Автоматическое зарядное устройство своими руками: Полностью автоматическое зарядное устройство для аккумуляторов

Содержание

Полностью автоматическое зарядное устройство для аккумуляторов

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора. Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0. 5 ватт.Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком. За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением. В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм. Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода. Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Введите электронную почту и получайте письма с новыми поделками.

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор. Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором. В обоих случаях постоянное напряжение с источника питания должно быть не менее 16\17 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве.Архив к статье; скачать…

Автор; АКА Касьян

Самодельное автоматическое зарядное устройство для автомобильного аккумулятора из принтера!


Сегодня у нас весьма полезная самоделка для автолюбителей, особенно в зимнюю пору! На этот раз мы расскажем как сделать своими руками из старого принтера самодельное зарядное устройство!
Если у Вас есть старый принтер не спешите его выбрасывать, в нем есть блок питания из которого можно сделать простенькое автоматическое зарядное устройство для автомобильного аккумулятора с функцией регулировки напряжения и тока заряда. В свое время я делал самодельные снпч к принтерам Canon запас прочности которых был больше чем у принтерных печатающих головок. В связи с этим у меня дома скопилось пара-тройка принтеров с абсолютно рабочими блоками питания, вполне пригодными для создания маломощных автоматических зарядных устройств для автомобильных аккумуляторов.

По сути, это маломощный лабораторный блок питания с нижним пределом 4 Вольта и верхним пределом напряжения 14.5 Вольт имеющий селектор ограничения тока на 500мА и 800мА. Задумка была сделать

устройство которое позволит в гараже зарядить практически любой аккумулятор начиная от Li-on Li-po аккумуляторов мобильных телефонов, заканчивая АКБ для скутеров, мотоциклов и автомобильных аккумуляторов.

Принципиальная схема самодельного автоматического зарядного устройства

Схема автоматического зарядного устройства простая и не содержит дорогостоящих или дефицитных компонентов, собрать ее своими руками сможет каждый начинающий радиолюбитель.

В основе схемы лежит 2 стабилизатора:

  1. Стабилизатор тока на микросхеме LM317
  2.  Регулируемый стабилизатор напряжения выполненный на микросхеме (регулируемом стабилитроне) TL431

Так же в устройстве задействован еще одна микросхема стабилизатор Lm7812 от нее питается 12 Вольтовой кулер (который и был изначально в этом корпусе).

Собрано зарядное устройство в корпусе компьютерного ATX блока питания, все содержимое блока, кроме кулера, удалено. Микросхемы стабилизаторы Lm317 и Lm 7812 установлены каждая на свой радиатор , которые прикручены к пластиковому корпусу (ВНИМАНИЕ на общий радиатор их ставить нельзя !).

 

Схема собрана навесным монтажом на микросхемах стабилизаторов. Резисторы R2 и R3  мощностью 2-5 Ватт в керамических корпусах отвечают за ограничение тока заряда. Они устанавливаются так, что бы через них проходил воздушный поток создаваемый кулером. Их значение рассчитывается по формуле R=1.25(V) /I(A)    можете рассчитать необходимый Вам максимальный ток заряда.

Раз пошла речь о рассчетах напомню, что у нас есть онлайн калькулятор для расчета резистора для подключения  светодиодов. Если Вам необходимо плавно регулировать ток заряда, можно установить мощный реостат с дополнительным ограничивающим резистором (что бы не превысить максимально допустимый ток для Lm317 )
В моем случае был блок питания на 24 Вольта с максимальным током нагрузки 1Ампер. Необходимо из этого 1Ампера зарезервировать 0.1 Ампера на запитку кулера (на наклейке указан ток потребления) + я оставил 10% на запас прочности, соответственно под основное назначение- на зарядный ток остается 0.8 Ампера.

тест

Понятно, что током в 800 мА быстро автомобильный Акб не зарядишь. За сутки аккумулятору можно сообщить 24ч*0.8А=19.2 Ампер часа, что составляет 30-45% от емкости аккумулятора легкового автомобиля (как правило 45-65 Ач).
Если у Вас будет «донор» блок питания с током 1.5 Ампера Вы за сутки сможете сообщить 30 Ампер часов, чего возможно хватит с головой для бывшего не один год в употреблении аккумулятора.

Но, с другой стороны, заряд малым током более полезен для Акб «лучше усваивается», достаточно выкрутить пробки из акб (если он обслуживаемый), подключить зарядное устройство к акб и все! Можно заниматься своими делами и не переживать, что аккумулятор перезарядится, максимальное напряжение на батарее не превысит 14.5 Вольт, а малый ток заряда не допустит чрезмерный перегрев и выкипание электролита. В связи с тем, что можно не контролировать процесс окончания заряда, думаю данную самоделку можно смело назвать автоматическим зарядным устройством для автомобильных акб, хотя никакой «следящей автоматики» в схеме нет.
Для удобства, зарядное устройство можно снабдить Вольт метром который даст возможность наглядно контролировать процесс заряда аккумулятора. Например таким за пару у.е.

Зарядное устройство необходимо обязательно снабдить защитой от «переполюсовки». Роль такой защиты выполняют два диода с допустимым током  5 Ампер подключенные на выходя зарядного устройства в сочетании с предохранителем на 2 Ампера (при монтаже будьте внимательны и соблюдайте полярность подключения диодов!!!).   При неправильном подключении зарядного к АКБ, ток акб пойдет в зарядное через предохранитель и «упрется» в диод, когда значение тока достигнет 2 Ампера предохранитель спасет мир!  Также не забудьте снабдить устройство предохранителями по цепи 220 Вольт (в моем случае по цепи 220 Вольт предохранитель уже имеется внутри блока питания).

К автомобильному аккумулятору зарядное подключаемся при помощи специальных зажимов «крокодилов», при покупке их в интернете обращайте внимание на физический размер указанный в характеристиках, так как можно легко купить крокодилы для «лабораторного блока питания» которые будут всем хороши, но не смогут налезть на плюсовую клемму акб, а надежный контакт, как Вы сами понимаете вещь обязательная в таких вопросах. Для удобства на проводах и корпусе есть несколько капроновых стяжек-липучек с помощью которых можно аккуратно и компактно сматывать провода.

Надеюсь эта идея утилизации принтера кому-нибудь пригодится. Если Вы делали самодельные автоматические зарядные устройства для автомобильных аккумуляторов, (или не автоматические) пожалуйста поделитесь с читателями нашего сайта,- пришлите нам на почту фото, схему и небольшое описание Вашего устройства.

Если есть вопросы по схеме и принципу работы, задавайте в комментариях,- отвечу.

Смотрите так же:

Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей.

Как сделать автомобильное зарядное устройство своими руками

Далеко не у каждого автовладельца имеется в наличии зарядное устройство для автомобильного аккумулятора. Многие не считают нужным приобретать такой агрегат, считая, что он им не понадобится. Однако, как показывает практика, хотя бы раз в жизни каждый водитель оказывался в ситуации, когда необходимо ехать, а аккумулятор вышел из строя.

Необязательно приобретать новое заводское зарядное устройство, его можно самостоятельно выполнить из, например, старых электроприборов. Существует множество вариантов создания своими руками автомобильных зарядных устройств, но большая их часть обладает существенными недостатками.

Автомобильное зарядное устройство

Аккумулятор можно подзарядить даже при помощи мощного диода и обогревателя.

Подобный аккумулятор подключается через обогреватель и диод к сети, после чего по системе идёт ток в 4,5 ампера. При расходе около 10–15 киловатт через 10–15 часов аккумулятор будет заряжен полностью. Но КПД такого изобретения довольно мал (меньше 1%), так что приемлемой считать систему вряд ли можно.

Основанные на транзисторах устройства дают много тепла, но и тут не всё гладко. Они боятся ошибок при сочетании полярности и коротких замыканий. Подобная схема не даёт требуемой стабильности тока, она издаёт сильный шум и радиопомехи. Правда, наличие ферритового кольца компенсирует некоторые отрицательные стороны устройства.

Также часто встречаются самодельные варианты создания аккумуляторов из компьютерных блоков питания. Однако для доработки такой схемы желательна радиотехническая квалификация. Важно следовать чёткой инструкции. Есть вероятность, что из-за различий в электрических схемах блоков такой агрегат ни к чему хорошему не приведёт.

На видео — зарядное устройство из БП компьютера:

У многих интерес вызывает так называемая конденсаторная схема. Её КПД очень высок, тепло при работе не выделяется, соединение даёт стабильный электрический ток, который не зависит от текущего заряда и колебаний подачи тока; не страшны этой схеме и замыкания. Но при отсутствии соединения с аккумулятором на конденсаторах резко вырастает напряжение, как следствие, зарядка прекращается. Если вы в силах решить вопрос с постоянством контакта, то, в принципе, это просто идеальный вариант.

Но есть и ещё один способ зарядки аккумулятора автомобиля, основанный на балластных конденсаторах. При кажущейся сложности схему воссоздать довольно легко.

Зарядное устройство из блока питания

Создание зарядного устройства в корпусе от миллиамперметра

Все составляющие цепи устройства легко можно разместить в корпусе от миллиамперметра. Из указанного прибора нужно убрать содержимое, оставив только стрелочный компонент.

Затем выполнить монтаж навесным способом.

Сам корпус миллиамперметра выглядит как рамки прямоугольной формы, что соединены между собой уголками, в которых есть небольшие отверстия. Именно к ним легко прикреплять необходимые детали.

Так выглядит электрическая схема маломощного зарядного устройства

Трансформатор закрепляется с помощью четырёх винтов на 2-миллиметровой пластине из алюминия. В свою очередь, эта пластина крепится к уголкам снизу.

Сверху к уголкам также закреплена пластинка, но уже из стеклотекстолита той же толщины. На ней закреплены реле и конденсаторы. К тому же к этой паре уголков прикручивается печатная плата со спаянной схемой автоуправления зарядкой. Всего конденсаторов должно быть установлено 14, потому что для создания определённого номинала конденсатора следует соединять устройства параллельно друг другу. Реле и конденсаторы подсоединяются через разъём к остальным частям схемы. Это позволяет облегчить доступ при сборке к прочим элементам.

На видео — универсальное зарядное устройство своими руками:

Сзади, на внешней стороне, устанавливается ребристый радиатор из алюминия, для того чтобы охлаждать силовые диоды. Здесь же прикрепляется предохранитель и вилка для организации постоянной подачи напряжения.

Диоды закрепляются к радиатору при помощи прижимных планок внутри корпуса. Специально для этого сзади в стенке необходимо сделать отверстие прямоугольной формы. Такое решение поможет свести к минимуму выделение тепла в корпусе. Подводящие провода и выводы диодов распаиваются на планку из стеклотекстолита.

Шунт устройства — отрезок провода (1 см). Его концы нужно запаять в полоски из меди. Один конец припаивается к клемме плюса, а ко второй — проводник, который идёт от контактов реле.

Шкала милливольтметра может не подходить под необходимые измерения, именно поэтому вам, скорее всего, будет нужно создать свой вариант шкалы. Лучше сделать это на плотной бумаге и приклеить к уже существующей.

С одной стороны прикрепляются крокодилы, а, соответственно, со второй — разрезные наконечники. Сечение проводов должно быть не меньше 1 квадратного миллиметра. К сети зарядка подключается при помощи шнура.

На видео — сборка зарядного устройства:

Детали для устройства

А сейчас поговорим о том, какие именно детали используются, для того чтобы собрать автомобильное зарядное устройство своими руками:

  • Трансформатор используется типа ТН61-22, обмотки соединяются последовательным образом. Коэффициент полезного действия зарядки не меньше 0,8, сила тока — не больше 6 ампер, поэтому прекрасно подойдёт трансформатор с мощностью, равной 150 ваттам. Обмотка трансформатора обязана обеспечивать напряжение до 20 вольт при силе тока до 8 ампер. При отсутствии готовой модели можно взять любой трансформатор необходимой мощности и намотать вторичную обработку. Для расчётов количества витков применяйте специально предназначенный для этого калькулятор, который можно найти на сайтах в интернете.
  • Подходят конденсаторы из ряда МБГЧ, предназначенные для тока напряжением не меньше 350 вольт. Если конденсатор поддерживает работу с переменным током, то он подойдёт для создания зарядного устройства.
  • Диоды подойдут абсолютно любые, но они должны быть рассчитаны на ток до 10 ампер.
  • Операционным усилителем может быть выбран аналог AN6551 — КР1005УД1. Именно такую модель раньше вставляли в магнитофоны ВМ-12. Он очень хорош тем, что не требует при работе двухполярного питания, а также цепей коррекции. КР1005УД1 функционирует при колебаниях напряжения более 7 В. В общем, эту модель можно заменить любой аналогичной. К примеру, это могут быть LM158, LM358 и LM258, но тогда придётся менять рисунок печатной платы.
  • Для измерения напряжения и тока подойдёт любая электромагнитная головка, например М24. Если показатели напряжения вас не интересуют, то просто установите амперметр, который рассчитан на постоянный ток. В обратном случае напряжение контролируется тестером или мультиметром.

На видео — создание автомобильного зарядного устройства:

Проверка и настройка

В том случае, когда все элементы исправны и сборка произошла без ошибок, то схема должна заработать сразу. И автовладельцу необходимо только лишь установить порог напряжения с помощью резистора. Когда зарядка достигнет этого прибора, произойдёт переключение на режим малого тока.

Регулировка осуществляется в момент зарядки. Но лучше, наверно, подстраховать себя: настроить и проверить схемы защиты и регулирования. Из измерительных приборов для этого понадобятся мультиметр или тестер, рассчитанный на работу с постоянным напряжением.

Как заряжать собранным устройством

Существуют определённые правила, которые необходимо соблюдать при использовании самодельного автомобильного зарядного устройства.

Важно ещё до начала зарядки снять аккумулятор, очистить его от пыли и грязи. Затем протереть раствором соды, для того чтобы удалить кислотные остатки. Если частички кислоты на аккумуляторе есть, то сода начнёт пениться.

Пробки для заливки кислот в аккумуляторе необходимо выкрутить. Это делается для того, чтобы газы, образующиеся в аккумуляторе, имели возможность выходить. Затем следует проверить количество самого электролита: если уровень меньше оптимального, долейте дистиллированной воды.

После этого переключателем выставьте определённое показание тока заряда, подключите собранное устройство, учитывая при этом полярность. Соответственно, плюсовой вывод зарядки следует подсоединить к плюсовому выводу аккумулятора. Нахождение переключателя в нижнем положении приведёт стрелку устройства на показатель текущего напряжения. Вольтметр начинает в это же время показывать напряжение тока.

Зарядка аккумулятора самодельным устройством

Если ваш аккумулятор обладает ёмкостью 50 А·ч, на данный момент он заряжен на 50%, то сначала следует установить ток на отметку 25 ампер, постепенно уменьшая её до нуля. На подобном принципе функционируют автоматические устройства для зарядки. Они помогают зарядить на 100% аккумулятор автомобиля. Правда, такие устройства очень дорого стоят. При своевременной зарядке такой недешёвый аппарат не нужен.

Подводя итоги, можно сказать, что, используя даже б/у детали от старых приборов, можно собрать вполне приличное зарядное устройство для автомобильного аккумулятора. Если нет способностей выполнить это самостоятельно, то всегда можно найти такого умельца в каждом гаражном кооперативе. И уж наверняка обойдётся это существенно дешевле, чем купить новое заводское устройство.

Как сделать зарядное устройство для АКБ своими руками? Схема изготовления зарядного устройства для аккумулятора из трансформатора Самодельное автоматическое зарядное устройство для аккумулятора 12в.

Рано или поздно автомобиль может перестать заводиться из-за низкого заряда аккумулятора. Долгая эксплуатация приводит к тому, что генератор больше не способен заряжать батарею. В таком случае нужно обязательно держать под рукой хотя бы самое простое зарядное устройство для автомобильного аккумулятора.

Сейчас на смену обычным трансформаторным зарядкам приходит новое поколение усовершенствованных моделей. Большой популярностью среди них пользуются импульсные и автоматические ЗУ. Ознакомимся с принципом их работы, а те, кто уже хочет мастерить — переходите

Импульсные зарядки для АКБ

В отличие от трансформаторного, импульсное зарядное устройство для автомобильного аккумулятора обеспечивает полный заряд. Однако, его главные преимущества заключаются в простоте использования, значительно меньшей цене и компактном размере.

Заряд аккумулятора импульсными устройствами осуществляется двумя этапами: сперва при постоянстве напряжения, а затем при постоянстве тока (часто процесс зарядки автоматизируется). В основном современные зарядные устройства состоят из однотипных, но очень сложных схем, поэтому в случае их поломки неопытному владельцу лучше приобрести новое.

Кислотно – свинцовые аккумуляторы очень чувствительны к температуре. При жаркой погоде уровень заряда батареи не должен быть ниже 50%, а в условиях сурового мороза не ниже 75%. В противном случае аккумулятор может перестать работать, поэтому потребуется его подзарядка. Импульсные устройство очень хорошо подходят для этого и не портят аккумулятор.

Автоматические ЗУ для автомобильных аккумуляторов

Неопытным водителям лучше всего подойдет автоматическое зарядное устройство для автомобильного аккумулятора. Оно имеет ряд функций и защит, которые известят Вас о неправильном подключении полюсов и запретят подачу электрического тока.

Некоторые устройства рассчитаны на измерение емкости и уровня заряда аккумулятора, поэтому их применяют для зарядки аккумуляторных батарей любого типа.

Электрические схемы автоматических устройств содержат специальный таймер, благодаря которому можно осуществлять несколько различных циклов: полную зарядку, быструю подзарядку и восстановление аккумулятора. После завершения процесса устройство проинформирует об этом и отключит нагрузку .

Очень часто из-за неправильной эксплуатации аккумулятора на его пластинах образуется сульфитация. Цикл заряда-разряда не только избавляет батарею от появившихся солей, но и продлевает срок ее службы.

Не смотря на низкую цену современных ЗУ, случаются моменты, когда под рукой не оказывается должной зарядки. Поэтому вполне реально сделать зарядное устройство для автомобильного аккумулятора своими руками. Рассмотрим несколько примеров самодельных устройств.

Зарядка для АКБ из блока питания компьютера

У кого-то могут оставаться старые компьютеры с рабочим блоком питания, из которого можно получить отличное зарядное устройство. Оно подойдет практически для любых АКБ. Схема простого зарядного устройства из блока питания компьютера

Практически у каждого блока питания на месте DA1 стоит ШИМ — контроллер на микросхеме TL494 или аналогичной ей KA7500. Для заряда аккумулятора требуется ток в размере 10% от полной емкости батареи (обычно от 55 до 65А*ч), поэтому любой БП мощностью свыше 150 Вт способен выработать его. Изначально нужно выпаять ненужные провода с источников -5 В, -12 В, +5 В, +12 В.

Далее необходимо выпаять резистор R1, который заменяется подстроечным резистором с наивысшим значением 27 кОм. Напряжение с шины +12 В будет передаваться на верхний вывод. Затем от основного провода отключается 16 вывод, а 14 и 15 просто перерезаются на месте соединения.

Примерно таким должен быть БП на начальной стадии переделки.

Теперь на задней стенке блока питания устанавливается потенциометр-регулятор тока R10, и пропускаются 2 шнура: один сетевой, другой для подключения к клеммам АКБ . Рекомендуется заранее приготовить блок резисторов, с помощью которого подключение и регулировка осуществляется намного удобнее.

Для его изготовления параллельно соединяются два токоизмерительных резистора 5W8R2J мощностью 5 Вт. В итоге суммарная мощность достигает 10 Вт, а необходимое сопротивление равно 0,1 Ом . Для настройки зарядного устройства на эту же плату закрепляют подстроечный резистор. Необходимо удалить некоторую часть печатной дорожки. Это поможет исключить возможность появления нежелательных связей между корпусом устройства и основной цепью. Обратить на это внимание следует по 2 причинам:

Электрические соединения и плата с блоком резисторов устанавливаются согласно вышеуказанной схеме.

Выводы 1, 14, 15, 16 на микросхеме сначала следует облудить, а потом подпаять многожилистые тонкие провода.

Полный заряд будет определяться напряжением холостого хода в пределах от 13, 8 до 14,2 В . Его необходимо выставить переменным резистором при среднем положении потенциометра R10. Для подключения выводов к клеммам АКБ на их концы устанавливаются зажимы типа «крокодил». Изоляционные трубки на зажимах должны быть разного цвета. Обычно красный цвет соответствует «плюсу», а черный – «минусу». Не стоит путаться с подключением проводов, иначе это приведет к порче прибора .

В конечном итоге зарядное устройство для автомобильного аккумулятора из бп компьютера должно выглядеть примерно так.

Если зарядное устройство будет применяться исключительно для зарядки аккумуляторной батареи, то можно отказаться от вольт- и амперметра. Чтобы задать начальный ток достаточно использовать отградуированную шкалу потенциометра R10 со значением 5,5-6,5 А. Почти весь процесс зарядки не требует человеческого вмешательства.

Зарядное устройство такого типа исключает возможность перегрева или перезарядки АКБ.

Простейшее ЗУ с использованием адаптера

В роли источника постоянного тока здесь выступает приспособленный 12-вольтовый адаптер . На этот случай схема зарядного устройства для автомобильного аккумулятора не потребуется.

Главное учесть важную особенность – напряжение источника питания должно быть равным напряжению самого аккумулятора , в противном случае батарея не будет заряжаться.

Конец провода адаптера обрезается и оголяется до 5 см. Далее провода с разноименными зарядами отдаляются друг от друга на 40 см. Затем на конец каждого провода одевается «крокодил» (тип зажимов), каждый из которых должен отличаться по цвету, чтобы избежать путаницы с полярностью. Зажимы последовательно подключают к аккумулятору («от плюса к плюсу», «от минуса к минусу») и после этого включают адаптер.

Сложность заключается только в выборе правильного источника питания. Также стоит обратить внимание на то, что в процессе аккумулятор может перегреться. В таком случае нужно прервать зарядку на некоторое время.

Ксеноновая лампа один из лучших источников света для авто. Узнайте, какой штраф за ксенон перед тем, как его устанавливать.

Установить парктроник сможет каждый желающий. Убедиться в этом можно на этой странице . Переходите и узнайте, как установить парктроник самому.

Многими водителями доказано, что полицейский радар «Стрелка» не прощает ошибок. По этой ссылке /tuning/elektronika/radar-detektor-protiv-strelki.html можно узнать, какие радар-детекторы смогут уберечь водителя от штрафа.

Зарядное устройство из бытовой лампочки и диода

Для создания нехитрого ЗУ потребуется несколько простых элементов:

  • бытовая лампочка мощностью до 200 Вт. От ее мощности зависит скорость подзарядки аккумулятора – чем выше, тем быстрее ;
  • полупродниковый диод, проводящий электричество только в одном направлении. В качестве такого диода можно использовать зарядку от ноутбука ;
  • провода с клеммами и штекер.

Схема подключения элементов и процесс зарядки АКБ наглядно продемонстрированы на этом видео.

При правильной настройке схемы лампочка будет гореть в полнакала, а если она совсем не горит, то значит нужно доработать схему. Возможно, лампочка не будет гореть в случае полного заряда АКБ, что является маловероятным (на клеммах напряжение высокое, а значение тока маленькое).

На зарядку уходит примерно 10 часов, по истечению которых обязательно отключите зарядное устройство от сети, иначе перегрев аккумулятора приведет к выходу его из строя.

В экстренных случаях подзарядить аккумулятор можно с помощью достаточно мощного диода и обогревателя методом тока от сети. Последовательность подключения к сети должна быть следующая: диод, обогреватель, аккумулятор. На такой способ уходит большое количество электроэнергии, а КПД значительно мал – 1%. Это самодельное зарядное устройство для автомобильного аккумулятора можно считать самым простым, но крайне ненадежным.

Заключение

На создание самого простого зарядного устройства, которое не будет портить Ваш аккумулятор, потребуется немало технических знаний. Сейчас на рынке представлен широкий выбор зарядок с большим функционалом и простым интерфейсом для работы.

Поэтому при возможности лучше иметь при себе надежное устройство с гарантией того, что аккумуляторная батарея не будет подвергаться риску и продолжит стабильную работу.

Взгляните на это видео. На нем показан еще один способ быстро зарядить АКБ своими руками.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Посмотрите на картинке на схему зарядного устройства Рассвет 2 . Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ


Посмотрите на картинке принципиальную схему умного зарядного устройства . Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ



Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства


Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника


1 схема мощного ЗУ



Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.


Многие уже могли видеть советское зарядное устройство . Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М


За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ


Трансформатор — преобразует напряжение питания сети 220 Вольт в необходимо для нас 12 Вольт либо в некоторых устройствах до 14,4 Вольта (последнее соответствует напряжению питания электросети автомобиля при работающем генераторе)

Диодный мост — это четыре соединенных между собой диода которые преобразуют переменное электричество в постоянное.

Блок управления зарядом — один из самых важных элементов, который управляет токами заряда. Позволяет зарядить аккумулятор полностью и при этом не перезарядить его (не позволяет закипеть электролиту внутри аккумулятора)

Регуляторы, разъемы, индикаторы и др органы управления.

Провода и клеммы для подключения к аккумулятору.

Итак рассмотрим один из самых дешевых образцов зарядного устройства — рыночная стоимость около 40 долларов.

Технические характеристики зарядного устройства:

Заряжает аккумуляторы от 10 до 75 ампер часов.
Есть возможность заряжать 6v или 12v аккумуляторы для автомобиля, мотоцикла, скутера, мопеда и т.д.
(На передней панели мы визуально можем найти специальные переключатель между напряжениями 6 или 12 Вольт аккумулятора).
Ток подаваемый на аккумулятор в конце заряда уменьшается автоматически.
(На передней панели мы так же можем увидеть амперметр, для индикации тока заряда)

Рассмотрев зарядное устройство изнутри мы можем найти такие основные элементы
— трансформатор
— диодный мост
— предохранитель
— переключатель выходного напряжение
— провода на клеммы подключаемые к аккумулятора.

В нашем варианте блок управления зарядом отсутствует.

В принципе эта схема тоже имеет право на жизнь и работает она следующим образом.

Принцип работы зарядного устройства:

Трансформатор рассчитан на определенный ток заряда — скажем не более 7,5 Ампер.
При подключении разряженного аккумулятора максимально допустимой емкости 75 Ампер, трансформатор отдает максимально допустимые ток в 7,5 Ампера что является 1/10 емкости аккумулятора.

По мере зарядки аккумулятора напряжение на его клеммах увеличивается и ток заряда уменьшается (именно поэтому благодаря законам физики ток подаваемый на аккумулятор в конце зарядки будет уменьшаться).

К сожалению такое зарядное устройство вряд ли закончит когда то процесс зарядки, и если аккумулятор у вас неисправен и не набирает нужной емкости — ток заряда не будет уменьшаться.

В современном мире все чаще люди склоняются к покупке не обслуживаемого аккумулятора. В случае если с ним что то случается и он не заряжается — он подлежит замене.

Зарядное устройство без блока управления никак не поможет вам восстановить свойства аккумулятора, но опять таки в наше время этим редко кто занимается. Более сложные устройства умеют создавать режим импульсной зарядки, когда после каждого импульса зарядки следует импульс зарядки. Это позволяет возобновить свойства аккумулятор.

Часто в более продвинутых зарядных устройствах так же есть функция разрядки, так как аккумулятор должен всегда находится в режиме полной зарядки и разрядки — это позволяет сохранить его емкость.

Если вы пользуетесь не обслуживаемым аккумуляторам и вам попросту надо срочно зарядить аккумулятор после долгого простоя автомобиля или после холодной ночи — вы можете сделать такое зарядное устройство самостоятельно.

1. Трансформатор.
Первое что вам нужно — это трансформатор с выходным напряжением 12 Вольт — 14 Вольт с толстой вторичной обмоткой, которая сможет обеспечить ток равный 1/10 емкости вашего аккумулятора.

Не стоит использовать трансформатор для калькулятора или плеера они очень маломощны. Возможно вам удастся найти более мощный трансформатор скажем от старого телевизора (типа ТС-180-2). Если ваш трансформатор не выдаете нужного напряжение, вы можете намотать нужную вторичку самостоятельно — толстым медным проводом несколько витков до достижения нужного напряжения.

Помните, когда вы работаете с трансформатором, что он подключен к сети 220 Вольт — будьте очень осторожны (это опасно для жизни)!

Если у вас получилось найти или изготовить такой трансформатор, далее вам необходимо будет купить диодный мостик.

2. Диодный мостик

Диодный мостик заводского изготовления. Рассчитан на большие токи зарядного устройства

Это довольно распространенный товар — все что вам нужно знать это только лишь ток на который он должен быть рассчитан. В нашем случае это все так же 7,5 Ампера.
Если диодный мостик найти не удалось вы можете найти 4 диода все по тому же показателю и собрать диодный мостик из них.

Далее на выходе диодного мостика вам нужно поставить автомобильный предохранитель все на тот же рассчитанный ток 7,5 Ампер. В случае если вы случайно замкнете клеммы или перепутаете их местами на аккумуляторе, у вас сгорит предохранитель, а не трансформатор.

3. Амперметр
Для полноты картины, вы можете так же установить амперметр последовательно с предохранителем, что бы отслеживать какой ток течет от вашего зарядного устройства. В тоже время вы сможете понять в каком состоянии находится аккумулятор на данный момент.

4. Провода и клеммы.
Далее следуют провода и клеммы которые можно будет подключать на аккумулятор. Тут вы имеете полную свободу действий. Провода лучше всего взять медные толщиной не менее 1 мм. Клеммы можно взять либо обычные автомобильные, либо крокодилы как на заводском варианте.

Так же перед трансформатором стоит поставить предохранитель, скажем на 220 Вольт 0,5 Ампер, что бы вдвойне обезопасить ваш трансформатор с двух сторон, по входному и выходному току.

Таким образом вы получите прибор, который по нескольким мелким параметрам будет даже лучше и надежнее заводского аналога.

Если у вас есть желания сделать прибор еще функциональнее, вы можете поискать в интернете блоки управления заряда.
Основные приимущества блока управления заряда аккумулятора:
— регулирует ток заряда — уменьшает его до минимальных величин до полного заряда аккумуляторной батареи
— выключет блок зарядки при достижении полного заряда аккумулятора
— разряжает аккумулятор полностью для полного чистого цикла зарядки
— заряжает аккумулятор импульсными токами, чередую заряд и разряд для восстановления емкости.

В условиях нынешнего суматошного мира, не обслуживаемых аккумуляторов с запасом срока службы в пять лет — вы вряд ли будете заниматься восстановление аккумуляторов.

В любом случае успехов вам в ваших начинаниях!

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Зарядные устройства для автомобильного аккумулятора своими руками

Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора. Для решения проблемы потребуется воспользоваться зарядкой для АКБ, которая стоит немалых денег. Чтобы не тратиться на покупку нового зарядного устройства для автомобильного аккумулятора, можно смастерить его своими руками. Важно только отыскать трансформатор с необходимыми характеристиками. Для изготовления самодельного устройства не обязательно быть электриком, а весь процесс в целом займёт не больше нескольких часов.

Особенности функционирования аккумуляторов

Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.

Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.

Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.

При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.

Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.

Пример напряжения на клеммах заряженного аккумулятора

Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:

  1. Постоянный ток. При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
  2. Постоянное напряжение. При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.

Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного  устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.

Варианты самодельных зарядных устройств для АКБ

Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.

Зарядка из лампочки и полупроводникового диода

Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:

  1. Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
  2. Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
  3. Штекер для подключения в розетку.
  4. Провода с клеммами (крокодилы) для подключения к АКБ.

Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.

Схема подключения зарядного устройства из лампочки и диода к АКБ

Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.

Это важно! Не рекомендуется использовать лампы накаливания мощностью более 200 Вт, так как диод может сгореть от перегрузки. Оптимальный вариант мощности ламп – это 60-150 Вт.

Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ — вполне реально.

Зарядное устройство для АКБ из выпрямителя

Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:

  • постоянный ток;
  • переменный ток;
  • ассиметричный ток.

Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.

Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:

  • предохранитель;
  • мощный диод;
  • стабилитрон 1N754A или Д814А;
  • выключатель;
  • переменный резистор.

Электрическая схема ассиметричного выпрямителя

Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.

Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.

Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.

Упрощённая схема выпрямителя с трансформатором

Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.

Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение

Зарядное устройство из блока питания компьютера: пошаговая инструкция

В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.

Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:

  1. Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.

    Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода

  2. Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
  3. На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.

    За режим работы ШИМ отвечает микроконтроллер TL494

  4. С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.

    Резистор, обозначенный фиолетовой точкой, необходимо выпаять

  5. Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).

    На место удалённого резистора припаивают регулятор

  6. Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.

    Выходное напряжение регулируется переменным резистором

  7. Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.

    Полученное сопротивление должно составлять 120,8 кОм

  8. Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.

    Последовательная пайка резисторов суммирует их сопротивление

  9. После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.

Общий вид зарядного устройства из блока питания компьютера

Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.

При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:

  1. Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
  2. Лампа галогеновая мощностью 90 Вт.
  3. Соединительные провода с зажимами.

Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора

Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.

Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.

  1. С микроволновки нужно снять трансформаторный блок.
  2. Удалить вторичную обмотку, после чего заменить её на изолированный провод сечением свыше 2 мм2 .
  3. Определиться с необходимым количеством витков, которые нужно сделать при помощи изолированного провода. Выяснить необходимое значение можно экспериментальным путём. Для этого необходимо намотать 10 витков, после чего измерить выходное напряжение. К примеру, если его значение будет составлять 2 В, то для достижения 14,5 В понадобится сделать около 70 витков. Выходное напряжение будет зависеть от сечения используемого провода.

    С трансформаторного блока микроволновой печи удаляется обмотка

  4. Для реализации схемы понадобится диодный мост и мощный конденсатор.
  5. По желанию в цепь можно включить амперметр, который будет показывать ток.

Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору

Сборку устройства можно осуществлять на любом основании. При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром.

Бестрансформаторное зарядное устройство

Если поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.

Электрическая схема ЗУ без использования трансформатора напряжения

Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.

В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.

Как заряжать аккумулятор от самодельного устройства

Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

  1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
  2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
  3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
  4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
  5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

Оцените статью: Поделитесь с друзьями!

Обсуждения закрыты для данной страницы

РадиоДом — Сайт радиолюбителей

Выпрямительные диоды в зарядных приспособлениях могут быть выведены из строя при случайном замыкании выходных клемм либо неверном включении АКБ. Обычное средство защиты — плавкие предохранители, но для возобновления работоспособности прибора в этом потребуется замена спаленного предохранителя новым, которого как традиционно в нужный момент под рукою нет. Приходится ставить «жучок», чем ещё более снижается защищённость зарядного устройства.

Добавлено: 07.10.2018 | Просмотров: 24744 | Зарядное устройство

Зарядное устройство (ЗУ) обеспечивает условия заряда, близкие к оптимальным. Основным его отличием данной схемы от остальных является то, что сравнение напряжения на заряжаемой батарее с образцовым происходит в течение отрезка времени, при котором через батарею не протекает зарядный ток (при зарядном токе по напряжению на батарее затруднительно судить о степени её заряда). Сравнение происходит в начале каждого положительного полупериода, пока тиристор VS1 ещё закрыт.

Добавлено: 07.10.2018 | Просмотров: 16516 | Зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.

Добавлено: 24.09.2018 | Просмотров: 37993 | Зарядное устройство

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматом подключать его на зарядку при понижении напряжения и также автоматом отключать зарядку при достижении напряжения, соответственного полностью заряженному аккумулятору. Схема обеспечивает 2 режима работы — ручной и автоматический.

Добавлено: 01.07.2018 | Просмотров: 11098 | Зарядное устройство

Схемы зарядных устройств для автомобильных АКБ довольно распространены и каждая обладает своими достоинствами и недостатками.  Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками — ток заряда непостоянен и зависит от достигнутого на АКБ напряжения.

Добавлено: 27.06.2018 | Просмотров: 6804 | Зарядное устройство

При зарядке автомобильных АКБ производители рекомендуют поддерживать средний зарядный ток на постоянном уровне. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, снижая КПД устройства и в связи с этим приходится применять огромные радиаторы.

Добавлено: 25.06.2018 | Просмотров: 8458 | Зарядное устройство

В статье представлена схема автомобильного зарядного устройства для мобильного телефона работающего от прикуривателя автомобиля. Схема данного устройства типовая и может немного отличатся у отдельных производителей. При включении зарядного устройства в гнездо прикуривателя без телефона, горит зеленый светодиод (G).

Добавлено: 25.03.2018 | Просмотров: 3813 | Зарядное устройство

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле: I=0,1*Q. Где I — средний зарядный ток в амперах., а Q — паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Добавлено: 25.03.2018 | Просмотров: 17785 | Зарядное устройство

Описываемое зарядное устройство было разработано для восстановления и заряда АКБ автомобилей и мотоциклов. Его главная особенность — это импульсный ток заряда, что положительно сказывается на времени и качестве регенерации АКБ. В новой разработке использована схема на составных тиристорах, расширена полоса регулирования, не требуются мощные охлаждающие теплоотводы.

Добавлено: 11.03.2018 | Просмотров: 18680 | Зарядное устройство

Схема зарядного устройства для автомобильного АКБ с выходным плавно регулируемым напряжением от 2 до 20 вольт с током до 6 ампер. Снабжен стабилизатором. Состоит из сетевого понижающего трансформатора на 200 Вт, зарубежная микросхема TL494CN и ключ на транзисторе КТ825.

Добавлено: 09.12.2017 | Просмотров: 12523 | Зарядное устройство

схемы, как подключить своими руками, видео с пошаговыми инструкциями

Наверное, каждый автомобилист знает, как быстро ломаются зарядки для аккумулятора автомобиля. Если в очередной раз это произошло, пришло время самостоятельно его собрать. Это несложно, даже если нет электротехнических знаний.

Параметры устройства

Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.

Чтобы добиться этих параметров, понадобится:

  1. Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
  2. Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
  3. Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
  4. Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
  5. Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.

Этого достаточно, чтобы собрать простое зарядное устройство.

Схема зарядного устройства для автомобильного аккумулятора

Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.

Простые схемы

Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.

С 1 диодом

Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.

Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.

С диодным мостом

Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.

Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.

Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.

С диодным мостом и конденсатором

Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.

Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.

Схемы с регулировкой

Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.

Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.

Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.

Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.

Подробное видео можно посмотреть ниже.

Порядок сборки зарядного устройства для автомобильного аккумулятора

По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.

Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ. К выводам № 2 нужно припаять сетевой шнур.

Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.

В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.

Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).

Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.

Автозарядка из блока питания

Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.

В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.

Далее нужно просто действовать по инструкции:

  1. Все провода, кроме желтых и черных, нужно обрезать.
  2. Спаиваем их между собой: желтые с желтыми, черные с черными.
  3. На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
  4. В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
  5. Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.

В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.

 

Как сделать в домашних условиях зарядное устройство 12 В

Что такое зарядное устройство?

Зарядное устройство для аккумуляторов — это простое электронное устройство, которое используется для передачи энергии вторичному элементу или аккумулятору, проталкивая через него электрический ток. Они относительно недороги и их легко построить дома. Итак, в этой статье мы рассмотрим пошаговую инструкцию, как сделать зарядное устройство 12 В. Так что давайте перейдем к делу.

Это множество вариантов зарядных устройств, доступных на сегодняшнем рынке, таких как импульсные зарядные устройства, устройства непрерывной зарядки и быстрые зарядные устройства и т. Д.Но в целом все зарядные устройства имеют одинаковую принципиальную схему. Понижающий трансформатор вместе с конденсатором класса X, подключенным последовательно для понижения высокого входного переменного тока до приемлемого уровня, и мостовой выпрямитель для преобразования сигнала переменного тока в пульсирующий постоянный ток. Вы также можете использовать сглаживающий конденсатор на выходе выпрямителя, чтобы избавиться от шума.

JLCPCB — ведущая компания по производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо испытывали (качество, цена, обслуживание и время).Мы настоятельно рекомендуем заказывать печатные платы в JLCPCB, все, что вам нужно сделать, это просто загрузить файл Gerber и загрузить его на веб-сайт JLCPCB после создания учетной записи, как указано в видео выше, посетите их веб-сайт, чтобы узнать больше! .

Компоненты оборудования

Для сборки этого проекта вам понадобятся следующие детали

[inaritcle_1]

Свинцово-кислотный аккумулятор 12 В

Полезные шаги

Ниже приведены инструкции по изготовлению зарядного устройства на 12 В

.

1) Сделайте мостовой выпрямитель, подключив 4 диода 1N4007 в следующей конфигурации.

2) Припаяйте плюсовые и минусовые выводы мостового выпрямителя ко вторичной обмотке трансформатора без ТН

.

3) Обрежьте лишние выводы мостового выпрямителя.

4) Припаяйте один конец конденсатора X-класса к положительной клемме источника переменного тока, а другой конец — к первичной обмотке трансформатора. Припаяйте отрицательную клемму питания к первичной обмотке трансформатора.

5) Припаяйте зажимы типа «крокодил» к клеммам мостового выпрямителя.

6) Подключите выходные клеммы зарядного устройства к клеммам разъема питания постоянного тока и проверьте цепь.

Зарядка аккумулятора (с включенным предохранителем)

Аккумулятор не заряжается (предохранитель отключен)

[inaritcle_1]

Рабочее объяснение

Работа этой схемы довольно проста. Сигнал 220 В переменного тока действует как вход для схемы зарядного устройства. этот сигнал переменного тока проходит через конденсатор номиналом 1 мкФ X, напрямую подключенный к линии переменного тока под напряжением, чтобы снизить напряжение переменного тока. Выходной сигнал проходит через понижающий трансформатор без СТ.

Выходной сигнал переменного тока затем подается на схему мостового выпрямителя, выполненную с использованием четырех диодов 1N4007.Выход постоянного тока мостового выпрямителя затем используется для зарядки любой свинцово-кислотной батареи 12 В с помощью зажимов для батареи.

Приложения

  • Обычно используется для зарядки свинцово-кислотных аккумуляторов 12 В в качестве резервного источника питания.

См. Также: Контроллер двигателя DIY H-Bridge | Схема Joule Thief | Домашняя автоматизация с использованием NodeMCU ESP266 и Firebase

Цепи зарядного устройства для батареи 12 В

[с использованием LM317, LM338, L200, транзисторов]

В этой статье мы обсудим список простых схем зарядного устройства 12 В, которые очень просты и дешевы по своей конструкции, но чрезвычайно точны с учетом выходного напряжения и тока. спецификации.

Все представленные здесь конструкции управляются по току, что означает, что их выходы никогда не будут выходить за пределы заранее определенного фиксированного уровня тока.


ОБНОВЛЕНИЕ: Ищете сильноточное зарядное устройство? Эти мощные зарядные устройства для свинцово-кислотных аккумуляторов могут помочь вам удовлетворить ваши требования.


Простейшее зарядное устройство на 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимального входного напряжения немного ниже спецификации полного заряда аккумулятора и поддержание тока на уровне уровень, не вызывающий нагревания аккумулятора.

Если эти два условия соблюдаются, вы можете заряжать любую батарею, используя минимальную схему, такую ​​же простую, как следующая:

В приведенной выше простейшей схеме 12 В — это выходное среднеквадратичное значение трансформатора. Это означает, что пиковое напряжение после выпрямления будет 12 x 1,41 = 16,92 В. Хотя это выглядит выше, чем уровень полного заряда 12 В батареи, равный 14 В, на самом деле батарея не пострадала из-за малоточных характеристик трансформатора. .

Тем не менее, желательно, удалить батарею, как только амперметр покажет около нуля вольт.

Автоматическое отключение : Если вы хотите, чтобы указанная выше конструкция автоматически отключалась при достижении полного уровня заряда, вы можете легко добиться этого, добавив ступень BJT с выходом, как показано ниже:

В этом В конструкции мы использовали каскад BJT с общим эмиттером, основание которого зафиксировано на уровне 15 В, что означает, что напряжение на эмиттере никогда не может превышать 14 В. получает обратное смещение и просто переходит в режим автоматического выключения.Вы можете настроить стабилитрон 15 В до тех пор, пока на выходе для батареи не будет около 14,3 В.

Это превращает первую конструкцию в полностью автоматическую систему зарядного устройства на 12 В, простую в сборке, но полностью безопасную.

Кроме того, поскольку нет конденсатора фильтра, 16 В не применяется как постоянный постоянный ток, а как переключение ВКЛ / ВЫКЛ 100 Гц. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока

Зарядка любого типа заряжаемого аккумулятора может быть критичной и требует определенного внимания.Когда входной ток, при котором заряжается батарея, значительно высок, добавление контроля тока становится важным фактором.

Все мы знаем, насколько умна IC LM317, и неудивительно, почему это устройство находит так много приложений, требующих точного управления мощностью.

Схема зарядного устройства 12-вольтовой батареи с регулируемым током с использованием микросхемы LM317, представленная здесь, показывает, как можно сконфигурировать микросхему LM317, используя всего пару резисторов и обычный блок питания трансформаторного моста для зарядки 12-вольтовой батареи с максимальной точностью.

Как это работает

Микросхема в основном подключается в обычном режиме, в котором R1 и R2 включены для требуемой регулировки напряжения.

Питание на ИС подается от обычной сети трансформатор / диодный мост; напряжение составляет около 14 вольт после фильтрации через C1.

Отфильтрованные 14 В постоянного тока подаются на входной контакт ИС.

Вывод ADJ микросхемы закреплен на стыке резистора R1 и переменного резистора R2. R2 можно точно настроить для согласования конечного выходного напряжения с аккумулятором.

Без включения Rc схема будет вести себя как простой источник питания LM 317, где ток не будет считываться и контролироваться.

Однако с Rc вместе с транзистором BC547, помещенным в схему в показанном положении, он может определять ток, который подается в батарею.

Пока этот ток находится в желаемом безопасном диапазоне, напряжение остается на заданном уровне, однако, если ток имеет тенденцию расти, напряжение снимается IC и падает, ограничивая дальнейшее повышение тока и обеспечивая соответствующую безопасность. для аккумулятора.

Формула для расчета Rc:

R = 0,6 / I, где I — максимальный желаемый предел выходного тока.

Для оптимальной работы ИС потребуется радиатор.

Подключенный амперметр используется для контроля состояния заряда аккумулятора. Как только амперметр покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства для использования по назначению.

Принципиальная схема № 1

Список деталей

Следующие детали потребуются для создания описанной выше схемы

  • R1 = 240 Ом,
  • R2 = предустановка 10k.
  • C1 = 1000 мкФ / 25 В,
  • Диоды = 1N4007,
  • TR1 = 0-14 В, 1 ампер
Как подключить горшок к цепи LM317 или LM338

На следующем изображении показано, как 3 контакта горшка должен быть правильно настроен или соединен с любой схемой регулятора напряжения LM317 или схемой регулятора напряжения LM338:

Как видно, центральный штифт и любой из внешних контактов выбраны для соединения потенциометра или потенциометра со схемой, третий неподключенный контакт остается неиспользованным.


Принципиальная схема № 2
Цепь регулируемого сильноточного зарядного устройства LM317 № 3

Для модернизации вышеупомянутой схемы до регулируемой сильноточной схемы зарядного устройства LM317 могут быть внесены следующие модификации:

Цепь регулируемого зарядного устройства № 4

5) Компактная схема зарядного устройства 12 В с использованием микросхемы IC LM 338

IC LM338 — выдающееся устройство, которое можно использовать для неограниченного числа потенциальных приложений электронных схем.Здесь мы используем его для создания схемы автоматического зарядного устройства 12 В.

Почему LM338 IC

По сути, основная функция этой ИС — это управление напряжением, и ее также можно подключить для управления токами с помощью некоторых простых модификаций.

Схемы зарядного устройства идеально подходят для этой ИС, и мы собираемся изучить один пример схемы для создания схемы автоматического зарядного устройства 12 В с использованием ИС LM338.

Обращаясь к принципиальной схеме, мы видим, что вся схема подключена к микросхеме LM301, которая формирует схему управления для выполнения действий отключения.

IC LM338 сконфигурирован как регулятор тока и как модуль автоматического выключателя.

Использование LM338 в качестве регулятора и операционного усилителя в качестве компаратора

Вся операция может быть проанализирована по следующим точкам: IC LM 301 подключен как компаратор, его неинвертирующий вход закреплен на фиксированной контрольной точке, полученной от делителя потенциала. сеть сделана из R2 и R3.

Потенциал, полученный от соединения R3 и R4, используется для установки выходного напряжения IC LM338 на уровень, который на оттенок выше, чем требуемое напряжение зарядки, примерно до 14 вольт.

Это напряжение подается на аккумулятор под зарядным устройством через резистор R6, который здесь включен в виде датчика тока.

Резистор 500 Ом, подключенный между входными и выходными контактами IC LM338, гарантирует, что даже после автоматического выключения цепи батарея будет непрерывно заряжаться, пока она остается подключенной к выходу схемы.

Кнопка запуска используется для запуска процесса зарядки после подключения частично разряженной батареи к выходу схемы.

R6 может быть выбран соответствующим образом для получения различных скоростей зарядки в зависимости от батареи AH.

Подробная информация о работе схемы (объяснено + ElectronLover)

«Как только подключенная батарея полностью заряжена, потенциал на инвертирующем входе операционного усилителя становится выше, чем установленное напряжение на неинвертирующем входе ИС. Это мгновенно переключает выход операционного усилителя на низкий логический уровень «.

Согласно моему предположению:

  • V + = VCC — 74 мВ
  • V- = VCC — Icharging x R6
  • VCC = напряжение на выводе 7 операционного усилителя.

Когда Аккумулятор полностью заряжается Уровень заряда снижается. V- становится больше, чем V +, выход операционного усилителя становится низким, включаются PNP и светодиод.

Кроме того,

R4 получает заземление через диод. R4 становится параллельным R1, уменьшая эффективное сопротивление, видимое от контакта ADJ LM338 к GND.

Vout (LM338) = 1,2 + 1,2 x Reff / (R2 + R3), Reff — сопротивление контакта ADJ к GND.

Когда Reff уменьшает выходную мощность LM338, уменьшает и запрещает зарядку.

Принципиальная схема

6) Зарядное устройство 12 В с использованием микросхемы L200

Вы ищете схему зарядного устройства постоянного тока для обеспечения безопасной зарядки аккумулятора? Представленная здесь пятая простая схема с использованием IC L200 просто покажет вам, как построить зарядное устройство постоянного тока.

Важность постоянного тока

Зарядное устройство постоянного тока настоятельно рекомендуется для обеспечения безопасности и длительного срока службы батареи. Используя IC L200, можно создать простое, но очень полезное и мощное автомобильное зарядное устройство, обеспечивающее постоянный выходной ток.

Я уже обсуждал многие полезные схемы зарядного устройства в своих предыдущих статьях, некоторые из которых были слишком точными, а некоторые гораздо проще по конструкции.

Хотя основные критерии, связанные с зарядкой аккумуляторов, во многом зависят от типа аккумулятора, но в основном это напряжение и ток, которые особенно нуждаются в соответствующих параметрах, чтобы обеспечить эффективную и безопасную зарядку любой аккумуляторной батареи.

В этой статье мы обсудим схему зарядного устройства, подходящую для зарядки автомобильных аккумуляторов, оборудованную визуальным индикатором обратной полярности и индикаторами полной зарядки.

Схема включает в себя универсальный, но не столь популярный стабилизатор напряжения IC L200 вместе с несколькими внешними дополняющими пассивными компонентами, чтобы сформировать полноценную схему зарядного устройства.

Давайте узнаем больше об этой схеме зарядного устройства постоянного тока.

Принципиальная схема с использованием L200 IC

Работа цепи

IC L200 обеспечивает хорошее регулирование напряжения и, следовательно, обеспечивает безопасную и постоянную зарядку, что является обязательным условием для любого типа заряжаемых аккумуляторов.

Обращаясь к рисунку, входное питание обеспечивается стандартной конфигурацией трансформатор / мост, C1 формирует основной конденсатор фильтра, а C2 отвечает за заземление любого левого остаточного переменного тока.

Зарядное напряжение устанавливается регулировкой переменного резистора VR1 при отсутствии нагрузки на выходе.

Схема включает индикатор обратной полярности с использованием светодиода LD1.

Когда подключенная батарея полностью заряжена, то есть когда ее напряжение становится равным установленному, ИС ограничивает зарядный ток и предотвращает перезарядку батареи.

Вышеупомянутая ситуация также снижает положительное смещение T1 и создает разность потенциалов выше -0,6 В, так что он начинает проводить и включает LD2, указывая на то, что аккумулятор полностью заряжен и может быть удален из зарядного устройства.

Резисторы Rx и Ry представляют собой токоограничивающие резисторы, необходимые для фиксации или определения максимального зарядного тока или скорости, с которой необходимо заряжать аккумулятор. Он рассчитывается по формуле:

I = 0.45 (Rx + Ry) / Rx.Ry.

IC L200 может быть установлен на подходящем радиаторе для облегчения постоянной зарядки аккумулятора; однако встроенная схема защиты ИС практически никогда не позволяет ИС повредиться. Обычно он включает в себя встроенную защиту от перегрева, короткого замыкания на выходе и защиту от перегрузки.

Диод D5 гарантирует, что ИС не будет повреждена в случае случайного неправильного подключения батареи с обратной полярностью на выходе.

Диод D7 включен для предотвращения разряда подключенной батареи через микросхему в случае, если система выключена без отсоединения батареи.

Вы можете легко модифицировать эту схему зарядного устройства постоянного тока, чтобы сделать ее совместимой с зарядкой 6-вольтовой батареи, просто изменив номинал нескольких резисторов. Пожалуйста, обратитесь к списку деталей, чтобы получить необходимую информацию.

Список деталей
  • R1 = 1K
  • R2 = 100E,
  • R3 = 47E,
  • R4 = 1K
  • R5 = 2K2,
  • VR1 = 1K,
  • D1 — D4 И D7 = 1N5408,
  • D5, D6 = 1N4148,
  • светодиоды = КРАСНЫЕ 5 мм,
  • C1 = 2200 мкФ / 25 В,
  • C2 = 1 мкФ / 25 В,
  • T1 = 8550,
  • IC1 = L200 (корпус TO-3)
  • A = Амперметр, 0-5А,
  • FSDV = Вольтметр, 0-12В FSD
  • TR1 = 0-24 В, ток = 1/10 батареи AH

Как настроить цепь зарядного устройства CC

Схема настроить следующим образом:

Подключить регулируемый источник питания к цепи.

Установите напряжение, близкое к верхнему пороговому уровню.

Отрегулируйте предустановку так, чтобы реле оставалось активированным при этом напряжении.

Теперь немного увеличьте напряжение до верхнего порогового уровня и снова отрегулируйте предустановку так, чтобы реле просто срабатывало.

Схема настроена и может использоваться в обычном режиме с фиксированным входом 48 В для зарядки нужной батареи.

Запрос от одного из моих последователей:

Привет, Свагатам,

Я получил ваше письмо с веб-сайта www.brighthub.com, где вы поделились своим опытом в создании зарядного устройства.

Пожалуйста, у меня небольшая проблема, и я надеюсь, что вы могли бы мне помочь:

Я просто непрофессионал без особых знаний в области электроники.

Я использовал инвертор мощностью 3000 Вт и недавно обнаружил, что он не заряжает батарею (а инвертирует). У нас здесь не так много экспертов, и, опасаясь дальнейшего повреждения, я решил приобрести отдельное зарядное устройство для зарядки аккумулятора.

Мой вопрос: зарядное устройство, которое я получил, имеет выходную мощность 12 вольт и 6 ампер, будет ли оно заряжать мою сухую батарею с емкостью 200 Ач? Если да, сколько времени потребуется для полной зарядки, и если нет, то какую емкость зарядного устройства я могу получить для этой цели? В прошлом у меня был опыт, когда зарядное устройство повредило мою батарею, и на этот раз я не хочу рисковать.

Большое спасибо.

Хабу Макс

Мой ответ г-ну Хабу

Хабу

Зарядный ток зарядного устройства в идеале должен составлять 1/10 Ач батареи. Это означает, что для вашей батареи на 200 Ач зарядное устройство должно быть рассчитано примерно на 20 ампер.
При такой скорости для полной зарядки аккумулятора потребуется от 10 до 12 часов.
С зарядным устройством на 6 ампер для зарядки аккумулятора может потребоваться много времени, или же процесс зарядки может просто не начаться.

Спасибо и привет.

7) Простая схема зарядного устройства 12 В с 4 светодиодными индикаторами

Схема автоматического зарядного устройства на 12 В с 4 светодиодными индикаторами может быть изучена в следующем посте. Конструкция также включает 4-х уровневый индикатор состояния зарядки с помощью светодиодов. Схема была запрошена мистером Денди.

Зарядное устройство с 4 светодиодными индикаторами состояния

Я хотел бы спросить и с нетерпением жду, когда вы сделаете автоматическое зарядное устройство для сотового телефона на 5 В и зарядное устройство на 12 В (в принципиальной схеме и на первом трансформаторе CT) автоматическое / отключается с помощью индикатора батареи, а светодиод

горит красным, так как индикатор зарядки (индикатор включения зарядки) с использованием IC LM 324 и

LM 317 и полной батареи с использованием зеленого светодиода и отключения электрического тока при аккумулятор полностью заряжен.

Для схемы зарядного устройства сотового телефона 5 Вольт Я хочу иметь уровни следующих индикаторов:

0-25% аккумулятор находится в зарядном устройстве с помощью красного светодиода. 25-50% с помощью синего светодиода (красный светодиод горит) out) 55-75% с использованием желтого светодиода (красный светодиод, сбои синего) 75-100% с использованием зеленого светодиода (красный, синий, желтый светодиоды) рядом со схемой зарядного устройства 12 VI хочет использовать 5 светодиодов следующим образом : 0-25% при использовании красного светодиода 25-50% при использовании оранжевого светодиода (красный светодиод гаснет) 50-75% при использовании желтого светодиода (красный светодиод, отключение оранжевого) 75-100% при использовании синего светодиода (красный, оранжевый, желтый сбой) более 100% с помощью зеленого светодиода (красный, оранжевый, желтый, синий светодиоды перебои).

Я надеюсь, что вы, компоненты общие и доступные, и как можно скорее сделал схему выше, потому что мне действительно нужны детали схемы.

Надеюсь, вы поможете мне найти лучшее решение.

Конструкция

В запрошенной конструкции используется 4-х уровневый индикатор состояния, что можно увидеть ниже. TIP122 контролирует чрезмерную разрядку батареи, в то время как TIP127 обеспечивает мгновенное отключение питания для батареи всякий раз, когда лимит перезарядки достигается за аккумулятор.

Переключатель SPDT можно использовать для выбора зарядки аккумулятора либо от сетевого адаптера, либо от возобновляемого источника энергии, такого как солнечная панель.

Принципиальная схема

ОБНОВЛЕНИЕ:

Следующая проверенная схема зарядного устройства на 12 В была отправлена ​​компанией «Ali Solar» с просьбой поделиться ею в этом посте:

Схемы интеллектуального зарядного устройства на 12 В

Следующий автоматический Схема интеллектуального зарядного устройства 12 В была специально разработана мной в ответ на просьбу двух увлеченных читателей этого блога г-на.Винод и мистер Сэнди.

Давайте послушаем, что мистер Винод обсуждал со мной по электронной почте относительно создания схемы интеллектуального зарядного устройства:

8) Обсуждение персонального зарядного устройства 12 В Дизайн

«Привет, Свагатам, меня зовут Винод Чандран. Профессионально Я художник дубляжа в киноиндустрии малаялам, но я тоже энтузиаст электроники. Я регулярно посещаю ваш блог. Теперь мне нужна ваша помощь.

Я только что построил автоматическое зарядное устройство SLA, но с этим возникли некоторые проблемы.К этому письму прилагаю схему.

Красный светодиод в цепи должен светиться, когда батарея полностью заряжена, но он светится все время (моя батарея показывает только 12,6 В).

Еще одна проблема — банк в 10к. нет никакой разницы, когда я поворачиваю горшок вправо и влево. . Поэтому я прошу вас либо исправить эти проблемы, либо помочь мне найти схему автоматического зарядного устройства, которая подает мне визуальное или звуковое предупреждение, когда батарея полностью заряжена или разряжена.

Как любитель, я делал вещи из старых электронных приборов.Для зарядного устройства у меня есть некоторые компоненты. 1. Трансформатор от старого видеоплеера. выход 22в, 12в, 3,3в.

А как мерить ампер не умею. Мой цифровой мультиметр может проверять только 200 мА. У него есть порт 10А, но я не могу измерить с ним ток (метр показывает «1»). Итак, я предположил, что трансформатор выше 1А и ниже 2А с размером и требованиями vcd-плеера. 2. Другой трансформатор -12-0-12 5А 3.

Другой трансформатор — 12в 1А 4. Трансформатор от моих старых ИБП (Numeric 600exv).Вход этого трансформатора регулируется переменным током? 5. Пара LM 317’s 6. Батарея SLA от старых упс- 12в 7Ач. (Сейчас у него заряд 12,8в) 7. Батарея SLA от старого инвертора 40w — 12v 7Ah. (заряд 3.1v) Одна вещь, которую я забыл вам сказать. После первой схемы зарядного устройства сделал еще одну (тоже прикреплю). Это не автоматический режим, но он работает. И мне нужно измерить ампер этого зарядного устройства.

Для этой цели я поискал в Google программу для моделирования анимированных схем, но пока не получил ее.Но я не могу нарисовать свою схему в этом инструменте. нет таких деталей, как LM317 и LM431 (регулируемый шунтирующий регулятор). ни потенциометра, ни светодиода.

Поэтому я прошу вас помочь мне найти инструмент для моделирования визуальных схем. Надеюсь, ты мне поможешь. касаемо

Hi Vinod, красный светодиод не должен постоянно светиться, а поворот потенциометра должен изменить> выходное напряжение без подключенной батареи.

Вы можете сделать следующее:>> Снимите резистор 1 кОм последовательно с потенциометром 10 кОм и подключите соответствующий вывод потенциометра непосредственно к земле.

Подключите потенциометр 1K через базу транзистора и землю (используйте центр и любой другой вывод потенциометра).

Удалите все, что показано на правой стороне батареи на схеме, я имею в виду реле и все такое ….. Надеюсь, с указанными выше изменениями вы сможете регулировать напряжение, а также отрегулировать потенциометр базового транзистора для светодиод светится только после того, как аккумулятор полностью заряжен, примерно при 14 В.

Я не доверяю симуляторам и использую их, я верю в практические тесты, которые являются лучшим методом проверки.Для батареи 12 В, 7,5 Ач используйте трансформатор 0-24 В, 2 ампера, отрегулируйте выходное напряжение вышеуказанной схемы до 14,2 вольт.

Отрегулируйте потенциометр базового транзистора так, чтобы светодиод только начинал светиться при 14 В. Выполняйте эти настройки без подключенной к выходу батареи. Вторая схема тоже хороша, но не автоматическая … правда, она регулируется по току. Дайте мне знать, что вы думаете. Спасибо, Swagatam

Hi Swagatam,
Прежде всего позвольте мне сказать спасибо за ваш быстрый ответ. Я попробую ваши предложения.перед этим мне нужно подтвердить упомянутые вами изменения. Прикреплю изображение с вашими предложениями. Пожалуйста, подтвердите изменения в схеме. -vinod chandran

Hi Vinod,

Отлично.

Отрегулируйте предустановку базы транзистора до тех пор, пока светодиод не начнет тускло светиться при напряжении около 14 вольт без подключенной батареи.

С уважением.

Привет, Swagatam. Ваша идея прекрасна. Зарядное устройство работает, и теперь один светодиод светится, указывая на то, что идет зарядка.но как я могу настроить светодиодный индикатор полной зарядки. Когда я переворачиваю горшок на землю (означает меньшее сопротивление), начинает светиться светодиод.

, когда сопротивление станет высоким, светодиод погаснет. После 4 часов зарядки аккумулятор показывает 13.00в. Но теперь индикатор полного заряда не горит. Пожалуйста, помогите мне.

Прошу прощения снова побеспокоить вас. Последнее письмо было ошибкой. я неправильно понял ваше предложение. Поэтому, пожалуйста, не обращайте внимания на это письмо.

Теперь я настраиваю потенциометр 10 кОм на 14,3 В (довольно сложно отрегулировать потенциометр, потому что небольшое изменение приведет к большему выходному напряжению.). И я настраиваю горшок 1k, чтобы он немного светился. Это зарядное устройство должно указывать на батарею 14v ?. Ведь дайте знать степень опасности полного заряда аккумулятора.

Как вы и предположили, когда я тестировал схему с макета, все было в порядке. Но после пайки в печатную плату дела идут странно.

Красный светодиод не работает. напряжение зарядки в норме. В любом случае я прилагаю изображение, которое показывает текущее состояние цепи. пожалуйста, помогите мне. В конце концов, позвольте мне спросить вас об одном.Подскажите, пожалуйста, схему автоматического зарядного устройства с индикатором полного заряда аккумулятора. ?

Привет, свагатам, на самом деле я нахожусь в середине вашего автоматического зарядного устройства с функцией гистерезиса. Я просто добавил несколько модификаций. Я приложу схему к этому письму. пожалуйста, проверьте это. Если эта схема не в порядке, я могу подождать тебя до завтра.

Простая схема # 8

Я забыл спросить одну вещь. У меня трансформатор примерно 1-2 А. Я не знаю, какой правильный.как я могу проверить с помощью мультиметра ?.
Кроме того, если это трансформатор на 1 А или 2 А, как я могу уменьшить ток
до 700 мА.
относится к

Hi Vinod, Схема в порядке, но не будет точной, доставит вам много проблем при настройке.

Трансформатор на 1 ампер будет обеспечивать 1 ампер при коротком замыкании (проверьте, подключив измерительные щупы к проводам питания в диапазоне 10 ампер и установив либо постоянный, либо переменный ток в зависимости от выхода).

Означает, что максимальная мощность составляет 1 ампер при нулевом напряжении.Вы можете свободно использовать его с батареей 7,5 Ач, это не повредит, так как напряжение упадет до уровня напряжения батареи при токе 700 мА, и батарея будет безопасно заряжена. Но не забудьте отключить аккумулятор, когда напряжение достигнет 14 вольт.

В любом случае, в схему, которую я вам предоставлю, будет добавлено средство контроля тока, так что беспокоиться не о чем.

С уважением.

Я предоставлю вам идеальную и простую автоматическую схему, пожалуйста, подождите до завтра.

Hi swagatam,
Надеюсь, вы поможете мне найти лучшее решение. Спасибо.
касается
vinod chandran

Тем временем, другой активный последователь этого блога, г-н Сэнди, также запросил аналогичную схему интеллектуального зарядного устройства 12 В через комментарии.

Итак, наконец, я разработал схему, которая, надеюсь, удовлетворит потребности мистера Винода и мистера Сэнди по назначению.

На следующем 9-м рисунке показана автоматическая схема двухступенчатого зарядного устройства для аккумуляторов от 3 до 18 В с регулированием напряжения и тока с функцией зарядки в режиме ожидания.

Принципиальная схема № 9

Создание зарядного устройства за 15 минут

Я разместил на этом сайте много схем зарядных устройств, некоторые из них легко построить, но менее эффективны, а некоторые слишком сложны и включают сложные этапы строительства. Тот, что размещен здесь, возможно, является easyiset с его концепцией, а также чрезвычайно прост в сборке. Фактически, если бы у вас был весь необходимый материал, вы бы построили его за 15 минут.

Введение

Концепция действительно чрезвычайно проста и, следовательно, довольно груба.Это означает, что, хотя эта идея слишком проста, потребует соответствующего мониторинга условий зарядки аккумулятора, чтобы он не перезарядился или не повредился.

Необходимые материалы

Чтобы быстро изготовить эту простейшую схему зарядного устройства, вам потребуется следующая ведомость материалов:

  • Один выпрямительный диод, 1N5402
  • Лампа накаливания, имеющая номинальное напряжение, равное напряжению батареи, которую необходимо зарядить. и номинальный ток близок к 1/10 от батареи AH.
  • Трансформатор с номинальным напряжением, в два раза превышающим напряжение аккумулятора, и током, в два раза превышающим скорость зарядки аккумулятора. Это означает, что если батарея 12 В, трансформатор должен быть 24 В, а если AH батареи составляет 7,5, то деление этого на 10 дает 750 мА, что становится рекомендуемой скоростью зарядки аккумулятора, умножение этого на 2 дает 1,5 А, так что это становится требуемым номинальным током трансформатора.

Построение этой простейшей схемы зарядного устройства

После того, как вы собрали все вышеперечисленные материалы, вы можете просто соединить вышеуказанные параметры вместе с помощью диаграммы.

Функционирование схемы можно объяснить следующим образом:

При включении питания диод 1N5402 выпрямляет 24 В постоянного тока, создавая на выходе полуволны 24 В постоянного тока.
Хотя среднеквадратичное значение этого напряжения может показаться равным 12 В, пиковое напряжение по-прежнему составляет 24 В, поэтому его нельзя подавать непосредственно на батарею.

Чтобы уменьшить это пиковое значение, мы вводим лампочку последовательно с цепью. Лампа поглощает высокие пиковые значения напряжения и обеспечивает относительно контролируемый выход на батарею, который становится саморегулирующимся за счет свечения нити накала лампы (переменное сопротивление).

Таким образом, напряжение и ток автоматически настраиваются на соответствующий уровень заряда, который становится как раз подходящим для безопасной зарядки аккумулятора.

О зарядке аккумулятора можно судить по постепенному уменьшению яркости лампы по мере достижения порогового напряжения зарядки аккумулятора.

Однако, как только напряжение аккумулятора приближается к 14,5 В, зарядку необходимо прекратить, независимо от состояния накала лампы.

Принципиальная схема

Видеоклип, показывающий процесс зарядки с использованием одного диода:

Зарядное устройство — обзор

Простое дешевое зарядное устройство Li-Ion

Зарядное устройство, запрограммированное на 300 мА в Режим постоянного тока с функцией контроля зарядного тока показан на рисунке 210.1. PNP необходим для источника зарядного тока, а резистор R1 используется для программирования максимального зарядного тока. Выводы I SENSE и BAT используются для контроля тока заряда и напряжения соответственно, а вывод DRIVE управляет базой PNP. Обратите внимание, что не требуется внешний резистор для измерения тока или диод для блокировки обратного тока. Для большинства других зарядных устройств требуется блокирующий диод, включенный последовательно с источником питания, чтобы предотвратить разряд батареи, если вход источника питания без питания станет низким импедансом.Когда источник питания размыкается или замыкается на массу, зарядное устройство отключается, и от аккумулятора к зарядному устройству течет только несколько наноампер тока утечки. Эта функция продлевает срок службы батареи, особенно если портативное устройство выключено в течение длительного времени. Напряжение питания может находиться в диапазоне от 4,75 В до 8 В, но рассеиваемая мощность PNP может стать чрезмерной около верхнего предела, особенно при более высоких уровнях зарядного тока. Рассеивание мощности PNP потребует надлежащего теплоотвода. Требования к теплоотводу см. В паспорте производителя PNP.

Рисунок 210.1. Недорогое литий-ионное зарядное устройство, рассчитанное на 300 мА

Когда напряжение питания приближается к нижнему пределу, напряжение насыщения PNP становится важным. В этом случае может потребоваться транзистор CESAT с низким V , такой как показанный на рисунках, чтобы предотвратить сильное насыщение PNP и требование чрезмерного базового тока от вывода DRIVE.

Для поддержания хорошей стабильности переменного тока в режиме постоянного напряжения на батарее требуется конденсатор для компенсации индуктивности в проводке к батарее.Этот конденсатор (C2) может иметь диапазон от 4,7 мкФ до 100 мкФ, а его ESR может находиться в диапазоне от почти нуля до нескольких Ом в зависимости от компенсируемой индуктивности. Как правило, лучше всего подходит для компенсации емкость от 4,7 мкФ до 22 мкФ и ESR от 0,5 до 1,5 Ом. В режиме постоянного тока хорошая стабильность переменного тока достигается за счет поддержания емкости на выводе PROG на уровне менее 25 пФ. Более высокая емкостная нагрузка, например, от входного фильтра нижних частот к АЦП, может быть легко допущена путем изоляции емкости сопротивлением не менее 1 кОм.

Если входной источник питания подключен к «горячему» подключению, следует избегать использования керамического входного конденсатора (C1), поскольку его высокая добротность может вызвать скачки напряжения в два раза превышающие уровень постоянного тока и, возможно, повредить зарядное устройство. Если используется конденсатор с таким низким ESR, добавление сопротивления от 1 до 2 Ом последовательно с конденсатором C1 будет достаточно для гашения этих переходных процессов.

Вывод программирования (PROG) выполняет несколько функций. Он используется для установки тока в режиме постоянного тока, контроля зарядного тока и ручного отключения зарядного устройства.В режиме постоянного тока LTC1734 поддерживает вывод PROG на уровне 1,5 В. Значение программного резистора определяется делением 1,5 В на требуемый ток R1 в режиме постоянного тока. Зарядный ток всегда в 1000 раз больше тока через R1 и, следовательно, пропорционален напряжению на выводе PROG. Напряжение на выводе PROG падает ниже 1,5 В при входе в режим постоянного напряжения и падении зарядного тока. При 1,5 В зарядный ток составляет 300 мА, а при 0,15 В — 1000 · (0.15/5100) или около 30 мА. Если на заземленной стороне R1 напряжение превышает 2,15 В или разрешается оставаться на плаву, зарядное устройство переходит в режим ручного отключения и зарядка прекращается. Эти функции поддерживают зарядку аккумулятора до полной емкости, позволяя микроконтроллеру контролировать ток зарядки и выключать зарядное устройство в соответствующее время. Внутренний подтягивающий ток 3 мкА подтянет плавающий вывод PROG вверх. По своей конструкции этот ток не добавляет ошибки, но устанавливает минимальный ток через программный резистор в 3 мкА.

Во время зарядки в режиме постоянного напряжения токи, создаваемые активными динамическими нагрузками, могут создавать чрезмерные переходные уровни на выводе PROG. При желании эти переходные процессы можно отфильтровать с помощью простого RC-фильтра нижних частот. Подключите резистор 1 кОм к выводу PROG, чтобы его противоположный конец был подключен к конденсатору 0,1 мкФ, а его другой конец был заземлен. Контролируйте отфильтрованное напряжение PROG на общем узле RC. Переходные процессы нагрузки не отражаются на выводе PROG, если зарядное устройство остается в режиме постоянного тока.

Руководство «Сделай сам» поможет вам построить собственную зарядную станцию ​​для электромобилей

За последний год зарядные станции для электромобилей из продуктов с завышенными ценами и грабительскими затратами на установку превратились в предметы, которые вы можете забрать в местном хозяйственном магазине и установить самостоятельно.

Но если поездка в местный Лоус и установка готового устройства кажется немного легким или все же слишком дорогим, теперь есть третий вариант: самостоятельная сборка.

Благодаря упорной работе группы любителей электромобилей, разбирающихся в электронике, проект Open EVSE использует популярный любительский микроконтроллер Arduino в качестве основы самодельной портативной зарядной станции для электромобилей.

Более того, технически опытный любитель мог бы построить его за небольшую часть стоимости серийно выпускаемого устройства.

Но прежде чем мы расскажем вам больше, мы обязаны предоставить вам следующий отказ от ответственности:

Создание собственного зарядного устройства для электромобилей требует значительных знаний в области электроники, от умения обращаться с паяльником до возможности устранения неисправностей в электронных схемах. Вдобавок ко всему, если что-то пойдет не так с вашим самодельным устройством, вы обязаны исправить любой ущерб, вызванный неисправностью.

Используя готовую материнскую плату Arduino, пустую макетную плату и легкодоступные электронные компоненты, Open EVSE предлагает портативное решение для зарядки для всех, у кого есть подходящая розетка на 230 В.

Откройте зарядную станцию ​​для Arduino от EVSE (Creative Commons 3.0)

При загрузке с открытым исходным кодом, который сопровождает проект, Open EVSE может не только согласовывать правильные требования к питанию с автомобилем, к которому он подключен, но также поставляется с протоколами безопасности, предназначенными для отключения питания в случае, если что-то пойдет не так.

Если мысль о зарядке вашего очень дорогого электромобиля от самодельной зарядной станции не вызывает у вас страха, на сайте Instructables.com есть подробное руководство по созданию устройства и его тестированию.

Для тех, кто еще более технически подкован, домашняя страница проекта должна сообщить вам все, что вам нужно знать.

Обычно мы не освещаем проекты домашнего пивоварения в GreenCarReports, так почему именно этот?

Все просто. Даже если вы не являетесь поклонником самодельных зарядных станций, команда разработчиков Open EVSE доказала, что можно сделать недорогую зарядную станцию ​​для электромобилей.

Это дает коммерческим поставщикам EVSE один вариант: делать более дешевые зарядные станции меньшего размера.

В конечном итоге выгода получают как те, кто хочет делать свои зарядные станции, так и те, кто хочет их покупать.

Это должно быть хорошо.

+++++++++++

Следите за сообщениями GreenCarReports в Facebook и Twitter.

Зарядка аккумулятора

% PDF-1.4 % 1 0 obj> поток application / pdfЗарядка аккумулятора

  • Примечания по применению
  • Texas Instruments, Incorporated [SNVA557,0]
  • iText 2.1.7, автор 1T3XTSNVA5572011-12-08T01: 06: 25.000Z2011-12-08T01: 06: 25.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Лучшие зарядные устройства и изоляторы DC-DC для Vanlife (Как заряжать фургон во время вождения)

    Электричество в вашем фургоне просто круто.Это означает, что вы можете жить полностью от электросети с помощью света, холодильника, телефонов и компьютеров, не беспокоясь о счетах за электричество или отключениях электроэнергии.

    Многие вандвеллеры устанавливают солнечную энергию в свои установки. Но иногда солнечной энергии просто недостаточно — особенно если ваш бюджет не позволяет вам потратиться на огромную многопанельную систему.

    Облачная погода, дым от лесных пожаров и кемпинг в тенистых лесах могут ограничить количество солнечного света, попадающего на ваши панели, заставляя вас искать подходящего солнца, чтобы подзарядить истощенные батареи.Даже с нашей более мощной системой мощностью 400 Вт мы столкнулись с проблемами разряда батареи примерно через 4-5 дней в условиях плохого солнечного света.

    Вот почему мы настоятельно рекомендуем настроить электрическую систему вашего автофургона для зарядки аккумуляторов от генератора в фургоне во время движения.

    Зарядка от генератора — отличный способ дополнить солнечные батареи и убедиться, что ваши батареи остаются заряженными независимо от погоды. А если у вас ограниченный бюджет, вы даже можете отказаться от солнечной энергии и по-прежнему иметь электричество в своем самодельном фургоне.

    Жизнь на дороге означает изрядное количество поездок, а возможность заряжать аккумуляторы во время вождения имеет важное значение для vanlife.

    Считаете ли вы наш сайт полезным?

    Как заряжать аккумуляторы вашего фургона во время вождения

    В каждом автомобиле есть генератор. Генератор — это устройство, которое преобразует механическую энергию двигателя вашего фургона в электричество и использует это электричество для питания электроники вашего фургона и зарядки пусковой батареи.

    Вы можете легко использовать свой генератор для зарядки второй (вспомогательной) батареи, просто соединив положительные клеммы обеих батарей так, чтобы они были параллельны. Но параллельное подключение аккумуляторов означает, что при выключенном двигателе ваши электрические нагрузки также разряжают пусковую батарею — не очень хорошо, если вы хотите заводить фургон утром!

    Итак, вам нужно устройство, которое позволяет заряжать вторую (вспомогательную) аккумуляторную батарею от генератора вашего фургона, не разряжая пусковую батарею при неработающем двигателе.

    Для этого есть два типа устройств: DC-DC зарядные устройства и Изоляторы батарей .

    В этом посте мы рассмотрим и то, и другое, но в целом мы рекомендуем большинству людей приобрести зарядное устройство DC-DC для своих устройств.

    Что такое зарядное устройство DC-DC?

    Зарядное устройство постоянного и постоянного тока (также известное как зарядное устройство для подключения аккумулятора к аккумулятору или зарядное устройство b2b) — это устройство, которое принимает входной сигнал от генератора / пусковой аккумуляторной батареи и использует его для зарядки вспомогательной аккумуляторной батареи.

    Зарядные устройства

    DC-DC способны заряжать практически любые типы аккумуляторов (включая литиевые), они работают с современными генераторами переменного напряжения и используют многоступенчатую зарядку для полной и правильной зарядки аккумуляторной батареи.

    Зарядные устройства

    DC-DC бывают двух типов: с одним входом, и с двумя входами.

    Зарядные устройства постоянного и постоянного тока с одним входом Зарядные устройства DC-DC с одним входом

    делают одно и только одно: заряжают вспомогательную аккумуляторную батарею от генератора.Это то, что вы хотите получить, если у вас уже есть солнечное оборудование или если вам нужна гибкость в выборе точных характеристик, необходимых для каждого компонента.

    Плюсы
    • Доступны различные значения силы тока в соответствии с вашими конкретными требованиями
    • Простое добавление к комплектам солнечных батарей Renogy или существующим солнечным установкам
    Минусы
    • Другой компонент, занимающий комнату
    • Может потребоваться подключение к цепи зажигания

    Лучшее зарядное устройство DC-DC

    Зарядное устройство Renogy 20A / 40A DC-DC

    3-ступенчатое зарядное устройство для оптимальной зарядки аккумулятора.Работает со всеми типами батарей (литиевые, AGM и т. Д.) И выходами генератора. Подключите Bluetooth-модуль BT-2 для мониторинга с телефона. Доступны 20А и 40А. Renogy также производит зарядное устройство DC-DC на 60 А.

    Введите код купона GnomadHome на 10% скидку на Renogy.com

    Купить на Renogy

    Мы получаем комиссию, если вы переходите по этой ссылке и совершаете покупку без дополнительных затрат для вас.

    Также хорошо

    Зарядные устройства постоянного и постоянного тока с двумя входами С другой стороны, зарядные устройства DC-DC с двойным входом

    также функционируют как контроллеры заряда солнечных батарей.Таким образом, с помощью всего лишь одного устройства вы можете заряжать батареи от солнечных панелей и от двигателя. Это значительно упрощает установку и делает вашу электрическую систему немного чище.

    Однако такие комбинированные блоки лишают гибкости, чтобы действительно настроить солнечную установку независимо от зарядки вашего двигателя, так как вы будете привязаны к характеристикам вашего зарядного устройства DC-DC (например, DCC50S Renogy может принимать только солнечные батареи 25 В. вход, что означает, что вы должны подключить панели параллельно, чтобы оставаться под этим напряжением).

    Плюсы
    • Один блок предназначен для зарядки как от солнечной энергии, так и от постоянного и постоянного тока
    • Простота установки (обычно без запального крана)
    Минусы
    • Меньшая гибкость с параметрами зарядки
    • Необходимо собрать собственные солнечные компоненты по сравнению с покупкой комплекта

    Лучшее зарядное устройство с двумя входами

    Также хорошо

    Что такое изолятор батареи?

    Изолятор аккумуляторной батареи — это устройство, которое позволяет заряжать вспомогательную аккумуляторную батарею от генератора переменного тока вашего фургона, сохраняя при этом пусковую и вспомогательную батареи «изолированными» друг от друга.

    Изоляторы батарей

    недороги, и, как правило, их довольно легко установить. Однако они не всегда являются лучшим выбором для электрических нужд вашего фургона, и в большинстве случаев вам следует использовать зарядное устройство постоянного тока.

    Изоляторы батарей

    могут не работать должным образом с современными генераторами переменного напряжения, не будут работать с литиевыми батареями (если вы не заплатите через нос за литиевый изолятор) и могут не поддерживать надлежащее напряжение для полной зарядки вспомогательных батарей.

    Существует три типа аккумуляторных изоляторов: электромагнитных изоляторов аккумуляторных батарей, твердотельных аккумуляторных изоляторов, и реле измерения напряжения (или «интеллектуальных» изоляторов). Интеллектуальные изоляторы с измерением напряжения — безусловно, лучший выбор, поэтому мы сосредоточим наше обсуждение на них.

    Изоляторы батарей

    Smart работают, автоматически определяя напряжение пусковой батареи. Когда напряжение достигает 13,3 В (это означает, что двигатель включен, а аккумулятор полностью заряжен), изолятор «включается» и передает 100% тока генератора переменного тока на вспомогательную батарею.Когда напряжение пусковой батареи падает до 12,8 В (что означает, что пусковая батарея больше не заряжается), изолятор «отключается», чтобы предотвратить разряд стартовой батареи.

    Верхний изолятор аккумуляторной батареи

    Интеллектуальный изолятор аккумулятора Iso-Pro140 для зарядных устройств KeyLine отлично зарекомендовал себя в нашем фургоне. Он небольшой и компактный, его очень просто установить (самое сложное — это проложить аккумуляторный кабель от моторного отсека к задней части автомобиля). И он имеет сертификат IP65, а это значит, что вам не придется беспокоиться о его выходе из строя после езды по пыльной дороге к Burning Man.

    Пакетная сделка

    KeyLine Iso-Pro 140 также доступен в виде набора, который включает в себя проводку, кольца, клеммы и т. Д., Что должно значительно упростить установку.

    Когда использовать изолятор батареи (а когда , а не -)

    Изоляторы батарей будут работать в вашей установке, если все из следующего верны:

    1. У вас старый фургон с генератором постоянного напряжения. Для правильной работы изоляторам аккумуляторных батарей требуется постоянное напряжение.Если у вас более новый автомобиль (примерно 2015 года выпуска или новее) с «умным» генератором переменного напряжения, изолятор, вероятно, вам не подойдет.
    2. Ваши вспомогательные аккумуляторные батареи свинцово-кислотные (AGM, гелевые, заливные свинцово-кислотные). Большинство изоляторов не работают должным образом с литиевыми батареями. (Существуют литиевые изоляторы, но они super дорогие и, следовательно, бессмысленны.)
    3. У вас ограниченный бюджет. Изоляторы аккумуляторных батарей дешевле зарядных устройств постоянного и постоянного тока, но это единственное их преимущество.Если у вас не ограниченный бюджет, вам будет лучше с зарядным устройством DC-DC.

    Если все три из вышеперечисленных применимы к вам, тогда замечательно — приобретите изолятор батареи для своей установки.

    Однако, если что-либо из приведенного выше не относится к вам, тогда вам понадобится зарядное устройство DC-DC.

    Зарядные устройства постоянного и постоянного тока и изоляторы батарей

    На первый взгляд, зарядные устройства DC-DC очень похожи на изоляторы батарей. Оба позволяют заряжать вспомогательную аккумуляторную батарею во время движения и предотвращают разряд стартовой аккумуляторной батареи при выключенном двигателе.Но разница в в том, как заряжают ваш дополнительный аккумулятор.

    Изоляторы аккумуляторных батарей просто соединяют пусковую и вспомогательную аккумуляторную батарею друг с другом, что позволяет подавать на них одинаковое напряжение. Таким образом, если ваш генератор подает 14,4 В на пусковую батарею, соединение изолятора батареи также переведет вашу вспомогательную батарею на 14,4 В (то есть она заряжается).

    Есть несколько проблем с этим:

    • В современных генераторах переменного напряжения выходное напряжение может колебаться, предотвращая срабатывание изолятора батареи.
    • Если ваш генератор не выдает достаточного напряжения, ваш изолятор может лишь частично заряжать вспомогательную батарею. Со временем это может привести к ухудшению характеристик батареи.
    • Падение напряжения может быть проблемой, если у вас есть длинный провод, соединяющий изолятор с дополнительной батареей.

    Зарядные устройства постоянного и постоянного тока , с другой стороны, принимают входное напряжение от вашего генератора / пусковой батареи и повышают его до надлежащего напряжения для зарядки вспомогательной батареи. Они делают это, помещая «нагрузку» на ваш генератор переменного тока, так что генератор обращается с ним, как, скажем, с лампочкой, и передает на него энергию.Независимо от того, какое напряжение выдает ваш генератор переменного тока, зарядное устройство постоянного и постоянного тока подаст нужное зарядное напряжение на дополнительную батарею.

    У ths есть несколько преимуществ:

    Зарядные устройства
    • DC-DC могут справляться с колебаниями современных генераторов переменного напряжения и при этом заряжать вспомогательную батарею должным образом. Зарядные устройства
    • DC-DC могут использовать многоступенчатую зарядку, чтобы вы знали, что ваши батареи заряжаются должным образом и полностью. Зарядные устройства
    • DC-DC могут работать с разными профилями зарядки, что означает, что вы можете использовать их для зарядки различных типов аккумуляторов (включая литиевые).

    Каковы недостатки зарядных устройств DC-DC? В основном они немного дороже, чем изоляторы аккумуляторных батарей, и их может быть немного сложнее установить (поскольку некоторые зарядные устройства постоянного и постоянного тока требуют, чтобы вы подключались к цепи зажигания).

    Но зарядные устройства постоянного и постоянного тока намного более гибкие и функциональные, чем изоляторы аккумуляторных батарей, и мы считаем, что они являются лучшим выбором для vanlife.

    Зарядное устройство DC-DC какого размера или изолятор аккумулятора вам нужны?

    Зарядные устройства DC-DC и изоляторы аккумуляторов

    бывают разных размеров, обозначенных силой тока (т.е. зарядное устройство DC-DC на 60 А или изолятор батареи на 140 А). Как выбрать размер фургона?

    Определение размеров зарядного устройства постоянного и постоянного тока

    При выборе зарядного устройства DC-DC вы хотите установить его размер на основе скорости заряда дополнительных аккумуляторов. Это зависит от химического состава вашей батареи, поэтому у AGM-батареи скорость заряда отличается от литиевой.

    Вот общее практическое правило для уровня заряда аккумулятора:

    • Литиевые батареи (LiFePO4 и др.) можно заряжать при 0,5C (или 50% емкости ***). Это означает, что аккумулятор на 100ач можно заряжать при токе 50А.
    • Свинцово-кислотные батареи (AGM, гелевые, FLA и т. Д.) можно заряжать при 0,2 ° C (или 20% от емкости ***). Это означает, что аккумулятор на 100ач можно заряжать до 20А.

    *** Примечание: Это только общие рекомендации. Перед выбором компонентов для зарядки проверьте характеристики ваших конкретных аккумуляторов.

    Калькулятор размеров зарядного устройства DC-DC

    Имейте в виду, что это максимальная скорость зарядки . Вы можете уменьшить размер своего зарядного устройства, но не увеличивайте его (некоторые зарядные устройства DC-DC, такие как модели Renogy, которые мы рекомендуем, могут при необходимости устанавливать более низкую скорость зарядки).

    Опять же, дважды проверьте характеристики вашего аккумулятора, чтобы убедиться, что вы получаете зарядное устройство постоянного и постоянного тока подходящего размера.

    Определение размеров изолятора батареи

    Общие рекомендации — подбирать изолятор батареи в зависимости от максимальной выходной мощности вашего генератора. Вы должны найти этот номер либо в технических характеристиках вашего автомобиля, либо на самом генераторе.

    Итак, если максимальная выходная мощность вашего генератора составляет 175 А, то теоретически вам потребуется как минимум изолятор батареи на 175 А.

    Однако, хотя ваш генератор может выдавать 175 А, не все из них доступны для зарядки вспомогательной батареи. Часть этого используется для питания других систем и электроники в вашем фургоне, поэтому сила тока, фактически передаваемая через изолятор батареи, может быть значительно меньше.

    Кроме того, большинство изоляторов аккумуляторных батарей имеют размеры от 125 до 150 А.Несмотря на то, что доступны более крупные изоляторы, они становятся довольно дорогими, превышая 150 А, и в этот момент вы все равно можете получить зарядное устройство постоянного тока.

    Короче говоря, если вы собираетесь использовать изолятор батареи, стандартный интеллектуальный изолятор от 125 А до 150 А должен иметь достаточную емкость в большинстве ситуаций.

    Установка зарядного устройства постоянного тока или изолятора аккумуляторной батареи в вашем фургоне
    Что вам понадобится

    Компоненты

    • Зарядное устройство постоянного тока или изолятор аккумулятора
    • Аккумулятор глубокого разряда
    • Кабель аккумулятора (размер кабеля зависит от характеристик вашего конкретного устройства)
    • Наконечники клемм аккумулятора (размер для вашего кабеля) и инструмент для обжима
    • (2) Встроенный ANL предохранители (по одному на каждую батарею — см. спецификации предохранителей для вашего конкретного устройства)

    Инструменты

    • Аккумуляторная дрель
    • Набор инструментов для механика
    • Мультиметр
    • Застежки-молнии
    • Оболочка кабеля / гибкий кабелепровод (размер соответствует вашему кабелю)

    Инструкции
    1. Отсоедините отрицательную клемму аккумуляторной батареи от пусковой аккумуляторной батареи. Это важный шаг безопасности, который изолирует пусковую батарею, чтобы вас не ударило током.
    2. Установите зарядный блок. Найдите легкодоступное место. Изоляторы аккумуляторных батарей обычно устанавливаются в моторном отсеке (вам может потребоваться временно снять пусковую аккумуляторную батарею, чтобы освободить место). Зарядные устройства постоянного и постоянного тока обычно устанавливаются на вспомогательной аккумуляторной батарее, поэтому они находятся вне элементов.
    3. Проложите аккумуляторный кабель от моторного отсека до электрического узла фургона. Возможно, вам придется запустить это под вашим фургоном. Накройте кабель аккумулятора оболочкой или гибким кабелепроводом для предотвращения короткого замыкания. Используйте стяжки, чтобы не мешать им. Убедитесь, что там кабель натянут и ничего не свисает. Просверлите отверстие в полу фургона, чтобы пропустить провод внутри. Закройте это силиконовым герметиком.
    4. Заземлите зарядное устройство. Подключите зарядное устройство постоянного и переменного тока или изолятор аккумулятора к общей точке заземления на шасси вашего фургона. Лучше всего использовать имеющийся винт заземления.
    5. При необходимости: Вставьте зарядное устройство в цепь зажигания вашего автомобиля. Некоторые зарядные устройства постоянного и постоянного тока (и изоляторы аккумуляторных батарей) требуют подключения к цепи зажигания вашего фургона.
    6. Присоедините зарядное устройство к пусковой батарее. Отрежьте и обожмите аккумуляторный кабель до нужного размера. Проложите кабель от зарядного устройства постоянного тока или изолятора к встроенному предохранителю ANL, затем другой кабель от предохранителя к пусковой батарее (для зарядных устройств постоянного и постоянного тока это длинный кабель, который вы проложили под фургоном.Изоляторы аккумуляторной батареи установлены в моторном отсеке).
    7. Подсоедините зарядное устройство к дополнительной батарее. Отрежьте и обожмите аккумуляторный кабель до нужного размера. Протяните кабель от зарядного устройства постоянного тока или изолятора к встроенному предохранителю ANL, затем другой кабель от предохранителя к вспомогательной батарее (для аккумуляторных изоляторов это длинный кабель, который вы проложили под фургоном. Зарядные устройства постоянного тока устанавливаются поблизости вспомогательный аккумулятор)
    8. Снова подключите пусковой аккумулятор и убедитесь, что все работает .Включите фургон, подождите несколько минут и проверьте, заряжается ли дополнительный аккумулятор. Зарядные устройства DC-DC должны давать вам показания. Изоляторы аккумуляторных батарей будут иметь световые индикаторы, и вы также можете проверить напряжение на выводах вспомогательной аккумуляторной батареи с помощью мультиметра.
    Шаг 1: Отсоедините отрицательную клемму аккумуляторной батареи от пусковой аккумуляторной батареи.

    Найдите легкодоступное место. Изоляторы аккумуляторных батарей обычно устанавливаются в моторном отсеке (вам может потребоваться временно снять пусковую аккумуляторную батарею, чтобы освободить место).Зарядные устройства постоянного и постоянного тока обычно устанавливаются на вспомогательной аккумуляторной батарее, поэтому они находятся вне элементов.

    Шаг 2: Установите зарядный блок.

    Найдите легкодоступное место для установки зарядного устройства. Зарядные устройства DC-DC обычно устанавливаются на дополнительную батарею. Изоляторы аккумуляторных батарей обычно устанавливаются в моторном отсеке (на этом этапе вам может потребоваться временно снять пусковую аккумуляторную батарею).

    Шаг 3:
    Проложите аккумуляторный кабель от моторного отсека до электрического узла фургона.

    Возможно, вам придется запустить это под вашим фургоном. Накройте кабель аккумулятора оболочкой или гибким кабелепроводом для предотвращения короткого замыкания. Используйте стяжки, чтобы не мешать им. Убедитесь, что там кабель натянут и ничего не свисает. Просверлите отверстие в полу фургона, чтобы пропустить провод внутри. Закройте это силиконовым герметиком.

    Шаг 4. Заземлите зарядное устройство к металлической точке на шасси вашего автомобиля.

    Подключите зарядное устройство постоянного и переменного тока или изолятор аккумулятора к общей точке заземления на шасси вашего фургона.Лучше всего использовать имеющийся винт заземления.

    Шаг 5:
    При необходимости: Вставьте зарядное устройство в цепь зажигания вашего автомобиля .

    Некоторые зарядные устройства постоянного и постоянного тока (и изоляторы аккумуляторов) требуют подключения к цепи зажигания вашего фургона.

    Шаг 6:
    Присоедините зарядное устройство к встроенному предохранителю, а затем к пусковой батарее.

    Отрежьте и обожмите аккумуляторный кабель до нужного размера. Проложите кабель от зарядного устройства постоянного тока или изолятора к встроенному предохранителю ANL, затем другой кабель от предохранителя к пусковой батарее (для зарядных устройств постоянного и постоянного тока это длинный кабель, который вы проложили под фургоном.Изоляторы аккумуляторной батареи установлены в моторном отсеке).

    Важное примечание о предохранителях

    В инструкциях к некоторым изоляторам батарей не требуются предохранители. Но с добавлением двух встроенных предохранителей (один как можно ближе к пусковой батарее, а другой — к вспомогательной батарее) является важной мерой безопасности.

    Предохранитель предназначен для размыкания цепи в случае короткого замыкания. Когда вы устанавливаете изолятор, вы, скорее всего, проложите электрический провод под фургоном.Если этот провод каким-то образом закорочен, и обе ваши батареи не переплавлены, у вас может быть серьезная проблема.

    Итак, при установке изолятора батарей рекомендуется предохранить обе батареи. Если сомневаетесь, добавьте предохранитель!

    Какой большой предохранитель вам нужен? Если это не указано в инструкции к изолятору батареи / зарядному устройству постоянного и постоянного тока, рекомендуется использовать предохранитель в зависимости от скорости заряда аккумулятора.

    Шаг 7: Присоедините зарядное устройство к дополнительной батарее.

    Отрежьте и обожмите аккумуляторный кабель до нужного размера. Проложите кабель от зарядного устройства постоянного тока или изолятора к встроенному предохранителю ANL, затем другой кабель от предохранителя к вспомогательной батарее (для аккумуляторных изоляторов это длинный кабель, который вы проложили под фургоном. Зарядные устройства постоянного тока установлены рядом вспомогательный аккумулятор).

    Шаг 8: Снова подключите пусковую батарею и убедитесь, что все работает. .

    Включите фургон, подождите несколько минут и проверьте, заряжается ли дополнительный аккумулятор.Зарядные устройства DC-DC должны давать вам показания. Изоляторы аккумуляторных батарей будут иметь световые индикаторы, и вы также можете проверить напряжение на выводах вспомогательной аккумуляторной батареи с помощью мультиметра.

    Электричество на дороге в любых условиях!

    Мы думаем, что зарядное устройство DC-DC (или изолятор аккумулятора) должно быть одним из первых, что вы добавляете в электрическую систему вашего фургона. Иногда солнечной энергии недостаточно, или у вас может не быть бюджета на солнечную энергию сразу. В любом случае зарядное устройство DC-DC — отличное решение.

    Независимо от того, путешествуете ли вы в пасмурную погоду, в глухом лесу или в других местах, где вам может не хватать солнечного света, зарядка аккумуляторов во время вождения гарантирует, что вы сможете получить необходимую мощность в любых условиях.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *