Балласт электронный своими руками – Трансформатор из дросселя энергосберегающей лампы. Как сделать блоки питания шуруповерта из энергосберегающих лампочек

Содержание

ЭПРА ДЛЯ ЛАМПЫ СВОИМИ РУКАМИ

Необходимость хорошего освещения радиолюбительского места занятий, с достаточным световым потоком и в тоже время экономичного,  подвигло, можно даже сказать,  на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник  «потолочно — настенного»  варианта китайского производства. Последнее понравилось более всего, но  крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два – три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить. 

Схема принципиальная

ЭПРА - схема

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

ЭПРА на макетной плате

Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – сработало.

ЭПРА - плата рисунок

Рисунок можно сохранить на ПК и увеличить

Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён – лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет – увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

ЭПРА ДЛЯ ЛАМПЫ СВОИМИ РУКАМИ

В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

ЭПРА СВОИМИ РУКАМИ

Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 – 7n5, R4 сопротивление 6 Ом, R5 — 8 Ом, R7 – 13 Ом.

Самодельный ЭПРА

Светильник «вписался»  не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Блок питания из эпра 2х36 своими руками

Блок питания из ЭПРА — полезное и очень важное устройство в радиолюбительской практике. Сейчас можно приобрести блок питания любой мощности (в пределах разумного), размера и цены, но иногда они значительным образом уступают самодельным блокам питания. В этой статье мы рассмотрим вариант изготовления самодельного блока питания из ЭПРА (балласта для энергосберегательной лампы).

Блок питания из эпра 2х36 своими руками

Существует немало конструкций с применением ЭПРА. Конструкция такого блока достаточно проста, цена не превышает 2-2,5 американских долларов. Это импульсный блок питания, предназначенный для повышения сетевых 220 Вольт до более высокого номинала, который питает энергосберегающую лампочку. Схема балласта достаточно проста, из себя представляет повышающий преобразователь (чаще всего двухтактный).

Блок питания из ЭПРА — схема

Блок питания из эпра 2х36 своими руками

В качестве силовых ключей используются импортные транзисторы MJE13003, MJE13007, в редких случаях MJE13009 и их аналоги. Транзисторы можно сказать,что создавались специально для работы в сетевых ИБП. Аналогичные транзисторы используются и в компьютерных блоках питания. Итак, для начала хочу представить основные достоинства такого блока питания.

  1. Компактные размеры и легкий вес
  2. Малые затраты и низкая стоимость
  3. Надежность работы

Это лишь основные достоинства нашего самодельного блока, но у него есть и другие (скрытые) достоинства. Некоторые ИБП работают только под определенной нагрузкой, иными словами блок питания не сможет работать в холостую или с маломощной нагрузкой. Таким свойством обладают достаточно популярные ЭТ (электронные трансформаторы), которые предназначены для питания галогенных ламп с мощностью 12 вольт. Наш блок питания включается при подачи сетевого напряжения, способен питать нагрузки с мощностью от долей ватта (светодиоды и т.п.) до 40-50 ватт. Такой блок может использоваться в качестве лабораторного блока питания для начинающего радиолюбителя.

Блок питания из эпра 2х36 своими руками

Блок питания не боится коротких замыканий на выходе (взамен электронный трансформатор выходит из строя после секундного КЗ), обладает высокой стабильностью работы и может работать в течении очень долгого времени без выключения. Суть переделки балласта заключается в ее доработке. Нам нужно мотать импульсный трансформатор, который обеспечивает гальваническую развязку от сети 220 вольт и понижает напряжение до нужного нам уровня.

Блок питания из эпра 2х36 своими руками

Трансформатор можно мотать практически на любом ферритовом сердечнике (кольца, броневые чашки или Ш-образный сердечник). Сетевая обмотка содержит 130 витков провода 0,3-0,6 мм, понижающая должна содержать 8-9 витков, что соответствует выходному напряжению 12 Вольт.

Блок питания из эпра 2х36 своими руками

Напряжение от балласта подается на обмотку трансформатора через конденсатор ( напряжение конденсатора подобрать в пределах 1000-3000 вольт, емкость 3300-6600 пкФ). Вторичную обмотку трансформатора желательно мотать несколькими жилами тонкого провода (4 жилы провода 0,5мм), на выходе получается порядка 3,5-4 Ампер. Возможно также применение готовых трансформаторов из ЭТ с мощностью 50-150 ватт.

Блок питания из эпра 2х36 своими руками

Для выпрямления напряжения следует использовать мощные импульсные диоды или диодные сборки от компьютерных блоков питания. Из отечественного интерьера можно использовать КД213. При подборе диодов для блока питания из ЭПРА следите, чтобы максимально допустимый ток диода был в районе 8-12 Ампер, сам диод должен работать на частотах 100-150 кГц.

Блок питания из эпра 2х36 своими рукамиОчень часто причиной поломки электроприбора становится неисправность аккумулятора. Вследствие этого нужен ремонт или же покупка нового оборудования. Но можно избежать больших затрат, сделав блок питания из энергосберегающей лампы своими руками. Все необходимые детали можно взять из обычной люминесцентной лампы, стоимость которой невелика.

Балласт люминесцентной лампы

В каждой энергосберегающей лампочке имеется небольшая схема, которая предотвращает мигание во время включения, а также способствует постепенному разогреву спиралей устройства. Её название — электронный балласт. Именно с помощью него газ может испускать свечение (частота 30−100 кГц, а иногда и 105 кГц).

Вследствие того, что устройство может иметь такие высокие показатели частот, коэффициент потребления энергии возрастает до единицы, а это, в свою очередь, делает энергосберегающие лампы экономично выгодными.

Блок питания из эпра 2х36 своими рукамиЗначительным преимуществом таких устройств является отсутствие какого-либо шума во время работы, а также электромагнитного поля, который негативно воздействует на организм человека.

Важную роль в схеме балласта энергосберегающей лампы играет электронный дроссель. Именно он определяет, будет ли устройство загораться сразу же с полной силой или же разогреваться постепенно в течение нескольких минут. Стоит отметить, что производитель никогда на упаковке не указывает время разогрева. Проверить это можно лишь во время эксплуатации устройства.

Те балластные схемы, которые выполняют функцию преобразования напряжения (а таковых большая часть), собираются на полупроводниковых транзисторах. В дорогостоящих устройствах схема более сложная, чем в дешёвых лампочках.

Из сгоревшей энергосберегающей лампы можно сделать заготовки для будущего импульсного блока питания. Также для этого можно взять и работающее устройство.

В составе компактной люминесцентной лампочки (КЛЛ) имеются следующие элементы:

  1. Биполярные транзисторы с защитными диодами. Как правило, они выдерживают напряжение в 700 В, а также силу тока до 4 А.
  2. Трансформатор импульсного тока.
  3. Электронный дроссель.
  4. Конденсатор (10/50 В, а также 18В).
  5. Двунаправленный триггерный неуправляемый диод (динистор).
  6. Очень редко в устройстве содержится униполярный транзистор.

Блок питания из эпра 2х36 своими руками

Во время изготовления БП из энергосберегающей лампы своими руками с использованием недешёвых экономок достаточно дополнить источник некоторыми деталями. Также в качестве основы будущего блока можно взять драйвер для светодиодов, которые зачастую устанавливают в фонарики.

Важно отметить, что для выполнения ИБП брать схему, имеющую электролитический конденсатор, не рекомендуется. Это связано с тем, что она в приборе в качестве блока питания прослужит недолго. Также для этой цели не подходят электронные балласты, в составе которых имеются специальные платы небольших размеров.

Особенности импульсного блока питания

ИБП — это инверторная система, в которой входное напряжение выпрямляется, а затем преобразуется в импульсы. Главная особенность ИБП заключается в значительном увеличении частоты тока, передающегося на трансформатор. Также стоит отметить небольшие габариты такого устройства. Ещё одним преимуществом является то, что БП во время работы не имеет никаких потерь энергии, в отличие от линейных, которые теряют значительную часть во время преобразования на трансформатор.

Принцип функционирования импульсного блока питания из энергосберегающей лампы заключается в следующем:

  1. Блок питания из эпра 2х36 своими руками
    Входной выпрямитель, состоящий из диодного моста и конденсатора, превращает переменный ток (входной) в постоянный.
  2. Инвертор, в свою очередь, трансформирует постоянный ток в переменный, но частота при этом возрастает с 50 Гц до 10 кГц, что является выше в 200 раз.
  3. Такой ток передаётся на трансформатор. Он будет или повышать, или понижать напряжение.
  4. Выходной выпрямитель преобразует переменный ток в постоянный, но при этом частота остаётся высокой.

Как правило, в современных схемах используются MOSFET — транзисторы. Их главная особенность — очень быстрая скорость переключения. Соответственно в таких балластах должны быть использованы и быстродействующие диоды. Они размещаются в выходном выпрямителе.

При изготовлении ИБП лучше использовать диоды Шоттки, поскольку они меньше всего теряют энергию во время работы на высокой частоте (в отличие от кремниевых, у которых этот показатель значительно выше).

Если же выходное напряжение очень низкое, тогда функцию выпрямителя может выполнять транзистор. Кроме того, можно вместо этого использовать дроссель. Такие простые преобразователи тока встречаются в схемах энергосберегающих ламп на 20 Вт.

Изготовление ИБП своими руками

Чаще всего во время изготовления импульсного БП требуется незначительно изменять строение дросселя, если для этой цели используется двухтранзисторная схема. Конечно же, некоторые элементы в устройстве нужно будет удалить.

Блок питания из эпра 2х36 своими рукамиЕсли же изготавливается БП, который будет иметь мощность 3,7−20 Ватт, в таком случае трансформатор не является основной составляющей. Вместо него лучше всего сделать несколько витков провода, которые закрепляются на магнитопровод. Для этого необязательно избавляться от старой намотки, их можно выполнить поверх.

Рекомендуется для этой цели использовать провод марки МГТФ, имеющий фторопластовую изоляцию. Понадобится небольшое его количество. Несмотря на это обмотка будет полностью покрыта, поскольку большая часть отводится на изоляцию. Из-за этого такие устройства имеют низкие показатели мощности. Для её увеличения требуется использовать трансформатор переменного тока.

Использование трансформатора

Главным преимуществом при изготовлении блока питания своими руками является то, что есть возможность подстраиваться под показатели трансформатора. Кроме этого, не потребуется цепь обратной связи, которая чаще всего является неотъемлемой частью в работе устройства. Даже если во время сборки были сделаны какие-либо ошибки, чаще всего такой блок будет работать.

Для того чтобы сделать собственноручно трансформатор, потребуется иметь дроссель, межобмоточную изоляцию, а также обмотку. Последнюю лучше всего выполнить из лакированного медного провода. Следует не забывать о том, что дроссель будет работать под напряжением.

Блок питания из эпра 2х36 своими руками

Обмотку нужно тщательно изолировать даже тогда, когда она имеет заводскую специальную защитную плёнку из синтетического материала. В качестве изоляции можно использовать или электрокартон, или же обычную бумажную ленту, толщина которой должна быть не меньше 0,1 мм. Только после того, как будет сделана изоляция, можно поверх неё наматывать медный провод.

Что касается обмотки, то провод лучше всего выбрать как можно толще, а вот количество необходимых витков можно подобрать исходя из требуемых показателей работы будущего устройства.

Таким образом, можно сделать ИБП, который будет иметь мощность более 20 Вт.

Назначение выпрямителя

Для того чтобы в импульсном блоке не произошло насыщение магнитопровода, требуется использовать только двухполупериодный выходной выпрямитель. В том случае, если трансформатор должен понижать напряжение, рекомендуется использование схемы с нулевой точкой. Чтобы выполнить такую схему, нужно иметь две абсолютно одинаковые вторичные обмотки. Их можно сделать самостоятельно.

Блок питания из эпра 2х36 своими руками

Следует учитывать то, что выпрямитель по типу «диодный мост» для этой цели не подходит. Это связано с тем, что значительное количество мощности во время передачи будет теряться, а значение электрического напряжения будет минимальным (менее 12В). Но если делать выпрямитель из специальных импульсных диодов, тогда стоимость такого устройства обойдётся значительно дороже.

Наладка устройства

Блок питания из эпра 2х36 своими рукамиПосле того как БП будет собран, требуется проверить его работу на максимальной мощности. Это необходимо для того, чтобы измерить температуру нагревания трансформатора и транзистора, значения которых не должны превышать 65 и 40 градусов соответственно. Чтобы избежать перегрева этих элементов, достаточно увеличить сечение провода обмотки. Также часто помогает изменение мощности магнитопровода в большую сторону (учитывается ЭПР). В том случае, если дроссель был взят из балласта светодиодного фонаря, увеличить сечение не получится. Единственным вариантом будет контролировать нагрузку на прибор.

Подключение к шу

Чтобы установить импульсный блок питания в шуруповёрт, потребуется разобрать электроинструмент. Как правило, его внешняя часть состоит из двух элементов. Следующим этапом требуется найти те провода, с помощью которых двигатель соединяется с аккумулятором. Именно их нужно соединить с блоком питания (самоделкой), используя термоусадочную трубку. Также можно спаять провода. Скручивать их настоятельно не рекомендуется.

Блок питания из эпра 2х36 своими рукамиЧтобы вывести кабель наружу, потребуется сделать отверстие в корпусе шуруповёрта. Также рекомендуется установить предохранитель, который защитит провод от повреждений у основания. Для этого можно сделать специальную клипсу из тонкой алюминиевой проволоки.

Таким образом, переделка схемы балласта в импульсный блок поможет заменить повреждённый аккумулятор у шуруповёрта. К тому же, если учитывать все нюансы из области экономики во время изготовления, то можно утверждать, что сделать ИБП своими руками выгодно.

Блок питания из эпра 2х36 своими руками

Самодельный светодиодный светильник на старом балласте от КЛЛ

На улице лето в самом разгаре, но на блоге СамЭлектрик.ру начинается зимний Конкурс статей! Напоминаю, что Правила Конкурса, все статьи и итоги можно увидеть по этой ссылке. Данный Конкурс ориентировочно будет длиться пол года, голосование и награждение участников – в декабре 2017.

Данная статья целиком посвящена электронике, автор виртуозно обращается с транзисторами, диодами, светодиодами, и делает из них полезные устройства своими руками. В статье автор показывает, как можно легко, своими руками, сделать неплохой светильник, используя старый электронный балласт, выпрямитель на транзисторе, и светодиоды.

Уважаю таких увлеченных профессионалов и желаю успехов в творчестве, а также успешного участия в Конкурсе!

Итак, представляю автора! Это – Алексей Филиппов, г.Львов, Украина. Помогал в написании статьи друг, который творит под ником “Volodymyr Lenin”, вот его канал на Ютубе.

На самом деле, статья настолько обширная, что из неё можно сделать 2 полноценных статьи. Всех, кого заинтересует эта статья, прошу задавать вопросы (в том числе, каверзные) в комментарии. А также – всерьез задуматься, чтобы самому написать статью и прислать её на Конкурс на СамЭлектрик.ру.

Итак, статья Алексея Филиппова.

Эффективный синхронный выпрямитель. Или вторая жизнь электронному хламу

Выпрямление тока при помощи диода и транзистора: преимущества и недостатки.

Речь пойдет о схеме выпрямителя с применением транзисторов с изолированным затвором, англ. сокращённо Mosfet.

В схеме применён самый распространённый Mosfet с индуцированным каналом N-проводимости. Главным преимуществом из за которого широко применяются такие ключи в современных электронных устройствах в схемах питания – это малое сопротивление и падение напряжения в открытом состоянии (не более 0.1 В).

Вот классическая схема включения для проверки и изучения работы транзистора с N-каналом:

Блок питания из эпра 2х36 своими руками

Схема включения для проверки транзистора Mosfet

Открытие ключа с N-каналом происходит когда приложить (зарядить затвор) положительное напряжение к затвору (Gate) относительно истока (Source), соответственно чтобы закрыть транзистор, нужно разрядить затвор, то есть потенциал на нём должен быть ниже напряжения открывания перехода. В открытом состоянии ключ проводит ток в обе стороны.

Напоминаю, что схема такого транзистора и цоколевка выводов такая:

Блок питания из эпра 2х36 своими руками

Есть особенности, которые нужно учитывать при выпрямлении тока при помощи такого транзистора:

  1. наличие паразитного диода между стоком и истоком.
  2. затвор имеет емкость, что влияет на скорость срабатывания при повышении частоты.

Возникает вопрос: в чём заключается эффективность выпрямителя на этих транзисторах и зачем все эти сложности? Давно придуманы диоды Шоттки, прямое падение на переходе металл-полупроводник которых в два раза меньше чем на P-N переходе у обычного кремниевого диода, но когда необходимо питание с низким напряжением и большим током потребления, потери КПД даже на диодах Шоттки уже значительные!

Таблица потерь мощности на диодах Шоттки в при работе на разных напряжениях:

напряжение блока питанияпадение на выпрямительном диоде Шотткимощность рассеиваемая на диодепотери
12 В* 1 А=12 Ватт0.4 В 1А0.4 Ватт4,8 %
5 В* 2 А=10 Ватт0.4 В 2 А0.8 Ватт8 %
3.1 В* 3 А=9,3 Ватт0.4 В 3 А1.2 Ватт11%

В современной компьютерной технике, где напряжения питания процессоров могут быть в пределах 1 В, блок питания всего компьютера делается на более высокое напряжение, при этом не страдает КПД из за потерь на выпрямителе, а уже в самой схеме напряжение блока питания преобразуется импульсными понижающими преобразователями с использованием схем синхронных выпрямителей на Mosfet.

Ниже приведена известная схема блока питания с низким выходным напряжением и с использованием Mosfet в качестве выпрямителя.

Блок питания из эпра 2х36 своими руками

Выпрямитель с низким выходным напряжением с использованием Mosfet транзистора

Верхняя обмотка трансформатора – обмотка управления транзистора, нижняя – силовая, количеством её витков определяется выходное напряжение такого выпрямителя, а площадью сечения – ток. Подробности разберём ниже.

Вторая жизнь электронных балластов КЛЛ

Радиолюбители давно широко используют платы сгоревших “экономок” (КЛЛ) со схемой электронного балласта, а также похожих по схеме электронных трансформаторов для питания галогенных ламп в своих проектах. Сейчас это актуально из за перехода на более эффективное освещение на светодиодах, такие электронные трансформаторы и балласты становятся не нужны, а их можно применить как источник питания для других целей после несложной переделки.

Электронный балласт энергосберегающих ламп можно отремонтировать, об этом есть статья Ремонт энергосберегающих ламп.

В схеме стандартного балласта от КЛЛ, переделка состоит в том, чтобы поставить перемычку как показано по схеме:

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Блок питания из эпра 2х36 своими руками

Переделка схемы энергосберегающей лампы

По схемам электронных балластов КЛЛ есть отдельная статья, там приведены много вариантов таких схем к лампам различных мощностей и производителей.

Теперь вместо лиминесцентной колбы на выход балласта подключаем высокочастотный выпрямитель, схема которого была показана выше.

Блок питания из эпра 2х36 своими руками

Блок питания из электронного балласта люминесцентной лампы

В результате получаем блок питания. Вторичную обмотку наматываем любым обмоточным проводом сложенным в несколько раз, чтобы суммарное сечение было достаточным для выбранного тока, один провод отмечаем (например облуживаем), он будет обмоткой для управления. Мотаем на катушку L 2 по верху существующей обмотки, количество витков подбирается опытным путем, обычно это 1 виток на 1 Вольт.

Обмотку для управления Mosfet нужно правильно сфазировать и напряжение на ней не должно быть более чем указано в спецификации на транзистор, это не менее 3-4 В и не более 10 В. Напряжение управляющей обмотки рассчитывается по количеству витков.

Mosfet взят из старой материнской платы, который стоял в цепи питания процессора, но его можно взять из видеокарты или другой цепи питания платы, или купить.

Блок питания из эпра 2х36 своими руками

Транзистор из материнской платы

Любой такой транзистор спокойно работает на токах 10 А и более без существенного нагрева. Для примера: падение напряжения на открытом транзисторе PHB108N при токе 10 А составит всего 0.06 В, выделение тепла 0.6 ватт для постоянного тока, учесть что в нашем случае это импульсы, то нагрев будет ещё меньше.

К сожалению, синхронный выпрямитель по такой схеме годится только для схемы полумостового мультивибратора, где есть трансформатор для положительной обратной связи. Главная проблема – это вовремя открыть ключ и вовремя закрыть, наверно именно поэтому схема называется “синхронный выпрямитель” 🙂

Так как в открытом состоянии ключ проводит ток в обе стороны, настаёт момент, когда ключ еще не закрыт, а ток (напряжение) уже пошёл на спад, происходит разрядка фильтрующего конденсатора обратно на обмотку трансформатора, в таком случае никакого выигрыша в КПД не произойдет, а даже наоборот. Для других блоков питания схема синхронного выпрямителя гораздо сложнее, в них сделаны временные задержки и опережения для корректного управления. Существуют микросхемы “драйверы синхронного выпрямителя”, предназначенные для таких целей, но пока редко встречаются и имеют много деталей обвязки. Очень надеюсь на прогресс и появление специализированных микросхем, где всё в одном, и их просто будет использовать там, где сейчас используются выпрямители на диодах 🙂

Схема полумостового мультивибратора, такая как в электронном балласте, прекрасно работает с данной схемой синхронного выпрямителя.

В теории, в момент переключения транзисторов VT1 и VT2 мультивибратора в токовой обмотке трансформатора TV1 происходит перемагничивание и смена полярности сигнала, эффект от переходного процесса в момент закрытия полевого транзистора выпрямителя совсем не мешает работе мультивибратора, а даже наоборот, сокращает время переключения транзисторов VT1,VT2 в противоположное состояние, а также наводится ток в обмотке управления, тем самым ускоряя закрытие полевого транзистора выпрямителя.

Специально для измерений была сделана ещё одна обмотка на трансформаторе TV1, которая состоит из двух витков провода.

Блок питания из эпра 2х36 своими руками

Осциллограммы работы выпрямителя на транзисторе

В начале измерим сигнал при подключенной пассивной нагрузке (резисторе), чтобы знать как работает мультивибратор электронного балласта.

Синий луч осциллографа показывает форму сигнала на этой дополнительной обмотке токового трансформатора TV1, а жёлтый луч показывает сигнал на выходе силового трансформатора, нагрузка в этот момент проволочный резистор 1 Ом.

На картинке ниже форма сигнала с выхода трансформатора уже с подключенным выпрямителем, нагрузкой выхода выпрямителя является тот же резистор 1 Ом. На практике оказалось, обратный ток который возникает в момент, когда Mosfet должен закрываться, очень мал.

Блок питания из эпра 2х36 своими руками

Измерения, схема подклчения и осциллограммы

Падение напряжения (синий луч) на транзисторе выпрямителя в момент когда он открыт около 0.05 В. В начале периода в момент открытия транзистора и в момент закрытия-видно переходные процессы в виде острого пика. На резисторе (жёлтый луч) 0.01 Ом датчике тока напряжение 0.07 В, максимальный ток в цепи можно рассчитать- получим 7А.

Большого обратного тока в момент закрытия транзистора не наблюдается из за высокой индуктивности трансформатора и дополнительного фильтра на катушке L, которая сделана из ферритового кольца взятого от трансформатора подобного электронного балласта. Продеваем провод который идет от транзистора на фильтрующий конденсатор через кольцо, получается 0.5 витка.

Преимущества данного схематического решения выпрямителя:

  • простота
  • доступность
  • хороший КПД выпрямителя
  • малые размеры
  • схема полумостового автогенератора с трансформатором тока в обратной связи рассчитана только для работы под нагрузкой
  • отсутствие защиты от короткого замыкания

Применение блока питания на электронном балласте и выпрямителе

Одно из применений – питание светодиодов, где соединение параллельное.

Такое соединение светодиодов упрощает их монтаж и повышает надежность всего светильника. Применение светодиодов в корпусе 5730 (могут быть любые другие) позволяет обойтись без отдельного радиатора, благодаря множеству источников тепловыделения небольшой мощности по большой площади. Тот же принцип охлаждения у светодиодных лент.

Светодиоды в таком включении питаются не совсем по феншую – правильное питание для светодиодов это стабилизированный ток. Ввиду дешевизны таких светодиодов, их можно применить гораздо больше чем нужно, таким образом средний ток через каждый светодиод получается меньше номинального, что хорошо сказывается на светоотдаче от каждого светодиода, повышении общей надежности и улучшает тепловой режим и охлаждение.

Самодельный светодиодный светильник

С этой схемой для питания светодиодов было сделано несколько светильников на лестничную клетку из жестяных коробок от печенья.

Приведу несколько фото светодиодного светильника, сделанного своими руками.

Блок питания из эпра 2х36 своими руками

Вырезаем отверстие в крышке банки

Блок питания из эпра 2х36 своими руками

Готовим прозрачный пластик

Блок питания из эпра 2х36 своими руками

Монтируем электронику светильника

Блок питания из эпра 2х36 своими руками

Блок питания из эпра 2х36 своими руками

Вариант монтажа с датчиком освещенности

Другой вариант самодельного светильника. Плата (основание) для монтажа светодиодов – это кусок толщиной 1 мм из анодированного алюминия, вырезанного из cломаной крышки от ноутбука:

Блок питания из эпра 2х36 своими руками

Сломанная крышка осталась после замены на новую. Алюминий крышки матрицы имеет прочное оксидное покрытие чёрного цвета, которое выступает изолятором, медную самоклеющуюся ленту наклеил непосредственно на пластину и припаял светодиоды на паяльную пасту, разогрев с низу феном. Получилась PCB плата и одновременно радиатор для охлаждения.

Медная лента и припой-крем можно купить в радиотоварах, или заказать на Али-Экспресс.

Блок питания из эпра 2х36 своими руками

Монтаж светодиодов и электронного балласта, в процессе испытаний

Тот же вид, в включенным питанием, показан на фото в начале статьи.

Ещё был переделан светильник для люминесцентной лампы в светодиодный.

Блок питания из эпра 2х36 своими руками

Переделка люминесцентного светильника в светодиодный

Как я монтировал светодиоды

Для монтажа светодиодов использована медная самоклеющаяся лента, которая после пайки светодиодов приклеивается на корпус светильника.

Блок питания из эпра 2х36 своими руками

Пайка светодиодов на медную ленту

Блок питания из эпра 2х36 своими руками

Для монтажа светодиодов использована медная самоклеющаяся лента, которая после пайки светодиодов приклеивается на корпус светильника.

Блок питания из эпра 2х36 своими руками

Медная самоклеющаяся лента после пайки светодиодов приклеивается на корпус светильника.

Светодиоды для этих светильников покупал на Али, это светодиоды 5730 и 5630.

Измерение КПД блока питания из балласта и зависимость КПД от нагрузки

Для данного светильника я применил электронный балласт от светильника 13 ватт.

Для исследования применял вольтамперметр и измеритель мощности.

Блок питания из ЭПРА своими руками

Электропитание

Главная  Радиолюбителю  Электропитание



Начнём с определения.

ЭПРА (Электронный Пуско Регулирующий Аппарат) – это устройство, предназначенное для поджига газоразрядных ламп и поддержания их в рабочем состоянии.

Соответственно, горение таких ламп без ЭПРА невозможно, а, значит, этот блок имеется во всех светильниках, которые работают с лампами на основе инертных газов, или даже в самих лампах (например, в энергосберегающих неоновых со стандартными цоколями).

Рассмотрение преимуществ и недостатков ламп мы оставим на потом, а сейчас остановимся подробнее на блоке их питания.

Основные компоненты ЭПРА

В составе подавляющего большинства таких устройств имеются:

  • Фильтр (могут отсекаться помехи из сети питания, или, наоборот, создаваемые самим блоком питания).
  • Выпрямитель.
  • Корректор мощности.
  • Выходной сглаживающий фильтр.
  • Инвертор.
  • Балласт.

Однако, в целях экономии (габаритов или конечной стоимости) некоторые производители могут убирать те или иные блоки.

Блоки могут реализовываться из самостоятельных радиоэлементов или на основе специальных микросхем.

Применение

Даже при беглом взгляде на состав ЭРПА становится понятно, что перед нами – готовый импульсный блок питания.

И, например, если светильник больше эксплуатироваться по назначению не будет, то почему бы не использовать из него пускорегулирующий блок в других целях?

Например, можно собрать компактный блок питания светодиодных лент с минимумом дополнительных деталей или зарядное устройство для аккумуляторов.

Переделка ЭПРА из энергосберегающей лампы

Так выглядит обычная люминесцентная лампа с цоколем Е27.

Рис. 1. Люминесцентная лампа с цоколем Е27

А так выглядит её принципиальная схема.

Рис. 2. Принципиальная схема люминесцентной лампы с цоколем Е27

Красным выделены элементы, которые необходимы для запуска колбы (они нам не понадобятся).

Физически блок выглядит так (после разбора лампы).

Рис. 3. Блок лампы с элементами

Практически единственное отличие от ИБП – дроссель L5. Его нужно заменить на трансформатор. Сделать это можно двумя способами:

  • Намотать на него вторичную обмотку;
  • Выпаять и заменить на подходящий трансформатор (обязательно импульсный).

Здесь сразу необходимо оговориться о мощности такого ИБП.

Примечание. Все элементы схемы для достижения компактности готового изделия подобраны строго под определённые выходные параметры. А значит, без значительной переделки и применения радиаторов / других теплоотводов выходную мощность повысить не получится. Лучше всего, если она останется в пределах исходной мощности лампы!

То есть, если лампа на 15 Вт, то при выходном напряжении в 12 В сила тока на выходе не должна быть выше 1 А (12·1= 12 Вт).

Путь с минимальными трудозатратами — конечно, замена на подходящий.

Перемотка

Штатный дроссель имеет небольшие габариты, что существенно затрудняет перемотку. И даже после переделки впаять его на место вряд ли получится (габариты увеличатся). Хотя при должной сноровке можно-таки разобрать дроссель, изолировать первичную обмотку стеклотканью и намотать 10-20 витков (толщина провода до 0,5 мм отлично подойдёт).

Переделанная схема может иметь вид как на схеме ниже.

Рис. 4. Переделанная схема

Конденсаторы С9 – 0,1 мкФ, С10 – 470 мкФ. Диоды или диодный мост должны быть импульсными.

Дополнительный трансформатор

ЭРПА можно дополнить своим трансформатором. Например, как на схеме ниже.

Рис. 5. Схема дополненная трансформатором

Здесь не обошлось без мелких переделок основной схемы. Был заменён:

  • Резистор R0 (минимум 3 Вт, можно включить два по 10 Ом, 2 Вт параллельно).
  • Конденсатор C0 (напряжение – до 350 В).
  • Транзисторы 13007 (VT1 и 2, ставятся на радиаторы с площадью минимум 20 см2).

Трансформатор можно взять готовый или намотать на основе дросселя из другой лампы, например, большей по мощности.

В качестве основы можно использовать ферритовое кольцо (2000НМ — 28 х 16 х 9мм или больше). В данной схеме использовалось кольцо с диаметрами 40 и 22 мм (внешний/внутренний), толщина – 20 мм. Первичная обмотка – 63 витка (ПЭЛ 0,85 мм2), вторичные – по 12 витков (провод тот же).

На схеме обозначена симметричная намотка вторичных обмоток. Её можно заменить одной, но на выходе должен быть диодный мост (как на первой схеме).

Схема 2 позволяет довести мощность блока питания до 100 Вт.

Больший ток может понадобиться для питания галогеновых ламп или для других задач.

Без подключённой нагрузки включать этот блок питания нельзя! Обратите внимание на показатели рассеиваемой мощности тестовой нагрузки.

Как посчитать витки трансформатора

Это, наверное, ключевой вопрос в переделке.

Алгоритм действий таков:

1. На дроссель необходимо намотать удобное количество витков (10/20/30 и т.п.).

2. Подключить нагрузку (это может быть резистор с рассеиваемой мощностью 30 Вт и больше).

3. Запитать схему и снять измерения на выходе (то есть на нагрузке).

4. Теперь легко понять какое напряжение приходится на 1 виток (имеющееся напряжение делите на количество намотанных витков).

5. Теперь можно рассчитать необходимое вам количество витков (требуемое напряжение делите на «цену» одного витка).

6. Наматываете своё количество витков.

Автор: RadioRadar

Дата публикации: 28.11.2018

Мнения читателей
  • Борис3 / 28.11.2019 — 15:23
    Практически изложенный материал повторяется на разных сайтах. На одном пишут, что R2, C11 и C8 ускоряют запуск- сомневаюсь т.к. это подключено к выходу. Здесь тоже ошибка: до 100 Вт рис.5, а не схема 2. Сомневаюсь, что из 20 Вт лампы можно только усилив элементы и намотав трансформатор получить 100 Вт- в разы увеличится ток TV1 и напряжения на базе соответственно, а превышение этого напряжения 8 В приведёт к пробою транзисторов без принятия дополнительных мер. Нельзя дроссель заменить трансформатором, как написано в начале статьи- не хватит тока первички для работы TV1, а если уменьшить индуктивность как у дросселя, то выйдет из строя всё под нагрузкой когда индуктивность снижается.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


УВЕЛИЧЕНИЕ ВЫХОДНОЙ МОЩНОСТИ ЭЛЕКТРОННОГО БАЛЛАСТА

   Балласт энергосберегательной лампы (схема управления ЛДС или просто ЭПРА) из себя представляет сетевой ИБП, который предназначен для повышения сетевых 220 Вольт до нужного номинала, для питания лампы. Схемы таких балластов работают достаточно долго и надежно, но бывают и исключения. Балласты могут иметь самую разную схематику, из которых мы выбрали наиболее часто встречающиеся схему. Суть статьи — пояснить основные проблемы таких балластов и предложить вариант умощнения схемы. 

Балласт энергосберегательной лампы - параметры работы

   Сам подопытный балласт был куплен в магазине специально для этой статьи. Для начала давайте рассмотрим конструкцию балласта. 

рассмотрим конструкцию балласта ЛДС на 40 ватт

   Итак, балласт предназначен для питания ЛДС с мощностью в 40 Ватт. Выпускаются несколько видов таких балластов. В основном они бывают для ЛДС с мощностью 20 или 40 ватт, как для одной, так и для двух ламп (к примеру — 2х20 или 2х40). Корпус достаточно удобен для монтажа, может прикрепляться буквально на любую поверхность. Открываем корпус . Плата поражает воображение! Китайские производители приятно удивляют в последнее время, сборка изящна. Сразу бросается в глаза встроенный сетевой фильтр на входе питания. В схеме сетевого фильтра можно увидеть два дросселя, сетевой предохранитель, сглаживающие емкости и термистор. Все это достаточно странно, если речь идет о китайском производителе, и скоро поймете, почему я был так удивлен. 

Сетевой фильтр помех от электронного балласта

   Дело в том, что несколько дней назад был куплен полностью аналогичный балласт на 40 ватт из того же магазина. В купленном балласте стояла совсем иная схема. Сборка также сияет аккуратностью, но стоит приглянуться и становится ясно, что количество используемых компонентов сведено к минимуму. Никакого сетевого фильтра, только голый диодный выпрямитель. Тут были использованы более дешевые и менее мощные транзисторы 13003, но вернемся к нашей схеме. После сетевого фильтра мы видим выпрямитель, после которого стоят два электролита 250 Вольт 10мкФ. Транзисторы использованы более мощные — 13007 с дополнительным охлаждением. Каждый транзистор имеет дополнительный защитный диод. Задающие обмотки намотаны на кольце феррита, само кольцо закреплено на небольшой подставке. 

переделки для увеличения выходной мощности электронного балласта

   Дальше идет накопительные дросселя. Из фотографий плохо видно, но они дополнительно залиты лаком, так, что если решите разобрать такой дроссель, то ничего не получится. Помимо этого, электросхема имеет несколько защит, при КЗ из стоя выйдут базовые ограничительные резисторы, в очень редких случаях и транзисторы. Починить такой балласт не составит труда. Для умощнения балласта нужно всего лишь поменять электролитические конденсаторы.

Для умощнения балласта нужно всего лишь поменять электролитические конденсаторы

   Увеличением их емкости можно добиться повышения общей мощности схемы. В таких схемах управления все предусмотрено с запасом, так, что замена электволитических конденсаторов не приведет к нежелательным последствиям. В моем случае конденсаторы 10 мкФ были заменены на 15мкФ, можно увеличить до 25 мкФ, дальше не пробовал.

УВЕЛИЧЕНИЕ ВЫХОДНОЙ МОЩНОСТИ ЭЛЕКТРОННОГО БАЛЛАСТА

   Такая замена увеличивает ток потребления схемы, что приводит к увеличению выходной мощности. Схема до и после замены была использована для питания строчного трансформатора, результат на лицо! С заводскими конденсаторами мощность иногда доходит до 60 ватт, при замене она увеличивается до 80 ватт (с использованием емкостей в 15мкФ). При этом, должен сказать, что транзисторы уже начинают греться и желательно менять теплоотводы на более габаритные. А в наших следующих статьях мы рассмотрим вариант изготовления импульсного БП с использованием схем управления ЛДС. Такой блок питания будет лучше некоторых заводских, на этом я с вами прощаюсь. АКА КАСЬЯН

Как проверить балласт люминесцентной лампы?

Продолжая тему ремонта светильников, многим будет полезно знать, не только как проверить люминесцентную лампу, но также и то, как проверить балласт люминесцентной лампы. Для быстрой проверки необходимо минимум приборов: контрольная лампочка, провод, пара скрепок, а также несколько минут свободного времени.

Как проверить балласт люминесцентной лампы?

Для начала необходимо представить схему электронного балласта люминесцентной лампы и внести в ее конструкцию контрольную лампочку (обозначенная красными линиями).




Схемы большинства светильников практически идентичны друг другу, отличаются лишь небольшими изменениями.

В общих словах, перед тем, как проверять электронный балласт для люминесцентных ламп, необходимо снять трубку, затем закоротить выводы нитей накала, а дальше между ними подключить обычную лампочку накала на 220 В небольшой мощности.

Внимание! Для избегания выходя из строя электронных компонентов балласта, не рекомендуется включать в сеть схему без нагрузки, т.е. без лампочки.

Для простых светильников очень удобно применять скрепку, она надежно замыкает контакты, идущие к трубке.

После всех манипуляций такую конструкцию можно включать в сеть. Рабочий балласт сможет подать напряжение на лампочку, и как видно из фото она будет светиться.

Если производился ремонт балласта своими руками, и необходимо проверять его работоспособность, лучше всего последовательно со светильником подключить еще одну лампочку. При допущенных в работе ошибках, или коротком замыкании эта лампочка будет светиться ярко, а компоненты схемы не выйдут из строя.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Балласт электронный: схема 2х36

Электронный балласт — это устройство, которое включает люминесцентные лампы. Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

балласт электронный схема

Стандартная схема устройства

Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

электронный балласт 2х36 схема

Устройства низкого КПД

Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

Устройства высокого КПД

Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

схемы электронных балластов люминесцентных ламп

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Модель на 20 Вт

Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

электронный балласт т8 схема

Схема балласта на 36 Вт

Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

Балласт Т8

Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается высокое напряжение. Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

электронный балласт схема подключения

Использование транзисторов MJE13003A

Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

принципиальная схема электронного балласта

Применение однополюсных динисторов

Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

схема электронного балласта 36w

Схема с двухполюсным динистором

Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

Электронный балласт лампы дневного света: схема и ремонт

Электронный балласт лампы дневного света: схема и ремонт

В наличии имелся неисправный драйвер от лампы дневного света 220 вольт 36Вт. Собрано неизвестной китайской конторой :). На плате наблюдались
  • Горелый предохранитель (хорошо, что был).
  • Ряд перемычек вместо деталей и нераспаянные детали.
  • Генератор на 2х высоковольтных MJE13005 и рассыпухе других элементов. Транзисторы сгорели практически в прямом смысле слова — до трещин в корпусе.
  • Феритовое колечко (TV1).
  • Относительно крупный дроссель (L2), этак 8х8, мотаный проводом 0.3 — 0.4. Зазор в сердечнике около 1мм. Индуктивность неизвестна — положимся на китайских товарищей :).
  • Выводы для лампы и никакого позистора для плавного пуска — обычное дело.
  • Другие частые неисправности таких конструкций: обрыв накала лампы, плохая пайка или контакты, пробой конденсаторов.
Донором выступила плата от другого «энергосберегающего» китайца цокольного типа. На ней имелось 2 транзистора MJE13002 — на вид менее мощные, чем MJE13005, но впринципе, ведь и радиатор можно поставить :). Кроме того, у них меньшие допустимые напряжения но… на практике их часто используют. Впринципе, от мощной энергосберегайки можно и дроссель позаимствовать — схема и суть вся та же. Кроме того, решил таки защитить родную сеть от помех и сделать включение чуть плавнее — поставил на вход фильтрующую цепь L1-C1 (из того, что было под рукой).

Схема по итогам обследования и ремонта:

Некоторые пояснения по схеме.

  • Горелый предохранитель заменил просто на тонкий волосок из многожитьного провода (вообще-то так делать на следует).
  • Трансформатор TV1, в отличии от виденных мной рекомендаций, изначально намотан немного по-другому. По обмоткам: 1,3 — 4 витка; 2 — 9 витков. Так и оставил.
  • Вместо R2, R3 у меня стояли перемычки — оставил.
  • Как я понимаю, цепь R1-C3-VD8 — нужна для запуска генератора. R4-C4 — демпферная цепь — в простых модификациях этой схемы ее иногда не ставят.
  • Диоды VD6, VD7 — защитные. Иногда попадаются схемы, где они в цепи баз. Вообще, защитный диод должен сажаться непосредственно на переход КЭ без всяких резисторов (но у меня их и нет :))
  • Конденсаторы C9-C10 образуют «среднюю точку» — в данном случае их емконсть достачто низка (обычно в таких схемах ставят порядка 100nF).
  • Кондесатор C5 задает ток через электроды. В большинстве цокольных «энергосберегаек» его емкость не превышает 4700Пф — здесь выше. По делу, параллельно ему должен стоять позистор (PTC), обеспечивающий прогрев электодов перед стартом, чтобы лампа дольше служила. Но позистора у меня не было, поэтому оставил как есть.
  • Случается вопрос о возможности протекания сквозного тока в этой схеме. Одно из объяснений, которое я слышал — в нормальном режиме транзисторы не успевают сгореть :)

Подключалась лампа OSRAM 36Вт. Без мер предосторожности(!), тк этот балласт уже был когда-то 🙂 рабочий. На практике, при отладке рекомендуется включение ламп накаливания на 40-100 Вт в разрыв провода питания устройства, что-бы видно было где и что горит и сгореть не успело :). Я же включил амперметр переменного тока :).

Зажигиние лампы практически мгновенное. Светит ровно, ярко. Амперметр показывает ~0.2А (от сети), что, вобщем, ожидаемо. Транзисторы после 10 мин работы можно вполне потрогать пальцами, т.е. температура в пределах 50С, такой же примерно и дроссель. Радиаторов ставить не стал.

(!) Описанная схема использует опасные для жизни напряжения. Не проводите самостоятельно ремонт не имея должной квалификации.

Так же для черчения схемы использовалась программа sPlan 4.0 — ничего себе такая программа. Вот схема.

UPD: За несколько лет использования пробился и был заменен конденсатор C5, все остальное живет и здравствует.

3.01.2010 -2015

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *