку драйвер полного моста оснащен собственным каскадом генератора, и поэтому для этой ИС не требуется внешнего запуска.

Будучи полностью мостовой конструкцией, выходной регулятор двигателя имеет полный диапазон регулировки от нуля до максимальной скорости.

Гнездо на выводе № 5 микросхемы IC 2 может использоваться для управления скоростью и крутящим моментом двигателя с помощью метода ШИМ.

Для управления скоростью В / Гц Rt / Ct, связанные с IRS2453 и R1, связанные с IC1, могут быть соответственно настроены (вручную) для получения подходящих результатов.

Упрощение еще больше

Если вы обнаружите, что полная секция моста перегружает вас, вы можете заменить ее полной мостовой схемой на основе P, N-MOSFET, как показано ниже.Этот частотно-регулируемый драйвер использует ту же концепцию, за исключением секции драйвера полного моста, в которой используются полевые МОП-транзисторы с P-каналом на верхней стороне и N-канальные МОП-транзисторы на нижней стороне.

Хотя конфигурация может выглядеть неэффективной из-за использования полевых МОП-транзисторов с P-каналом (из-за их высокого рейтинга RDSon), использование множества параллельных полевых МОП-транзисторов с P-каналом может показаться эффективным подходом для решения проблемы низкого уровня RDSon.

Здесь 3 полевых МОП-транзистора используются параллельно для устройств с P-каналом, чтобы обеспечить минимальный нагрев устройств, наравне с N-канальными аналогами.

Создание преобразователя фазы | MetalWebNews.com

Многие качественные бывшие в употреблении промышленные машины с трехфазными электродвигателями доступны по привлекательным ценам. Большинство жилых домов не имеют доступа к трехфазной электроэнергии по разумной цене. Если строитель домашнего магазина решит использовать эти машины, он должен либо заменить трехфазные двигатели однофазными двигателями, либо найти способ использовать однофазную мощность в своем доме для их работы. В этой статье объясняется, как построить вращающийся фазовый преобразователь, который преобразует вашу однофазную электрическую мощность 220 В переменного тока в трехфазную 220 В переменного тока для питания ваших промышленных машин.

Безопасность должна быть вашей первой заботой, и любая электрическая проводка должна соответствовать вашим местным нормам и правилам. При этом для начала будут описаны некоторые типичные размеры проводов, методы защиты от перегрузки и короткого замыкания. Также следует заземлить металлический каркас двигателей и ваших машин. Это защитное заземление обычно не проводит электричество. Он присутствует в случае, если токопроводящий проводник случайно касается металлического каркаса. Это обеспечивает путь с низким сопротивлением для прохождения электричества вместо того, чтобы проходить через ваше тело на землю.

На рынке представлены два основных типа фазовых преобразователей, которые позволяют трехфазным двигателям работать с однофазным входом преобразователя. Эти типы называются статическими и поворотными. Статический преобразователь — это, по сути, всего лишь пусковая схема, которая после запуска двигателя отключается и позволяет двигателю работать на однофазном питании. Недостатком этого метода является то, что токи обмотки двигателя будут очень несбалансированными, и двигатель не сможет развивать мощность, превышающую примерно две трети своей номинальной мощности.Роторный преобразователь обеспечивает ток во всех трех фазах и, хотя и не идеален, позволяет двигателю обеспечивать полную или почти всю свою номинальную мощность. Если коэффициент обслуживания двигателя составляет от 1,15 до 1,25, тогда вы сможете использовать полную номинальную мощность в лошадиных силах. Сервисный коэффициент указан на паспортной табличке двигателя и обычно обозначается аббревиатурой S.F. Причины, по которым электрическая мощность не идеальна, носят очень технический характер и могут включать небольшой дисбаланс напряжения и тока, а также несовершенные фазовые углы между фазами.Балансировка напряжения и тока проста, если у вас есть доступ к вольтметру или, предпочтительно, амперметру с зажимами. Но даже если у вас нет этих измерителей, используя приблизительные значения рабочих конденсаторов, указанные в этой статье, токи должны быть близкими, и вы сможете получить почти полную мощность от своих трехфазных двигателей.

Терминология, используемая для описания частей фазового преобразователя, требует пояснения. Вращающаяся часть вращающегося фазового преобразователя представляет собой стандартный трехфазный электродвигатель, называемый холостым электродвигателем.Он называется так, потому что обычно он не имеет механической нагрузки, связанной с его валом. Поскольку подача однофазного питания к трехфазному двигателю не приведет к его вращению, необходимо средство для запуска холостого двигателя, вращающегося со скоростью, близкой к номинальной. Это можно сделать несколькими способами. Можно использовать трос, небольшой однофазный электродвигатель или пусковой конденсатор. Если используются механические средства, мощность на холостой ход не подается до тех пор, пока двигатель не начнет вращаться и трос или питание однофазного двигателя не будет отключено.Для уравновешивания напряжений и токов на трехфазном выходе можно использовать пару рабочих конденсаторов. В соответствии с большинством местных правил эксплуатации электрооборудования для каждой единицы оборудования требуется выключатель-разъединитель. Если для подключения питания к оборудованию используется вилка и розетка, это соответствует требованиям к отключению. Защита от перегрузки требуется для каждого двигателя. Он может быть встроен в двигатель или предоставлен отдельно. Проверьте паспортную табличку двигателя, если на ней не указано «встроенная защита от перегрузки», то ее необходимо поставить отдельно.Обычно для управления двигателем используются реле тепловой перегрузки и магнитный контактор. Магнитный контактор — это сверхмощное реле для включения и выключения двигателей. Он разработан для работы с высокими пусковыми токами двигателей. Также доступны механические (ручные) контакторы с тепловой защитой от перегрузки в составе переключателя. Для целей этой статьи два провода, по которым подается однофазное питание 220 В переменного тока, будут называться линиями 1 и 2. Они подключены к клеммам 1 и 2 холостого двигателя соответственно.Провод, идущий от третьего вывода холостого двигателя, будет называться линией 3.

Чтобы построить вращающийся фазовый преобразователь, следуйте общей схеме, показанной ниже.

Однофазный вход 220 В переменного тока подключен к линиям 1 и 2, обозначенным L1 и L2 на рисунке 1. Предохранители картриджа с выдержкой времени используются для защиты от короткого замыкания. 1R-1 и 1R-2 — главные контакты магнитного контактора (силового реле). Катушка этого реле обозначена 1R. Рабочие конденсаторы подключаются между линиями 1-3 и 2-3.Перегрузки являются частью теплового реле перегрузки с нормально замкнутым контактом, обозначенным OL-1. Этот контакт размыкается при срабатывании перегрузки. Размыкание этого контакта отключает прохождение тока через цепь управления 120 В переменного тока, обесточивая катушку 1R. Клеммы холостого двигателя имеют маркировку T1, T2 и T3. Цепь пуска использует реле 2R и его контакт 2R-1 для подключения пускового конденсатора к линиям 1 и 3, пока кнопка пуска удерживается нажатой. В проводке управления вспомогательный контакт реле 1, обозначенный 1R-X, поддерживает питание. к катушке 1R после отпускания кнопки пуска.Трехфазная выходная мощность подключается после главных контактов (1R-1 и 1R-2), так что питание от линий 1 и 2 не подключается к выходу, если фазовый преобразователь не работает.

Более простая альтернатива, которая устраняет отдельную схему пуска, а также исключает набор рабочих конденсаторов между линиями 2-3, называется самозапускающимся фазовым преобразователем. Этот дизайн обсуждается далее в этой статье.

Выберите размер провода в зависимости от тока, протекающего в проводе.Таблица 1 может использоваться в качестве руководства и основана на трехфазных двигателях 220 В переменного тока и 125% тока двигателя, указанного на паспортной табличке. Используйте только медный провод сечением не менее 14. Допускается использование провода большего диаметра, чем указано в таблице 1.

Таблица 1.
Минимальные рекомендуемые сечения проводов.

                  Провод двигателя двигателя
                   Текущий размер HP
                  ---- ------- --------

                   1/2 2.0 # 14
                   3/4 2.8 # 14
                   1.0 3.6 # 14
                   2,0 6,8 # 14
                   3,0 9,6 # 14
                   5,0 15,2 # 12
                   7,5 22,0 # 10

 

Если используется провод длиной более 50 футов, например, от панели автоматического выключателя до фазового преобразователя, выберите размер провода, чтобы падение напряжения в проводе не превышало 3 процентов. Не забудьте добавить токи всех устройств, которые будут получать энергию от этого питающего провода.Таблица 2 может использоваться в качестве руководства и основана на медном проводе.

Таблица 2.
Минимальный рекомендуемый размер провода для низкого падения напряжения.

               Текущая длина провода в футах:
                Амперы 60 

150180210 5 # 14 # 14 # 14 # 14 # 14 # 14 6 # 14 # 14 # 14 # 14 # 14 # 12 7 # 14 # 14 # 14 # 14 # 12 # 12 8 # 14 # 14 # 14 # 12 # 12 # 12 9 # 14 # 14 # 12 # 12 # 10 # 10 10 # 14 # 14 # 12 # 12 # 10 # 10 12 # 14 # 12 # 12 # 10 # 10 # 10 14 # 12 # 12 # 10 # 10 # 10 # 8 16 # 12 # 12 # 10 # 10 # 10 # 8 18 # 10 # 10 # 10 # 8 # 8 # 8 20 # 10 # 10 # 10 # 8 # 8 # 8 25 # 10 # 10 # 8 # 8 # 6 # 6 30 # 8 # 8 # 8 # 6 # 6 # 6

Выбор холостого двигателя — это первый шаг.Это должен быть трехфазный двигатель, рассчитанный на работу при доступном сетевом напряжении и частоте, обычно 220 В переменного тока, 60 Гц. Фазовые преобразователи, испытанные здесь, имели звездообразную обмотку. Некоторые двигатели имеют треугольную обмотку. Многие двигатели имеют более 3 выводов, поэтому их можно подключить более чем к одному напряжению. Двигатели с двойным напряжением обмотки обычно имеют 9 выводов, как показано на рис. 2. Рисунок 2

Проверьте паспортную табличку двигателя, если для напряжения указано 220/440, то его можно подключить в одну сторону для 220 вольт, а в другую — для 440 вольт.Если вы не уверены, отсоедините все провода и измерьте сопротивление между проводами и сравните с рисунком 2. Сила тока того же двигателя будет указана как 15 / 7,5, что означает, что он будет потреблять 15 ампер при подключении для 220 В переменного тока и 7,5 ампер при подключении для 440 В переменного тока. Рейтинг скорости не важен; от 1100 до 3600 об / мин все в порядке. Более высокая скорость может привести к немного лучшим фазовым углам, но более низкая скорость обычно легче запускается. Рекомендуются двигатели на шариковых подшипниках, а не двигатели с подшипниками скольжения.Если у двигателя есть масляные колпачки, это подшипник скольжения, если у него есть пресс-масленки или вообще нет штуцеров, это подшипник шарикового типа. Проверните двигатель, чтобы убедиться в исправности подшипников. Кроме того, при покупке бывшего в употреблении двигателя подключите омметр между каждым проводом и корпусом, чтобы убедиться в отсутствии коротких замыканий. Это признак того, что изоляция внутри двигателя неисправна. Для справки: стоимость бывшего в употреблении трехфазного двигателя мощностью 2 лошадиные силы или меньше должна составлять около 20 долларов; для более крупных двигателей используйте около 10 долларов за каждую лошадиную силу.Номинальная мощность холостого двигателя должна быть такой же или выше, чем у самого большого трехфазного двигателя, который вы будете использовать. Если у вас есть оборудование, которое запускается с нагруженным двигателем, например воздушный компрессор, то рекомендуется в 1,5 раза больше мощности двигателя.

Пусковой конденсатор должен быть рассчитан минимум на 250 В переменного тока. Можно использовать недорогой электролитический тип. Если мощность холостого двигателя составляет 1 л.с. или меньше, можно также использовать более дорогие маслонаполненные конденсаторы, используемые для рабочих конденсаторов, потому что небольшой размер не слишком дорог.В самозапускающемся фазовом преобразователе используется один и тот же набор масляных конденсаторов как для пусковых, так и для рабочих конденсаторов. Электролитический тип со временем теряет емкость, поэтому его следует покупать новым. Его можно отличить по круглому черному пластиковому корпусу. Рейтинг в микрофарадах следует выбирать исходя из номинальной мощности холостого двигателя. Поскольку холостой двигатель запускается без механической нагрузки, его размер не является критическим, и для ориентировки подойдет любое значение от 50 до 100 микрофарад на каждую лошадиную силу.Чем выше номинал, тем быстрее двигатель набирает скорость и потребляет больше тока при запуске. Пусковой конденсатор 220–250 В переменного тока, 270–324 микрофарад продается за новый примерно за 15 долларов.

Рабочие конденсаторы не являются обязательными. Преобразователь будет нормально работать и без них, однако вы сможете получить только около 80% мощности от своих трехфазных двигателей из-за низкого тока в третьей линии. Рабочие конденсаторы обычно рассчитаны на 330 или 370 В переменного тока. Необходимо использовать маслонаполненный тип. Они рассчитаны на непрерывный режим работы переменного тока, в то время как электролитический тип не работает и может взорваться.Маслонаполненный тип не потеряет емкость с годами, и поэтому его можно купить подержанным или излишним. Новый рабочий конденсатор на 50 мкФ может стоить 50 долларов при использовании или всего 7 долларов в избытке. Его можно определить по металлическому корпусу и овальной форме (иногда прямоугольной или даже круглой). Назначение рабочих конденсаторов — уравновешивать напряжение и ток в трех фазных линиях. Один набор подключается между линиями 1 и 3. Другой подключается между линиями 2 и 3. Набор может потребоваться, потому что, если требуется более 50 микрофарад, два или более отдельных конденсатора должны быть подключены параллельно для получения желаемого значения. .Лучший способ определить их размер — это методом проб и ошибок использовать амперметр клещевого типа на трехфазных линиях при работающем трехфазном двигателе. Для идеального баланса каждый набор может иметь разное значение. В качестве руководства или если идеальная балансировка токов не требуется, рейтинг в микрофарадах можно оценить по номинальной мощности холостого двигателя. Использование одинаковой емкости от 12 до 16 микрофарад на каждую лошадиную силу должно привести к удовлетворительному балансу.


Рисунок 3 Рисунок 4

Влияние рабочих конденсаторов на напряжение и ток в трехфазных линиях показано на на рисунке 3, и на рисунке 4. На рисунке 3 холостому двигателю мощностью 3/4 лошадиных сил требуется около 18 микрофарад между линиями 1-3 и 2-3. На рисунке 4 холостому двигателю мощностью 5 лошадиных сил требуется около 70 микрофарад между фазами. Этот холостой ход был лучше всего сбалансирован с 80 микрофарадами между линиями 1-3 и 60 микрофарадами между линиями 2-3, хотя 70 микрофарад между ними были лишь немного хуже. Рисунок 5 Рисунок 6

Во время испытаний на балансировку тока трехфазный двигатель вращал только шпиндель на токарном станке, металл не резался.Это было сделано для получения повторяемой, хотя и небольшой нагрузки. В таблице 3 показан баланс тока с использованием различных рабочих конденсаторов.

Самозапускающийся фазовый преобразователь использует емкость только между одной фазой (1-3) вместо использования двух наборов, как здесь рекомендуется. Результат попытки этого с тем же фазовым преобразователем мощностью 5 лошадиных сил показан на рисунке 5. Баланс напряжений и токов улучшился по сравнению с отсутствующими конденсаторами, но не так хорошо, как включение емкости между линиями 1-3 и линиями 2-3.В любом случае, в качестве побочного преимущества, потребление однофазного тока, которое включает в себя как фазовый преобразователь, так и потребляемую мощность двигателя нагрузки, также будет значительно снижено, как показано на рисунке 6. Когда 3-фазные двигатели не работали, а работал только холостой ход. во время работы однофазный ток без рабочих конденсаторов составлял 14,8 ампер, а с рабочими конденсаторами он составлял всего 4,4 ампера, как показано треугольниками на рисунке 6. Это 70-процентное снижение тока впечатляет, но из-за изменения коэффициента мощности фактическое Потребляемая мощность изменилась всего с 379 Вт до 295 Вт или 22%.

Таблица 3.
Только токарный шпиндель с токарным двигателем мощностью 1/2 л.с.

 Однофазная линия Трехфазная линия
Амперы Вольт пФ Вт ----- Амперы ------ Емкость
                          Линия1 Линия2 Линия3 пФ Вт 1-3 2-3

17,22 246,2 0,16 685 2,37 2,42 0,43 0,45 289 0 0
15,85 246,7 0,16 627 2,27 2,33 0,59 0,43 279 10 10
10,13 246,6 0,22 545 1,91 2,09 1,29 0,39 279 50 50
 8.67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 60 60
 7,15 245,6 0,29 512 1,68 2,00 1,72 0,32 240 70 70
 7,13 245,6 0,29 504 1,81 1,88 1,76 0,32 249 80 60

 

Чтобы гарантировать, что размер рабочих конденсаторов не будет слишком большим при резке металла, была взята пара точек данных при скорости вращения шпинделя 130 об / мин и скорости подачи 0,004 дюйма / оборот при уменьшении диаметра куска мягкого материала. сталь. Первоначальный диаметр составлял 1,850 дюйма.Первый проход 0,030 уменьшил диаметр вдвое до 1,790. Второй проход 0,060 начался с диаметра 1,790 и уменьшился до 1,670. В таблице 4 перечислены результаты, которые показывают баланс, аналогичный тому, когда использовалась такая же емкость, а шпиндель не резал металл.

Таблица 4.
60 мкФ между строками 1-3 и 2-3.

 Однофазная линия Трехфазная линия
Амперы Вольт пФ Вт ----- Амперы ------
                        Линия 1 Линия 2 Линия 3 пФ Вт

8.67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 Только шпиндель
8,71 247,1 0,26 565 1,83 2,08 1,53 0,40 303 0,030 дюйма
8,85 247,1 0,30 648 1,90 2,18 1,58 0,50 387 0,060 дюйма резка

 

На схеме ниже показаны два реле.

Реле № 1 является главным силовым реле и должно иметь номинальную мощность двигателя, соответствующую размеру холостого двигателя. Их часто называют магнитными контакторами. Он имеет два основных полюса для переключения однофазных линий 220 В переменного тока и вспомогательный набор контактов, используемых для фиксации катушки реле, находящегося под напряжением, когда главные контакты замкнуты.Ролик отключается нажатием кнопки останова, которая размыкает цепь катушки, вызывая размыкание контактора. Реле номер 2 используется для подключения пускового конденсатора к цепи. Используется реле, чтобы высокие пусковые токи не проходили через кнопку. Можно использовать реле с номинальным током двигателя или, если используется реле с номинальным током, выберите, чтобы оно выдерживало ток, как минимум, в 2 раза превышающий ток, указанный на паспортной табличке. Фактический ток зависит от размера пускового конденсатора и может быть оценен с помощью следующего уравнения.6 = 24,9 ампер

 

Электрические нормы требуют отключения для каждой единицы оборудования. Выключатель (или вилка) отделяет все токоведущие проводники от напряжения сети. Для однофазных систем 220 В переменного тока это 2 провода (2-полюсный переключатель), для 3-фазных систем — 3 провода (3-полюсный переключатель). Поскольку на преобразователь фазы подается однофазное питание, он может использовать 2-полюсный разъединитель или 2 из 3 полюсов 3-полюсного переключателя. Каждая единица оборудования, использующая трехфазное питание, также должна иметь собственный трехполюсный рабочий выключатель.Многие из них имеют предохранители как часть переключателя и называются разъединителями с плавкими предохранителями. Для двигателей это полезно, поскольку перегрузки двигателя не обеспечивают достаточной защиты от короткого замыкания, как предохранители. Использование предохранителей с выдержкой времени, патронных предохранителей является обычным для цепей двигателя. Некоторые местные нормы и правила разрешают использовать разъединитель параллельной цепи или автоматический выключатель в качестве рабочего разъединителя для оборудования, если он находится в пределах видимости оборудования. Отключение фазового преобразователя часто может удовлетворить это требование в домашних магазинах.

Холостой двигатель запускается первым и обычно остается включенным, в то время как трехфазные двигатели в цехе включаются и выключаются по мере необходимости. Одновременно можно управлять более чем одним двигателем, и каждый работающий двигатель будет действовать как фазовый преобразователь для других, поэтому общая работающая мощность в лошадиных силах может в 2-3 раза превышать мощность холостого двигателя в лошадиных силах. Если вместо магнитного контактора используется ручной переключатель, то перед включением ручного переключателя необходимо удерживать кнопку включения пускового конденсатора.Когда холостой двигатель запускается (около 1 секунды или меньше), кнопка пускового конденсатора отпускается.

Коммерческие производители статических преобразователей позволяют использовать статический преобразователь для запуска холостого двигателя, чтобы несколько двигателей могли работать одновременно. Однако некоторые из этих коммерческих устройств используют реле напряжения или тока для включения пускового конденсатора. Если запускается двигатель, размер которого близок к размеру холостого хода (для которого рассчитан статический преобразователь), пусковой ток может на долю секунды снизить напряжение в сети и привести к включению пускового конденсатора.Это может привести к перегрузке статического преобразователя, поскольку другие двигатели работают. Рекомендуемая здесь конструкция не имеет этого ограничения, поскольку пусковой конденсатор включается только тогда, когда оператор нажимает кнопку пуска.


Самозапускающийся преобразователь фазы

Самозапускающийся фазовый преобразователь проще и дешевле, чем преобразователь. Схема самозапуска показана на рис. 7. Однако баланс тока и напряжения на трехфазном выходе больше изменяется в зависимости от нагрузки, так что присутствует некоторый дисбаланс. при нагрузках, отличных от той, для которой была выбрана емкость.Рисунок 7

Для многих цехов допустима небольшая величина дисбаланса, и большинство коммерческих вращающихся фазовых преобразователей являются самозапускающимися. Внутри одного коммерческого вращающегося фазового преобразователя на 2 лошадиных силы было два конденсатора по 30 мкФ, включенные параллельно, что фактически составляет 60 мкФ. Поскольку между батареей конденсаторов и двигателем было только два провода, они должны быть подключены только к одной фазе. В преобразователе на 3 л.с. другого производителя использовались три конденсатора по 40 мкФ (всего 120 мкФ.)

Для простейшего преобразователя без отдельной пусковой схемы использование 25-30 мкФ на мощность холостого хода между одной из входных линий и третьей (генерируемой) линией обеспечит приемлемый фазовый преобразователь. Если емкость слишком мала, холостой ход либо не заводится, либо запускается очень медленно. Поскольку предохранители с выдержкой времени, обычно используемые для защиты двигателя от короткого замыкания, допускают некоторую перегрузку по току для запуска в течение примерно 5 секунд, рекомендуется использовать достаточную емкость для запуска холостого хода быстрее, чем это значение.Избыточная емкость приведет к тому, что трехфазное напряжение превысит входное линейное напряжение, особенно когда холостой ход не нагружен. В таблицах 5 и 6 показаны напряжения с различной емкостью для фазового преобразователя мощностью 5 и 3 л.с. соответственно. Токарный станок, используемый для нагружения преобразователя при испытаниях, указанных в таблицах 5 и 6, имеет двигатель мощностью 1/2 л.с. используемый сверлильный станок имеет двигатель мощностью 3/4 л.с. По мере увеличения 3-фазной нагрузки напряжения на линиях 1-3 и 2-3 снижались, как показано в таблицах. В таблицах 5 и 6 также показано время, необходимое для запуска холостого хода.Вернитесь назад и сравните , рис. 4, и , рис. 5, и решите, стоит ли улучшение балансировки выходов дополнительных усилий отдельной пусковой схемы, которая требуется, если одинаковая емкость подключена к обеим линиям 1-3 и 2-3.

Таблица 5.
Самозапускающийся холостой ход 5 л.с.

 Время пуска, 3-фазные напряжения
                 Секунды L1-L2 L1-L3 L2-L3

120 мкФ: 2,6 247,1 262,8 238,7 Без нагрузки
                           246.9 255,4 231,0 Токарный станок
                           247.1 251.0 227.2 Токарный и сверлильный станок

130 мкФ: 1,6 246,9 264,8 243,7 Без нагрузки
                           246,6 258,6 234,8 Токарный станок
                           246,2 253,7 229,8 Токарный и сверлильный станок

150 мкФ: 1,0 247,9 270,3 253,6 Без нагрузки
                           246,6 263,2 244,0 Токарный станок
                           247,8 259,2 238,8 Токарный и сверлильный станок

 

Таблица 6.
Самозапускающийся холостой ход 3 л.с.

 Время пуска, 3-фазные напряжения
                 Секунды L1-L2 L1-L3 L2-L3

 50 мкФ: 0,8 245,6 249,4 225,0 Без нагрузки
                           245,6 239,0 220,0 Токарный станок

 70 мкФ: 0,8 245,5 260,4 238,7 Без нагрузки
                           
100 мкФ: 0,6 246,1 277,7 256,1 Без нагрузки
                           245,9 262,5 245,6 Токарный станок
                           245,6 255,9 236,6 Токарный и сверлильный станок

120 микрофарад: 0.6 245,5 288,0 265,7 Без нагрузки
                           245,7 270,3 254,9 Токарный станок
                           245,3 261,5 245,9 Токарный и сверлильный станок
 

Автор — Джим Ханрахан.

Преобразование однофазного источника питания в трехфазный

При проектировании проекта по переходу с однофазного на трехфазный источник питания переменного тока, с чего начать реализацию проекта? Какие проблемы могут возникнуть при преобразовании однофазной мощности в трехфазную и как их избежать?

Мы можем изменить однофазное питание на трехфазное, как в любом другом энергетическом проекте; Определите тип и размер нагрузки, исследуйте различные способы преобразования однофазного источника питания в трехфазный, после определения подходящей технологии выясните, есть ли у нас бюджет для оплаты оборудования.

Мы можем получить трехфазное питание от однофазного, как при использовании типичной модели сначала выпрямления переменного тока в постоянный, а затем преобразования постоянного тока в трехфазный источник питания переменного тока. Здесь мы можем столкнуться с некоторыми проблемами, как показано ниже, но которые можно преодолеть.

1) Размер компонентов на уровне однофазного выпрямления может потребоваться из-за высоких пиковых токов, потребляемых для поддержания напряжения промежуточного контура.
2) Качество напряжения промежуточного контура может быть низким, и, следовательно, вам могут потребоваться более качественные фильтры в конструкции.
3) Для качественной выходной волны нам может потребоваться очень высокочастотное переключение твердотельных реле. В Интернете есть несколько приложений, основанных на PIC.

Компания

GoHz построила такой проект, работая с НИОКР по электроснабжению вагонов переменного тока на железных дорогах, где однофазный переменный ток сначала преобразуется в постоянный ток (объединенный с генераторами переменного тока, установленными на оси колес автогенерирующих вагонов), затем используется дожимной прерыватель постоянного тока, а затем — постоянный ток до 3 Фазовый инвертор переменного тока (эти две ступени объединены в клубок и называются преобразователем).Продукт / система успешно использовались и хорошо себя зарекомендовали без какой-либо из трех проблем, упомянутых выше.

Существует множество проверенных технологий для создания собственного проекта преобразования однофазного источника питания в трехфазный. Вам решать, подобрать технологию для нагрузки и сделать это в рамках ваших бюджетных ограничений.

В качестве простого решения вы можете просто получить преобразователь частоты от однофазного до трехфазного, если нагрузка представляет собой трехфазный асинхронный двигатель, в то время как имеется только однофазное питание и мощность менее 5 л.с., в отличие от частотно-регулируемого привода. , статический преобразователь частоты более гибок, если нагрузке требуется чистая мощность синусоидальной волны.

Преобразователи частоты

— Системы питания и средства управления

Преобразователи частоты для 400 Гц, 100 Гц, 60 Гц, 50 Гц и 25 Гц

Преобразователи частоты , также называемые преобразователями частоты , преобразуют мощность 50 Гц и 60 Гц в мощность 400 Гц. Это выполняется либо с помощью статического преобразователя частоты с двойным преобразованием, либо с помощью двигателя-генератора, называемого вращающимся преобразователем частоты . Преобразователи частоты — это машины, которые преобразуют мощность с одной частоты на другую.Либо с помощью статических преобразователей частоты с двойным преобразованием, либо с помощью мотор-генератора, называемого вращающимся преобразователем частоты. В методе двойного преобразования выпрямитель преобразует переменный ток в постоянный, а инвертор преобразует постоянного тока обратно в переменного тока . В мотор-генераторной установке это достигается либо изменением скорости вращения генератора в версиях с ремнями и шкивами или коробкой передач, либо с помощью двигателей и генераторов с различным числом полюсов, работающих для достижения того же результата производства. желаемая выходная частота.


Примеры преобразователей частоты:


Однофазный преобразователь
: Однофазный статический преобразователь частоты серии
имеет универсальную коммуникационную платформу, позволяющую осуществлять локальный, сетевой или удаленный мониторинг и управление. Коммуникационные пакеты включают последовательный порт RS-232, а также USB. PS&C потратила много времени на разработку этого сложного коммуникационного пакета для сегодняшних технически подкованных клиентов. При добавлении батареи к SFC1 серии этот преобразователь частоты превратится в ИБП с преобразователем частоты.Статический преобразователь частоты
: Фазовый преобразователь частоты серии
SFC3 использует 6- и 12-импульсную топологию, а также топологию «IGBT» для наиболее эффективного твердотельного преобразования частоты. Это усовершенствование дает преобразователям PS&C большое преимущество перед другими традиционными преобразователями. PS&C избегает использования старых технологий в наших продуктах, что позволяет этой машине поддерживать оборудование в самых экстремальных электрических условиях. При добавлении батареи к SFC3
серии этот преобразователь частоты превратится в ИБП с преобразователем частоты.Динамический регулятор частоты
: DFR серии
будет обеспечивать такую ​​же бескомпромиссную надежность, как и все оборудование Power Systems & Controls, поскольку оно основано на нашей гибридной роторной технологии. Доступен частотный регулятор от 25 до 500 кВА. Наша приверженность качеству электроэнергии способствовала разработке этого продукта промышленного класса, который будет корректировать частоту и напряжение одновременно. Эта надежность в сочетании с долгим сроком службы дает регулятору серии DFR явное преимущество перед всеми другими регуляторами, представленными сегодня на рынке.Вращающийся преобразователь частоты
: RFC серии
включает в себя проверенную технологию мотор-генераторных установок. Вращающийся преобразователь частоты обеспечивает оборудование надежным питанием, одновременно преобразуя входное напряжение и частоту. RFC действует как вращающийся фильтр, защищающий критическую нагрузку от переходных процессов и выбросов. Как правило, это 100% эффект для отключений менее 100 мсек. Наши модели доступны с синхронным или асинхронным двигателем и предлагаются в горизонтальной или вертикальной конфигурации.

Компьютеры и небольшая электроника работают с импульсными источниками питания, способными работать как на частоте 50 Гц, так и на частоте 60 Гц. В этом случае единственное, что вам может понадобиться, это преобразователь вилки, поскольку розетки 50 Гц не то же самое, что розетки 60 Гц по следующей причине. Поскольку 60 Гц и 50 Гц работают на разных частотах, вам не нужно подключать оборудование к неправильному источнику питания. Однако, если ваше оборудование работает от напряжения 208 В (которое используется как для 50 Гц, так и для 60 Гц), все может быть в порядке. В противном случае вы рискуете повредить оборудование или нанести себе вред.После того, как вы выпустили дым из оборудования, вы не сможете его снова вставить.

Более крупное и трехфазное оборудование не может работать на неправильной частоте. Это может вызвать повреждение или преждевременный износ оборудования. Оборудование с частотой 50 Гц не может работать с частотой 60 Гц. Если вы заставите оборудование работать за пределами проектных критериев, возникнут проблемы. Скорее всего, сразу оборудование выйдет из строя (помните дым)? Если не сразу, то со временем выйдет из строя от переутомления и перегрева.В условиях постоянно растущей мировой экономики оборудование из других частей мира все чаще используется в странах, в которых оно не производилось.

Это обычно приводит к необходимости преобразователя частоты (также называемого преобразователем частоты). Это изменит частоту местной электросети (а иногда и ее напряжение) по мере необходимости. В результате он будет совместим с требованиями к питанию оборудования, с которым вы пытаетесь работать (также называемого нагрузкой).

.. .

Для каких отраслей нужны преобразователи частоты:

Конкретные отрасли промышленности предъявляют особые требования к частоте, и это зависит от того, как они подают питание на свое оборудование. Для систем авиации и вооружения требуется 400 Гц, поэтому оборудование, используемое на земле, работающее на частоте 400 Гц, требует поддержки заземления для электрической системы.

Помимо авиации и военных, использующих 400 Гц, Rail использует 25 Гц, 91,66 Гц или 100 Гц для работы своих систем сигнализации.Судовые верфи и лодочные доки требуют преобразования энергии с берега. Суда, построенные в странах с частотой 50 Гц, имеют системы электропитания, работающие на частоте 50 Гц. В этом случае вам понадобится преобразователь частоты, который будет соответствовать электрическим потребностям строящихся, ремонтируемых или стыкованных судов. Также существует множество уникальных и / или переменных частот, необходимых в лабораториях и испытательных центрах.

Когда оборудование производится в одной стране и используется в другой, есть вероятность, что вам придется не только преобразовать напряжение, но и частоту.Наиболее распространенными частотами являются 50 Гц и 60 Гц, поскольку они используются в в большинстве коммерческих машин , однако есть много приложений, не связанных с этой проблемой, которые нуждаются в преобразователях частоты. Гидроэнергия, например, производит 25 Гц.

Так ПОЧЕМУ так много разных частот? Это очень просто и связано с числом оборотов в минуту, на котором вращается основной производитель энергии. 1500 об / мин = 50 Гц , а 1800 об / мин = 60 Гц с использованием 4-полюсного синхронного генератора. С усилением глобализации мировой экономики потребность в преобразовании частоты возрастает, поскольку транснациональные корпорации из стран 60 Гц ведут больше бизнеса в странах 50 Гц и наоборот.

. . .

Технология преобразователя частоты:

Существует 2 основных типа преобразователей частоты: поворотные преобразователи частоты, изготовленные с использованием двигателя-генератора, и твердотельные (статические) преобразователи частоты, изготовленные с использованием полупроводников и силовых каскадов. Роторная машина — это грубая сила в отличие от статической машины. Статический блок предназначен для непромышленных применений. При выборе преобразователя частоты необходимо учитывать и другие факторы.Одним из факторов является то, нужен ли вам преобразователь для поддержания выходной мощности, когда электросеть больше не доступна. В этом случае преобразователь также будет источником бесперебойного питания, называемым ИБП с преобразователем частоты.

Если преобразователю частоты также необходимо очистить нестабильную входную частоту, например, принять плохой частотный диапазон на входе и обеспечить стабильную выходную частоту и напряжение, следует использовать динамический регулятор частоты. Этот блок позволяет использовать очень нестабильную утилиту, производя при этом требуемый результат.

Опираясь на опыт в области 400 Гц и на ранних этапах разработки мейнфреймов, PS&C предлагает две технологии для решения этой проблемы с преобразователем частоты Frequency Converter ; Статические ( твердотельные, ) преобразователи частоты и роторные ( мотор-генератор ) преобразователи частоты. Есть несколько факторов, которые помогут определить, какое решение по преобразованию частоты подходит для вашего проекта. Группа технических специалистов PS&C поможет вам оценить ваше приложение и выбрать лучшее решение для ваших конкретных требований.

Какие области применения преобразователя частоты:

  • В Китае открывается завод с производственным оборудованием американского производства (преобразователь 50/60 Гц).
  • Небольшой аэропорт решает добавить центр обслуживания и ремонта вертолетов (преобразователь 400 Гц).
  • Американский производитель закупает оборудование у европейского завода (преобразователь 50/60 Гц).
  • Железная дорога решает увеличить количество путей на новые территории (преобразователь 100 / 25Гц).

Преобразование фазы

Преобразование фазы

Что такое фазовое преобразование?

Фазовый преобразователь — это устройство, которое вырабатывает трехфазную электроэнергию из однофазного источника, что позволяет работать трехфазному оборудованию на объекте, имеющем только однофазное электроснабжение.

Преобразователи первой фазы были изобретены почти сто лет назад. Это были статические фазопреобразователи, и с тех пор они мало изменились. За прошедшие годы в качестве фазопреобразователей использовались другие технологии, и сотни компаний, больших и малых, производят фазопреобразователи.

Как выбрать правильный преобразователь фазы

Выбор подходящего фазового преобразователя для конкретного применения может быть сложным. Phase Technologies гордится тем, что приняла это решение настолько легко, насколько это возможно.Следующее руководство поможет вам выбрать правильный преобразователь фазы для вашего приложения. Однако, если вам потребуется помощь или возникнут вопросы, позвоните нашим опытным специалистам по продажам.

Когда использовать Phase Perfect
® Цифровой преобразователь фазы

  • Для одновременного питания
    Электроники и двигателей

    Только цифровой фазовый преобразователь Phase Perfect ® с его запатентованной полупроводниковой технологией обеспечивает безопасный, чистый трехфазный выход, который может запускать и останавливать двигатели по линии во время работы таких электронных устройств, как трансформаторы, контакторы и т. Д. печатные платы, лампы и обогреватели.

  • для питания нескольких нагрузок

    Хотя один VFD позволяет одновременно запускать несколько нагрузок, все они должны запускаться и останавливаться вместе, в противном случае могут возникнуть проблемы с управлением. Однако, в отличие от частотно-регулируемого привода, цифровой преобразователь фазы Phase Perfect ® обеспечивает гибкость, необходимую для запуска, остановки и работы оборудования в разное время.

  • Оборудование с внутренними частотно-регулируемыми приводами

    Оборудование, разработанное с внутренними частотно-регулируемыми приводами, не должно управляться внешним частотно-регулируемым приводом.Этот тип оборудования не предназначен для запуска и остановки от источника питания. Хотя это может показаться нелогичным, но частичный привод, питающий другой частотно-регулируемый привод, приведет к повреждению системы.

    Для таких нагрузок, как ЧПУ, HVAC и лифты, рекомендуется цифровой преобразователь фазы Phase Perfect ® .

Когда следует использовать частотно-регулируемый привод (ЧРП)

  • для управления двигателем

    VFD запускает, останавливает и регулирует скорость двигателей, а также обменивается данными с другими системами, такими как датчики, поплавки и программируемые логические контроллеры (ПЛК).

  • Как мягкий старт

    ЧРП обеспечивает «настоящий плавный пуск», что означает, что он не позволит двигателю превысить номинальный рабочий ток во время запуска.

  • для контроля постоянного давления

    ЧРП поддерживает постоянное давление в системе, автоматически изменяя скорость насоса в ответ на изменения давления в системе.

  • Если электроники нет

    ЧРП может работать ТОЛЬКО с нагрузками двигателя.Никогда не подключайте частотно-регулируемый привод к устройству, содержащему электронику, например, трансформаторы, контакторы, печатные платы, лампы и нагреватели, но не ограничиваясь ими.

  • для приложений Pivot

    Phase Technologies — единственная компания, которая разрабатывает и производит систему частотно-регулируемого привода с выходом для работы насосной системы и цифровым фазовым преобразователем для одновременной работы оси вращения. (См. Серию 1LH с системами AUXPOWER ™). Эта фаза системы VFD преобразует мощность, управляет системой постоянного давления и одновременно обеспечивает синусоидальную мощность для эффективного управления поворотным устройством с электроникой и GPS.

Технология фазового преобразователя

Это вращающиеся фазовые преобразователи, частотно-регулируемые приводы (VFD), адаптированные как фазовые преобразователи и новейшие технологии, цифровые фазовые преобразователи. Это может затруднить поиск одного из них. Этот технический документ «Сравнение технологий фазовых преобразователей» является хорошим источником, если вам нужно научное подробное объяснение технологий фазовых преобразователей.

Преобразователи фазы

получили широкое распространение, поскольку трехфазное питание от электросети доступно не во всех местах.Трехфазное обслуживание, как правило, дорогое в установке и может быть недоступно по любой цене в удаленных местах или жилых кварталах. Это дороже, чем однофазное обслуживание, потому что для этого требуется больше проводов, больше высоковольтных трансформаторов и другая панель обслуживания. Коммунальные предприятия также часто взимают более высокую ежемесячную плату за трехфазное обслуживание.

Между фазовыми преобразователями существенные и существенные различия с точки зрения цены, качества электроэнергии, баланса напряжений, эффективности, универсальности и простоты установки.

Цифровые фазовые преобразователи

Phase Technologies произвела революцию в технологии фазовых преобразователей, использовав проприетарное программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания идеально сбалансированной трехфазной мощности при любых условиях нагрузки.

Подобно вращающимся и статическим преобразователям фазы, цифровой преобразователь фазы генерирует третье напряжение, которое добавляется к L1 и L2 однофазной сети для создания трехфазной мощности.Однако на этом сходство заканчивается. Процесс, называемый преобразованием двойного IGBT, генерирует третье напряжение. Двойное преобразование означает, что мощность переменного тока от электросети преобразуется в постоянный, а затем обратно в переменный. Устройства переключения мощности, используемые в этом процессе, представляют собой биполярные транзисторы с изолированным затвором (IGBT).

Твердотельная конструкция обеспечивает относительно небольшой корпус без движущихся частей, за исключением небольших охлаждающих вентиляторов. Преобразователи очень эффективны, работают с КПД 95-98%. Когда преобразователь находится под напряжением без нагрузки, он потребляет очень мало энергии.

См. Цифровые фазовые преобразователи Phase Technologies

Экономия затрат
Рассчитайте собственную экономию средств

Формула Phase Perfect®

Экономия затрат = Экономия времени простоя + Экономия времени работы

Экономия времени простоя = время простоя × общее количество часов × (0,6 × рабочий ток × вольт — идеальная фаза ватт) × стоимость за кВт / ч

Экономия времени работы = время работы × (Вольт × Ампер × 1,734) × ((0,97 — 0,7) / 1000) × Стоимость за кВтч

Твердотельный статический преобразователь частоты

Georator — международный лидер в производстве и продаже твердотельных или статических преобразователей частоты.Мы работаем по всему миру и гордимся нашим качеством и сервисом. Обратитесь к одному из наших опытных торговых представителей сегодня, чтобы запросить расценки или дополнительную информацию.

Статические, электронные преобразователи мощности или преобразователи переменного тока

Твердотельные блоки

— это преобразователи мощности, преобразующие входящую мощность переменного тока в мощность постоянного тока (выпрямительный каскад), а затем преобразующие мощность постоянного тока в требуемую частоту и напряжение переменного тока. Твердотельные преобразователи частоты идеальны там, где первостепенное значение имеют шум, размер, точность или регулируемость.Статические преобразователи частоты по своей сути бесшумны, что делает их идеальными для офисных и лабораторных помещений. Типичные уровни шума не превышают 65 децибел (дБ). Обычные преобразования фазы — однофазные в трехфазные и трехфазные в однофазные.

Типовые характеристики твердотельных преобразователей частоты Georator
  • Доступны одно- и трехфазные блоки с дополнительным преобразованием фазы (например, трехфазное в однофазное, однофазное в трехфазное).
  • Подходит для использования с резистивными, емкостными, индуктивными и нелинейными нагрузками.
  • Гальваническая развязка между входом и выходом. Отсутствие гармонических искажений (EMI, EMC).
  • Чистая и стабильная синусоида на выходе.
  • Устойчивый к 300% перегрузке.
  • на базе IGBT или MOSFET, обеспечивающий высокую эффективность, низкий уровень шума и макс. Надежность.
  • Используйте технологию PWM, увеличивая компактный размер, легкий вес.
  • Оборудован цепями защиты и сигнализацией.

Какие ограничения у твердотельных преобразователей частоты?

Полупроводниковые преобразователи частоты не очень хороши при пуске нагрузки двигателя из-за типичного пускового тока двигателя, необходимого для запуска двигателей. Нагрузки двигателя требуют значительного (в 6-10 раз больше ампер полной нагрузки), чтобы просто начать работу. Этот выброс при запуске двигателя, также называемый током «заблокированного ротора», является мгновенным, длится всего несколько миллисекунд в пике и спадает до нормального рабочего тока примерно за секунду.К сожалению, статический преобразователь частоты не «знает», что этот большой скачок напряжения будет длиться всего миллисекунды, поэтому он отключается для самозащиты. Для работы с нагрузкой двигателя перегрузочная способность преобразователя должна соответствовать требованиям к запуску двигателя, что приводит к значительному завышению номинала преобразователя.

Твердотельные преобразователи также чувствительны к температуре и влажной среде. По сути, они требуют кондиционирования воздуха и не переносят суровых условий окружающей среды, таких как солевой туман.Их типичный срок службы составляет 10 лет непрерывной работы.

Регулируемый преобразователь частоты

Регулируемый преобразователь частоты

Этот вариант обеспечивает полностью регулируемое выходное напряжение и выходную частоту.

Подробнее

Преобразователь фиксированной частоты

Преобразователь фиксированной частоты

Отличный выбор, если вам нужен преобразователь частоты переменного тока, подходящий для резистивных, емкостных или индуктивных нагрузок.

Подробнее

Преобразователь частоты с резервным аккумулятором (ИБП)

Преобразователь частоты с резервным аккумулятором (ИБП)

Преобразователи частоты

Triathlon с резервным аккумулятором (ИБП) имеют множество преимуществ и дополнительных компонентов.

Подробнее

Как преобразовать однофазное питание в трехфазное

Обновлено 15 декабря 2018 г.

Кевин Бек

В Соединенных Штатах большая часть энергии, поступающей в дома людей, является однофазной.Однако электроэнергия, вырабатываемая на электростанции, является трехфазной. Это идея тех больших линий электропередачи, которые вы видите прикрепленными к высоким башням — эти линии должны передавать столько напряжения, сколько возможно, на большие расстояния, прежде чем эта мощность будет «отведена» и доставлена ​​в районы при значительно пониженном напряжении.

Однофазного питания достаточно практически для всех бытовых приборов, в то время как промышленные установки с тяжелым оборудованием требуют трехфазного питания.Но что, если вам нужно трехфазное питание, а все, что у вас есть, — это однофазное питание, поступающее в ваш дом?

Трехфазное питание: визуальная аналогия

Представьте себя и двух своих (явно скучающих) друзей, идущих взад и вперед со скоростью 2 метра в секунду (около 4,5 миль в час) по дороге, идущей на север. юг и измеряет 60 метров от конца до конца. Каждый из вас начинает в середине этого пути, идет к северному концу, возвращается к началу, продолжает идти к противоположному концу и снова возвращается к середине, тем самым завершая один 120-метровый «круг» или цикл.Поскольку каждый из вас идёт со скоростью 2 метра в секунду, один путь туда и обратно занимает у каждого человека ровно 60 секунд.

Предположим далее, что в начальной точке «статус» каждого из вас равен нулю. Вы получаете одну единицу статуса за каждый метр, который вы идете на север, и теряете единицу статуса за каждый метр, который вы идете на юг. Таким образом, всякий раз, когда один из вас достигает северного конца пути, этот человек имеет статус 30, в то время как любой, кто делает поворот на южном конце, имеет статус -30. Вы понимаете, что трое из вас могут максимально отделиться друг от друга, начав с интервалом в 20 секунд, потому что каждая схема занимает 60 секунд, и вас трое, и 60, разделенное на 3, равно 20.Если вы выполните алгебру, вы обнаружите, что когда один из вас максимизировал свой «статус» до значения 30, достигнув северного конца, двое других проходят друг друга на полпути вдоль южной части, один направляется на север, а другой — на север. юг, где каждый ходок имеет статус -15. Если вы сложите свои значения статуса вместе в такой момент, они в сумме составят 30 + (-15) + (-15) = 0. Фактически, можно показать, что это сумма всех ваших значений статуса в любое время. равно 0 до тех пор, пока вы втроем точно расставлены, как описано.

Мощность и напряжение в цепях переменного тока

Это предлагает модель того, как выглядит трехфазная электрическая мощность, за исключением того, что «напряжение» заменяется на «состояние», и вместо одного цикла, происходящего каждые 60 секунд, происходит 60 циклов напряжения каждый второй. Кроме того, вместо того, чтобы каждый человек проходил начальную точку дважды в минуту, напряжение проходит через нулевую точку 120 раз в секунду.

Из-за того, что мощность, ток и напряжение связаны математически, трехфазная мощность остается на постоянном, ненулевом уровне, даже если три отдельных напряжения складываются в ноль в любой момент.Это соотношение:

Здесь P — мощность в ваттах, V — напряжение в вольтах, а R — электрическое сопротивление в единицах, называемых омами. Вы можете видеть, что отрицательные напряжения вносят вклад в мощность, потому что возведение отрицательного числа в квадрат дает положительное значение. Полная мощность в трехфазной системе — это просто сумма мощности трех отдельных значений мощности каждой фазы.

Кроме того, если вы когда-нибудь задавались вопросом, как переменный ток (AC) получил свое название, теперь у вас есть ответ.Напряжение никогда не бывает стабильным ни в однофазных, ни в трехфазных системах, и, как следствие, нет ни тока; они связаны законом Ома: V = IR, где I означает ток в амперах («амперах»).

Однофазное питание: расширение аналогии

Чтобы расширить аналогию «приятель-ходьба-вперед-вперед» на однофазное питание, просто представьте, что двух ваших друзей зовут домой к обеду, пока вы продолжаете идти, и вот оно. у тебя есть это. То есть трехфазное питание — это буквально три однофазных источника питания, взаимно смещенных на треть цикла (или, в тригонометрическом выражении, на 120 градусов).В однофазном источнике питания каждый раз, когда одно напряжение ненадолго становится равным нулю, выходная мощность также уменьшается. Возможно, теперь вы понимаете, почему небольшие устройства, на которые не сильно влияют очень короткие перебои в подаче электроэнергии, могут работать от однофазной энергии, в то время как большие машины, которые работают с высокими уровнями мощности (мощности), не могут; им требуется большой и стабильный источник питания.

Все вышесказанное легче понять, просмотрев график зависимости напряжения от времени для трехфазного источника питания (см. Ресурсы).На этом графике отдельные фазы изображены красными, пурпурными и синими линиями. Их сумма всегда равна нулю, но сумма их квадратов положительна и постоянна. Таким образом, при неизменном значении R мощность P в этих установках также постоянна благодаря соотношению P = V 2 / R.

Для однофазной сети нет напряжений для суммирования, а напряжение однофазной сети проходит через нулевую точку 120 раз в секунду. В эти моменты мощность падает до нуля, но восстанавливается достаточно быстро, чтобы небольшие светильники, приборы и т. Д. Не испытывали заметных перебоев.

Преобразование однофазного в трехфазное

Если у вас есть трехфазный двигатель в более крупном устройстве, таком как промышленный воздушный компрессор, и у вас нет доступа к трехфазному питанию из-за особенностей вашей местной электросети настроен, существуют обходные пути, которые вы можете использовать для правильного включения вашего оборудования. (Одно из них — просто заменить трехфазный двигатель на однофазный, но это не так умно, как другие решения.)

Доступны многочисленные типы трехфазных преобразователей.Один из них, статический преобразователь , использует тот факт, что, хотя трехфазный двигатель не может запускаться от однофазной мощности, он может продолжать работать от однофазной мощности после запуска. Статический преобразователь делает это с помощью конденсаторов (устройств, которые могут накапливать заряд), что позволяет статическому преобразователю заменять одну из фаз, хотя и неэффективным способом, который гарантированно сокращает эффективный срок службы двигателя. Поворотный фазовый преобразователь , с другой стороны, действует как своего рода комбинация замещающего трехфазного двигателя и независимого генератора.Это устройство включает в себя холостой двигатель, который после того, как он приводится в движение, не вращает движущиеся части в родительских машинах, а вместо этого вырабатывает мощность, так что вся установка может достаточно хорошо имитировать трехфазную систему питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *