ЗОН трансформатора: назначение, конструкция, монтаж, виды
ЗОН трансформатора – это заземлитель нейтрали трансформатора. На электростанциях используются заземлители ЗОН-110. Расшифровка их названия – однополюсный заземлитель наружной установки. Цифрами после названия обозначается напряжение. Существует много разновидностей заземлителей. Но, прежде чем ознакомиться с ними, необходимо понять, для чего нужен ЗОН трансформатора на 110 кВ.
Назначение ЗОН-110
Заземление трансформатора называется заземление этого электрического устройства с прибором заземления.
Рабочим заземлением называется соединение какой-либо точки токопроводящих проводов с заземлительным устройством. Рабочее заземление соединяется с экранами кабелей, которые подают заряд в землю. Примером такого типа заземления является электростанция, на которой и источник тока и поглотитель энергии находятся в земле. Из-за такой установки потенциал между устройствами всегда один и тот же.
Имеет ЗОН трансформатора назначение весьма серьезное. Он служит для заземления нейтрали трансформаторов.
- Заземление необходимо для обеспечения бесперебойной работы электрической установки.
- Кроме того, оно обеспечивает защиту работников подстанций от поражения током.
- Заземлению на подстанциях должны подвергаться абсолютно все детали из металла.
- Основные металлоконструкции также необходимо включать в систему заземления.
- Также заземление служит бесперебойным регулятором автоматизированной работы подстанции.
Конструкция ЗОН-110
Конструкция ЗОНа состоит из цилиндра, на которое крепится основание. Основание-это небольшая деталь в виде угла, на котором закреплена вся конструкция. К нему присоединен статический контакт с устройством, состоящим из трубы (в основном алюминиевая) на которую крепится круглая пластинка с валом. Такое устройство называется ножом заземления. Нож соединен с фазным проводом линии, который входит в фазу заземления вторым концом.
Давление всей установки устанавливается и регулируется стальной пружиной. Вентильные разрядники, устройства защищающие установку от перенапряжения. Берут весь удар на себя во время грозы. Внешний вид напоминает металлическую гусеницу. Включается ЗОН 110кВ между нулевой точкой напряжения и землёй, либо напрямую через трансформатор со вторичной обмоткой.
Как подготовить ЗОН к монтажу
Важный этап монтажа ЗОНа – предварительная подготовка. При подготовке важно следовать мерам предосторожности, а именно:
- Монтаж осуществляется только руками профессионалов согласно правилам технической эксплуатации электрических установок.
- При контакте с ножом и замере его покрытия напряжение должно отсутствовать.
- Наладка и эксплуатация заземлителя производится ТОЛЬКО при наличии защитного заземления.
- Во время подготовки категорически запрещается использовать неинверторные рукоятки.
- При работе с заземлителем необходимо обеспечить сохранность изоляторов от механических повреждений.
Подготовка ЗОНа к монтажу состоит из нескольких этапов:
- Осторожно распаковать заземлительное устройство.
- Тщательно проверить оборудование на наличие дефектов и деформаций. При обнаружении недочётов следует обратиться к заводу изготовителю.
- На заводские изделия наносится консервационная смазка, которую необходимо удалить перед монтажом. Для очистки деталей используют бензин или керосин.
- После проверки заново нанести смазку.
Монтаж
Монтаж на электростанциях, независимо от видов ЗОНа, производится по следующему алгоритму:
- Подготовка плоскостей конструкций для установки опоры. Они должны быть ровными, так как небольшая неровность увеличивает риски возникновения сбоев в работе.
- Затем происходит установка заземлителя на подготовленную ранее поверхность.
- Крепежные элементы должны быть установлены плотно в специальных отверстиях.
- После этого их необходимо крепко затянуть.
- Затем происходит установка привода. Он присоединяется к ЗОНу трансформатора посредством сварки концов тяги с осью и вставкой.
- Отрегулировать тягой изоляционное расстояние. Оно должно быть равно 8,9 см и более.
- Произвести пробный запуск заземлителя.
- Соединить подводящую шину с выводом заземлителя.
- Затем необходимо удалить пыль с изолятора. Для этого нередко используют обычный растворитель для краски.
- После завершения монтажа производится шлифовка и окраска монтажных швов.
- Затем все соединения обрабатывают смазкой.
Разновидности ЗОН-110
Существуют разные виды заземлителей ЗОН. Так, для заземления нейтралей силовых трансформаторов с защитой от замыканий на землю применяются:
- ЗОН-110М-I УХЛ1
- ЗОН-110Б-I УXЛ1
- ЗОН-110-I T1
Все эти заземлители устанавливаются на трансформаторных станциях переменного тока. Они также обеспечивают механическое включение и выключение в сочетании с приводами ПР-01 и ПРГ-00.
Для заземления нейтралей трансформаторов без защиты от замыканий на землю используются:
- ЗОН-110М- II УХЛ1
- 30Н-110Б-II УХЛ1
- ЗОН-110-II Т1
Чаще заземлители таких типов встречаются на стационарных трансформаторных подстанциях, они устанавливаются на напряжение 110 кВ.
Условия эксплуатации заземлителя ЗОН
Использование заземлителей всегда основывается на основных условиях эксплуатации. К ним относятся:
- Температура окружающей среды от 40 градусов выше нуля и до 60 градусов ниже нулевого уровня
- Расположение установки- 1000 м над уровнем моря
- Толщина ледяной корки – до 2 см
- Скорость ветра: без гололеда – не выше 15 м/с, с гололедом- не выше 40 м/с
Категория размещения заземлителя должна быть УХЛ1 или Т1.
Что такое нейтраль трансформатора
Нейтраль представляет собой несколько соединенных точек или проводников, которые либо не подключены к сети напряжений, либо имеют контакт с землёй путём преодоления больших сопротивлений.
Заземление нейтралей необходимо по следующим причинам:
- Правила техники безопасности;
- Автономная бесперебойная работа защиты по замыканию на землю;
- Возможность использования простых схем цепей.
При изменении напряжения относительно земли, создаются токи замыкания на землю, и появляется перенапряжение. Это происходит из-за нарушения симметрии системы. Нейтраль может иметь разные режимы, которые зависят от степени изменения симметрии. Так, в зависимости от режимов, нейтраль может быть:
- Глухозаземленная. Нейтраль, присоединенная к заземлителю через малое сопротивление.
- Изолированная. Не соединенная с заземлителем нейтраль.
- Резонансно-заземленная. Нейтраль, соединенная с заземлителем с помощью реактора.
- Резистивно-заземленная. Заземленная через резистор нейтраль.
Нейтрали трансформатора могут быть изолированы от земли или заземлены через активные сопротивления. Также сопротивления могут быть индуктивными. Изолированные нейтрали работают от 6 кВ до 35 кВ.
Принцип работы
Напряжение с трёхфазной электростанции поступает на линейный разъединитель. После этого оно попадается на отделитель 110кВ. Он является таким же линейным разъединителем, только выполняющий расширенные функции, а именно приём более большого напряжения. Затем напряжение передается силовому трансформатору со встречной обмоткой.
Обычно на участках электростанций устанавливаются железные помещения, в которых размещаются масляные выключатели. Именно туда напряжение попадает в последнюю очередь. После попадания в ячейки ввода, оно распределяется по фидерам (столбы с проводами). Они находятся рядом с электростанцией. В дальнейшем, электричество по проводам передаётся потребителям.
Также в систему электростанции входит короткозамыкатель 110 кВ, который защищает силовой трансформатор от перенапряжения и неисправностей. Если же в квартире при коротком замыкании вырубается щиток, то на электростанции при перенапряжении короткозамыкатель порождает ток короткого замыкания, вследствие действия которого трансформатор перестаёт работать. Также короткозамыкатель блокирует возгорание трансформатора путём отделения его от отделителя, к которому постоянно поступает напряжение от линий с электроэнергией.
Заземление нейтрали
Заземление нейтрали трансформатора служит для ограничения перенапряжения. На значения напряжения влияют ёмкости сети, в которую включён трансформатор. Поэтому необходим элемент, который будет приглушать их принудительно. Так ЗОН 110кВ с активным током, который по значению больше емкостного за определённый период времени будет разряжать ёмкостное сопротивление, что приведет к понижению напряжения или его распределению.
Однако у заземлителя есть один большой недостаток. Из-за того, что он перераспределяет напряжение, происходит огромное рассеивание мощности, подаваемой с электростанции.
На сегодняшний день, специалисты решили подавать напряжение, которое будет безопасно для использования. Также при установке заземлителя снижается риск возникновения феррорезонанса. Феррорезонанс – резонанс, встречающийся в электрических цепях при различных неисправностях и высоких напряжениях.
Защита трансформатора
Одной из главной защиты силового трансформатора является газовая защита. Она предотвращает повреждения внутри электрического устройства.
Газовое реле сигнализирует об отсутствии масла в нём, а следовательно, он перестанет работать. Это явление недопустимо на электростанции, потому что напряжению будет некуда идти и произойдёт возгорание. Однако реле работает по принципу, который делает работу системы безопасной. Оно устанавливается в топливный отсек в виде поплавка, соединяя контакты. В случае снижения топлива, он замкнёт контакты и отключит трансформатор от сети.
Дифференциальная защита также играет немалую роль в работе электростанции. Так принцип рассчитан на сравнении входящих в трансформатор токов. При нормальной работе ничего не происходит. Но как только возникает двухфазный или трёхфазный ток короткого замыкания, дифференциальное реле сразу выключает трансформатор из схемы, подавая всю энергию в землю.
28. Поясните назначение и принцип действия защит трансформатора.
Все защиты трансформатора можно разделить на две группы: основные и резервные защиты.
Основные защищают трансформатор от внутренних повреждений и ненормальных режимов в самом трансформаторе или на его ошиновках.
Резервные защищают обмотки трансформатора от сверхтоков внешних к.з. при повреждениях на присоединениях прилегающей сети, а также по возможности резервируют основные защиты трансформатора.
Основными защитами трансформатора и АТ являются: дифференциальная токовая защита трансформатора, газовая защита трансформатора, газовая защита РПН, токовая отсечка,устанавливаемая со стороны питания на трансформаторах малой мощности, дифференциальная токовая защита ошиновки низшего напряжения АТ, дифференциальная токовая защита ошиновки высшего и среднего напряжения АТ.
Газовая защита трансформатора содержит два элемента: сигнальный и отключающий.
Сигнальный действует на сигнал при слабом газообразовании и при понижении уровня масла.
Отключающий действует на отключение трансформатора со всех сторон с запретом АПВ трансформатора при интенсивном газообразовании и движении масла со скоростью 0,6-1,5 м/сек по маслопроводу между баком трансформатора и расширителем, а также при дальнейшем (после срабатывания сигнального элемента) понижении уровня масла.
Для защиты от повреждений контакторов РПН применяется газовая защита РПН.
Защита выполняется с помощью струйного реле, устанавливаемого между баком РПН и расширителем.
Газовая защита РПН действует на отключение трансформатора со всех сторон с запретом АПВ трансформатора.
Сигнальный элемент у струйных реле отсутствует.
Дифференциальная защита трансформатора реагирует на все виды к.з. (за исключением однофазных замыканий на землю в обмотке 6-10-35кВ) в зоне, ограниченной трансформаторами тока (ТТ).
При замене выключателя трансформатора обходным выключателем дифференциальная защита переключается с ТТ заменяемого выключателя на ТТ обходного выключателя.
Защита действует на отключение трансформатора со всех сторон с запретом АПВ.
Дифференциальная защита ошиновки высшего (среднего) напряжения АТ.
Защита охватывает зону между встроенными ТТ АТ и выносными ТТ выключателей, действует без выдержки времени на отключение АТ со всех сторон без запрета АПВ АТ.
Дифференциальная защита цепей низшего напряжения АТ.
В зону действия этой защиты входят линейный трансформатор, реактор и ошиновка цепей низшего напряжения от встроенных ТТ АТ до выносных ТТ в ячейке ввода низшего напряжения.Защита действует на отключение АТ со всех сторон с запретом АПВ.
В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.
МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с двумя выдержками времени.
С меньшей выдержкой времени на отключение ввода 10кВ, а с большей — на отключение трансформатора со всех сторон.
В случае, когда с высокой стороны трансформатора установлены короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени дейс-
твуют на включение короткозамыкателя, тем самым создавая искусственное однофазное короткое замыкание, отключаемое защитой питающих линий. В бестоковую паузу (при АПВ питающих линий) производится автоматическое отключение отделителя, после чего поврежденный трансформатор (автотрансформатор) оказывается полностью отключенным.
Передача команды — импульса на отключение выключателя с питающей стороны линии при повреждении в трансформаторе, не имеющем выключателя с высокой стороны, может выполняться и без включения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключения по высокочастотному каналу.
С целью ближнего резервирования защит трансформатора предусматривается резервная независимая МТЗ-110кВ.
Эта защита является полностью автономной как по цепям тока,оперативным цепям, так и по выходным цепям.
Резервная МТЗ-110 с выдержкой времени большей времени срабатывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.
С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.
При этом допускается разрешение отделителя во имя спасения самого трансформатора.
На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой последовательности, действующие на отключение трансформатора.
На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).
Дистанционные защиты предназначены для отключения междуфазныхк.з., а НТЗНП — для отключения одно- и двухфазных к.з. на землю.
Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.
Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки высшего напряжения АТ, дифзащиты шин среднего напряжения.
Цель О/У резервных защит АТ — ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.
Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.
Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключателей высшего напряжения, а со второй (большей) — на отключение АТ со всех сторон.
На ПС, имеющих на стороне 330кВ схему первичных соединений «полуторная», резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со второй — на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) — на отключение своего АТ со всех сторон.
Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны «секционированная С.Ш.» действуют с первой выдержкой времени на отключение ШСВ, со второй — на отключение своей стороны и с третьей — на отключение АТ со всех сторон.
Такое ступенчатое действие резервных защит позволяет сохранить в работе те АТ, которые отделяются от места к.з. после деления систем шин.
Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У — 750,
А/У-330) и при включении выключателей стороны среднего напряжения ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.
При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.
Индивидуальная защита от непереключения фаз выключателей стороны среднего и высшего напряжения АТ.
Защита выполняется только на выключателях с пофазным управлением.
Назначение защиты — ликвидация неполнофазного режима, возникающего при включении выключателя одной или двумя фазами.
Защита действует на отключение трех фаз включаемого выключателя.
Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по условию отстройки от разновременности включения фаз выключателя.
Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330).
Назначение защиты — ликвидация неполнофазного режима, возникающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.
Защита, как правило, действует на отключение АТ со всех сторон.
Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.
На АТ-750кВ для контроля состояния изоляции вводов 750кВ АТ применяется устройство КИВ-750.
Принцип действия устройства — измерение геометрической суммы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.
При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.
Устройство типа КИВ имеет измерительный элемент для оперативного контроля и отключающий элемент.
Отключающий элемент действует на отключение АТ со всех сторон.
Защита от перегрузки.
В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.
Режим нейтрали трансформаторов 110 кВ (Страница 1) — Схемы распределительных устройств — Советы бывалого релейщика
Здравствуйте, заранее извиняюсь, что вопрос далек от тематики форума.
Дело в том, что задали мне недавно вопрос про режим нейтрали обмоток трансформаторов 110 кВ. А точнее почему нейтрали рабочих трансформаторов разземлены, а резервного глухо заземлен, как показано ниже на рисунке. Как назло все первичники в отпусках, которые бы смогли ответить, а я не успел выйти вовремя))) Перерыл все схемы наши везде выполнено так как на нижеприведенной схеме.
Наша типичная схема:
1Т, 2Т — рабочие трансформаторы.
10ВA, 10BB, 20BA, 20BB — соответствующие секции этих трансформаторов, на схеме не показано для упрощения, но они питают либо линии питания секции 6 кВ, либо трансформаторы на 6/0,4.
OBTO1- резервный трансформатор, питает магистрали резервного питания.
И так везде нейтраль резервного трансформатора наглухо.
Просмотрел ПУЭ и ПТЭ толком ничего не нашел. Кроме
5.3.21. Нейтрали обмоток 110 кВ и выше автотрансформаторов и реакторов, а также трансформаторов 330 кВ и выше должныработать в режиме глухого заземления.
Допускается заземление нейтрали трансформаторов и автотрансформаторов через специальные реакторы.
Трансформаторы 110 и 220 кВ с испытательнымнапряжением нейтрали соответственно 100 и 200 кВ могут работать с разземленнойнейтралью при условии ее защиты разрядником. При обосновании расчетамидопускается работа с разземленной нейтралью трансформаторов 110 кВ с испытательным напряжением нейтрали 85 кВ, защищенной разрядником.
Меня это только больше запутало.
Так вот кто нибудь сталкивался с таким вопросом. Либо знает где можно еще почитать?
Основные и резервные защиты трансформатора, виды, схема
Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.
Все основные виды защиты трансформатора можно разделить на две группы:
- основные
- резервные.
В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:
- Дифференциальная защита для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов)
- Токовая отсечка мгновенного действия для защиты трансфер мотора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания
- Газовая защита для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
- Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверх токов, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверх токов действуют, как правило, с выдержкой времени.
- Защита от замыканий на корпус
- Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.
Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.
К ненормальным и опасным режимам работы силового трансформатора относятся:
- перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
- замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
- межфазные замыкания внутри обмоток и со стороны выводящих шин,
- замыкания внутри обмоток трансформатора.
Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.
Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.
Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:
- отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
- отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверх тока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
- подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.
Защита по максимальному току (МТЗ)
Рис.1 схема релейной защиты трансформатора по максимальному токуЗащита по максимальному току трансформатора срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.
При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.
Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле.
L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.
Силовые трансформаторы относительно малой мощности обычно защищают предохранителями со стороны высшего напряжения и предохранителями или автоматами со стороны отходящих линий низшего напряжения. Ток плавкой вставки высоковольтного предохранителя выбирается с учетом отстройки от бросков тока намагничивания при включении силового трансформатора под рабочее напряжение. С учетом этого номинальный ток предохранителя.
Резервная токовая защиты
В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.
МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с двумя выдержками времени.
С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.
В случае, когда с высокой стороны трансформатора установлены короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени действуют на включение короткозамыкателя, тем самым создавая искусственное однофазное короткое замыкание, отключаемое защитой питающих линий. В бестоковую паузу (при АПВ питающих линий) производится автоматическое отключение отделителя, после чего поврежденный трансформатор (автотрансформатор) оказывается полностью отключенным.
Передача команды – импульса на отключение выключателя с питающей стороны линии при повреждении в трансформаторе, не имеющем выключателя с высокой стороны, может выполняться и без включения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключения по высокочастотному каналу.
С целью ближнего резервирования защит трансформатора предусматривается резервная независимая МТЗ-110кВ.
Эта защита является полностью автономной как по цепям тока,оперативным цепям, так и по выходным цепям.
Резервная МТЗ-110 с выдержкой времени большей времени срабатывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.
С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.
При этом допускается разрешение отделителя во имя спасения самого трансформатора.
На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой последовательности, действующие на отключение трансформатора.
На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).
Дистанционные защиты предназначены для отключения междуфазных к.з., а НТЗНП – для отключения одно- и двухфазных к.з. на землю.
Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.
Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки высшего напряжения АТ, дифзащиты шин среднего напряжения.
Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.
Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.
Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключателей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.
На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со второй – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.
Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” действуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.
Такое ступенчатое действие резервных защит позволяет сохранить в работе те АТ, которые отделяются от места к.з. после деления систем шин.
Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,
А/У-330) и при включении выключателей стороны среднего напряжения ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.
При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.
Индивидуальная защита от непереключения фаз выключателей стороны среднего и высшего напряжения АТ
Защита выполняется только на выключателях с пофазным управлением.
Назначение защиты – ликвидация неполнофазного режима, возникающего при включении выключателя одной или двумя фазами.
Защита действует на отключение трех фаз включаемого выключателя.
Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по условию отстройки от разновременности включения фаз выключателя.
Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)
Назначение защиты – ликвидация неполнофазного режима, возникающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.
Защита, как правило, действует на отключение АТ со всех сторон.
Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.
На АТ-750кВ для контроля состояния изоляции вводов 750кВ АТ применяется устройство КИВ-750.
Принцип действия устройства – измерение геометрической суммы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.
При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.
Устройство типа КИВ имеет измерительный элемент для оперативного контроля и отключающий элемент.
Отключающий элемент действует на отключение АТ со всех сторон.
Защита от перегрузки
В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.
Видео: Релейная защита. Вводная лекция
Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.
Читайте так же:
Вводы для трансформаторов: описание. конструкция, проблемы эксплуатации
Вводы для силовых трансформаторов – необходимые конструктивные элементы оборудования, к которым предъявляются особые технические требования. Вводы бывают различных типов, они классифицируются по особенностям конструкции, наполненности маслом, типологии изоляции. Безусловно, есть определенные проблемы эксплуатации в зависимости от вида элемента, а также основные методики контроля технологического состояния в зависимости от вида.
Назначение
Вводы для трансформатора являются необходимым элементом конструкции. Они предназначаются для изоляции выводимых концов обмотки и последующего крепления устройства к различным дополнительным приборам и элементам.
Выводов существует несколько десятков видов, при этом они различаются в зависимости от размеров и форм, мощности, напряжения, принципа установки, необходимых технических особенностей и другого.
Высоковольтный ввод представляет собой довольно простую конструкцию. Изолятор из фарфоровой пластин соединяется с фланцем из качественного чугуна. Последний необходим для того, что соединить ввод и крышку бака надежно и прочно. Ток передается по медному стержню, именно он связывает обмотку с элементами оборудования. Изолятор по типу своей поверхности имеет мелкие ребра или даже полностью гладкий. Также бывают варианты с зонтообразными ребрами на изоляторе, благодаря чем удается избежать разрядов на поверхности.
Ранее вводы трансформатора обладали такой конструкцией, которая не позволяла убрать их и заменить быстро. Приходилось снимать крышку или открывать активную часть бака, а уже потом снимать их и ремонтировать. На новых трансформаторах устанавливаются вводы, которые имеют съемную конструкцию. Благодаря тому, что нет обойм и фланцев, их легко снимать и заменять на новые в случае необходимости, не поднимая сердечник. Просто открывается устройство, которое прижимает ввод к крышке, а потом снимается уплотнительное кольцо. Ввод вынимается и заменяется.
Проблема работы вводов состоит в том, что появляется сильнейший магнитный поток. Особенно это касается оборудования, которое предназначается для работы с большими токами. Магнитное поле приводит к сильному нагреву крышки и фланцев. Для избегания поломок, связанных с этим фактором, заменяют фланцы из стали и чугуна латунными. Также для уменьшения нагрева к крышке размещают вводы совместно, при этом в одно отверстие, или же делают диаметр дырки для ввода больше, чтоб токовый стержень находился дальше.
Классификация и особенности конструкции
Конструктивные особенности изменяются в зависимости от требуемых технических характеристик и особенностей эксплуатации. Обязательно учитывается этот пункт, в противном случае трансформатор даже если и будет работать, то на эффективность и безопасность рассчитывать не стоит.
Составные
Составные вводы используются исключительно для трансформаторов с напряжением до 1000 В. Они состоят и двух или трех изоляторов из фарфора. При этом в отличии от маслонаполненных внутри полости тут нет масляного состава. Их применение в устройствах с большими показателями напряжения недопустимо.
Съемные
Конституция съемных вводов подразумевает, что понятно из названия, что их можно быстро вынимать и ставить обратно при необходимости. Несъемные варианты подходят только для токов, которые сейчас не соотнесены значениям. Диаметр шпилек у старых образцов значительно меньше. В тоже время съемные вариации отличаются большим диаметром шпилек, что позволяет увеличить показатели длительности рабочего тока.
Маслонаполненные
Трансформаторный ввод представляет собой два или три фарфоровых изолятора, внутри полости которых находится масло. Если речь идет о конфигурациях вводах с напряжением 110 кв или больше, то присутствует две крыши из фарфора. Они сочетаются между собой и крепятся втулкой. Часть внутри в масле, обязательно контролируется его расход.
Маслоподпорные
Маслоподпорные выводы отличаются особой герметичностью, но особенность состоит в том, что масло поступает при помощи специальной трубки, которая располагается непосредственно у самого ввода. Изоляция жидкого типа общая, то есть она с такими же химическим составом, что и трансформаторная. Используется исключительно для устройств с напряжением от 110 кВ.
С твердой изоляцией
Приборы с твердой изоляцией также герметичны и применяются для оборудования с большими мощностными показателями. По своим конструктивным особенностям схожи с вариантами масляными, однако у них нет нижней фарфоровой покрышки.
Проблемы эксплуатации
Проблемы с выводами безусловно коснуться трансформатора. Но специалистам требуется выявить причину и максимально постараться ограждать от нее устройства при последующем использовании.
Более 60 процентов от всех причин поломки силовых трансформаторов относятся к проблемам со вводами. Наибольшая часть — это оборудование высоковольтное от 110 кВ. Типология, особенности повреждений зависят от конструктивных деталей внутри механизма и данных о напряжении. Показывают меньший процент поломок несъемные варианты, но их ремонт невозможен. Чаще меняются приборы с большой мощностью нежели менее 100 кВ.
Присущие дефекты конструкции во многом различаются благодаря внутренней изоляции. Характерны для:
- покрытой крышки маслом — механические повреждения и протекания из-за естественных факторов;
- твердой изоляции с маслом — растекание, старение состава, повреждение фарфоровой крышки;
- маслобарьерной изоляции — протекания в фарфоре, естественный износ и уменьшение внутренних показателей изоляции, нарушение работы прокладок и цилиндров;
- бумажно-масляных изоляторов не герметичных — перекрытие, приводящее к пробою, уменьшение соединений на вводах, механические проведение, нарушение объема циркуляции масла, увлажнение или окисление узлов в местах течи масла;
- бумажно-масляных изоляторов герметичных — естественное старение состава и выпадание осадка, затрудняющего работу, появление в составе алюминия и наблюдение вибрации, появление разрядов в зоне около крышки, уменьшение показателей давления.
В зависимости от технических характеристик ввода при плановом осмотре трансформатора специалист сверяется, не появились ли дефекты из вышеизложенного списка. Выделяют и другие причины приводящие к снижению чувствительности изоляционных материалов оборудования. Их объединили в четыре большие группы для удобства.
Электрическое старение
Электрическое старение относится к естественным природным факторам, приводящим к износу изоляции тс. Этот фактор представляет собой совокупность, в число которой входят и постоянное увлажнение, окислительные процессы, проявление частичных электрических токовых импульсов на поверхности, перманентное воздействие тепла.
Частые коммутации
Электроприводы, используемые в производстве, подразумевают воздействие на напряжение питающей сети. Появление гармоник и смена напряжения влечет за особой смену частотных коммутаций. К перенапряжение приводят и электроламповые выключатели, применяющиеся часто в совокупности на предприятиях.
Тяжелые режимы работы
Тяжелые режимы работы вызывают перегрев проводников. Как следствие, возникает износ изоляции и так называемый природный температурный износ. При тяжелых режимах работы оборудование применяется с четко ограниченным планом, когда оно функционирует, а когда отдыхает.
Особенности конструкции
Конструктивные нюансы, в особенности увлажнение, являются также частой проблемой вводов трансформаторов. Увлажнение характерно для тс, которые не относятся к герметичному типу. А вот в герметизированных установках превосходящая часть повреждений обусловлена снижением качества состава, а также появление частых электрических разрядов.
Любая проблема на начальном этапе не вызывает беспокойства и не приводит к резкому снижению эффективности устройства или выходу его из строя. На ранних стадиях проблемы наблюдается изменение состава масла, например добавление в него частиц алюминия. В итоге происходит разложение продуктов изоляции, которые приводят к пробою поверхности.
Это влечет за собой выход и строя и необходимость не только смены самих вводов, но и частиц деталей, прилегающих к ним, проверки конститутивных узлов трансформатора.
Основные методы контроля технологического состояния
Методик контроля несколько, к их числу относятся интегральные и дифференциальные. Эти типы различные по своему принципу действия, и они оценивает разные характеристики изоляции. Например, интегральные направлены прежде всего на проверку в общем состояния ввода, а не на то, чтоб обнаружить и искоренить определенный дефект. Используя их, вы будете уверены, что поломка найдется, но не конкретная область, а именно факт того, что она присутствует.
Тогда можно экстренно заменить ввод и не беспокоится о сохранности прибора. А вот дифференциальные направлены на то, чтоб устанавливать конкретное место поломки. В зависимости от характеристик проводимого исследования изменяются первичные установки, в том числе требуется или нет отключать оборудование из сети.
Интегральные
Интегральные методики позволяют проверить состояние устройства в целом. Они не направлены на то, чтоб определять поконкретнее местоположение поломки. Но они сигнализируют о том, что потребуется или полная замена ввода, если это возможно, или проверка дифференциальным методом дополнительно.
Измерение сопротивления изоляции
При помощи методики измерения сопротивления изоляции специалисты выявляют такие дефекты как увлажнение твердой изоляции и наличие загрязнений, в том числе пыли, грязи на поверхности, которые могут служить причиной уменьшения энергоемкости. Этот способ имеет ряд преимуществ, в то числе и то, что можно оценивать не только внешнее состояние и показатели изолятора, но и абсорбционные процессы, которые происходят внутри обмотки.
К недостаткам методики относят то, что трансформатор обязательно отключается при выполнении исследования.
Измерение диэлектрических потерь и емкости изоляции
Различают несколько видов измерения. Распространенное — это измерение тангенса и емкости по зонам устройства. Позволяют выявить то, есть ли частичные разряды в обмотке, насколько увлажнена твердая оболочка и не состарились ли масло. Особенности этой методики:
- выявление общего и местного состояния;
- невозможность выявить природу дефекта.
Также определяют зависимость тангенса и емкости от напряжения для выявления наличия разрядов. Методика довольно эффективная, но придется отключать приборы от сети. А вот если проводится полное измерение, то при его помощи выявляются не только все вышеизложенные показатели, но и наличие пробоя теплового или ионизирующего характера. Хорошая доля вероятности, но это не распространяется на выявление дефектов в масляном канале.
Кроме того, выявить можно и зависимости от температурных показателей. Методика позволяет определить состарилось ли масло и вероятность появления пробоя теплового характера. Единственным недостатком этой методики является то, что исследование должно проводится при различных температурных вариациях.
Анализ масла
Анализ состава масла выявляет разные характеристик и дефекты. При помощи физико-химического исследования определяется уровень увлажнения, перегрева, загрязнения и старения. Анализ газовой составляющей поможет выявить дефекты строения молекул, а производных фурана — износ изоляции твердого типа. Способ эффективный, но нельзя исключать возможность загрязнения при взятии анализа. Вводы должны быть тщательно очищены перед внедрением специального стеклянного шприца.
Измерение давления
Просмотр сведений о давлении выявляет в каком состоянии находится герметичность и наличие или отсутствие частичных разрядов в масляном составе. Измерение давления относится к простейшим процедурам, так как контроль не требуется. Но минус существенный — разряды выявляются только на их последней стадии.
Дифференциальные
Дифференциальные способы в отличии от интегральных направлены на выявление конкретной проблематики. Ими пользуются, когда интегральные методики дали положительный ответ.
Тепловизионное обследование
Данный вид исследования выявляет массу нарушений состояния проводников. К ним относят:
- чрезмерный нагрев в местах подсоединения;
- наличие контора короткозамкнутых типов;
- уменьшение масляной составляющей во вводах;
- влажность части остова и другое.
Методика действенная и популярная по причине того, что не нужно выключать оборудование в сети и проводить специального рода манипуляции перед анализом. Контролировать сдачу не нужно, так как все происходит в автоматическом режиме. Информация наглядна и понятна даже не специалисту. Единственная проблема данного вида дифференциального контроля заключается в том, что можно проследить лишь верхнюю и среднюю часть ввода. Для обследования нижней способ не годится.
Регистрация (локализация) частичных разрядов
Локализация определяет характеристики состава, изменилось ли напряжение и наличие дефектов определенной части ввода. При помощи способа выявляются дефекты любой части. Минус в том, что понять типологию сигнала не всегда просто из-за возникающих помех.
Максимальная токовая защита трансформаторов: схемы, особенности
Простейшая одноразовая защита электрооборудования от токовой перегрузки – это плавкий предохранитель. Он применяется до сих пор, хотя стал служить для аварийного отключения питания еще до начала XX в.
Сейчас наряду с ним для повышения надежности и безопасности сетей электропитания применяют устройства релейной защиты и автоматики. Наиболее распространенным видом которых считается максимальная токовая защита трансформатора. Она отключает питание потребителей, когда их ток становится выше порогового значения. Причиной этого может быть как выход из строя одного из элементов нагрузки, так и замыкания фаз между собой или на ноль, возникающие на участках подключения потребителей и источника тока.
В случае возникновения подобной аварийной ситуации автоматика срабатывает, и обесточивает подконтрольную ей часть электрической системы и области запитанные после нее.
Устройство и особенности МТЗ
Принцип действия максимальной токовой защиты трансформатора подобен принципу работы токовой отсечки.Сигнал выключения электропитания формируется при условии роста потребляемого тока выше порогового значения (уставки). Различаются эти системы лишь тем, что отсечка действует практически без задержки, а максимальные токовые защиты трансформаторов выключает питание спустя некоторое время, именуемое выдержкой времени.
Ее размер зависит от расположения защищаемого устройства. Он должен быть тем меньше, чем дальше находиться участок сети от источника питания (ИП). Для самых удаленных потребителей она делается как можно меньшей. А МТЗ участка электросети, расположенного ближе срабатывает с выдержкой, превышающей минимальную на величину ступени селективности.
Которая зависит от времени срабатывания защитного устройства. Это необходимо для того, чтобы после появления неисправности в какой-либо части системы защитная аппаратура более близкой области не сработала раньше, той в которой появился дефект. Если же автоматика вышедшего из строя участка не среагирует, то по окончании времени выдержки придет в действие защитное устройство более близкой к ИП области. Оно и отключит поврежденную область вместе со своей.
Из сказанного выше следует, что принцип действия токовой мтз трансформатора предъявляет к выдержке 2 противоположные требования. Чтобы исключить преждевременное обесточивание потребителей расположенных к ИП ближе места аварии она должна быть несколько больше времени срабатывания МТЗ. И в то же время как можно меньше для сведения ущерба от КЗ к минимуму.
Классификация
МТЗ трансформатора в зависимости от характера связи времени выдержки с величиной тока КЗ делят на 3 основные группы:
- Независимые. Этот вид состоит из МТЗ с неизменной на всем рабочем интервале значений аргумента выдержкой времени (tвыд.). Которая в интервале значений тока от 0 до Iсраб. включительно уменьшается до 0. Графически корреляцию данных параметров можно представить в виде двух отрезков параллельных оси X. Один из них находящийся на расстоянии tвыд от нее, другой, лежащий ней. Если ось X графика принять за ток, а Y – за время выдержки. Устройства, входящие в эту категорию являются основным видом электрозащиты воздушных ЛЭП, запитанных с одной стороны. Они применяются также и для силовых трансформаторов, кабельных линий, и электродвигателей рабочим напряжением от 6 до 10 тыс. В.
- Зависимые. Эту группу составляют МТЗ с обратной нелинейной зависимостью выдержки времени от тока. График, отражающий связь этих параметров, является кривой формой напоминающую гиперболу. МТЗ защита трансформатора такого типа дает возможность считаться с перегрузочной способностью электрооборудования, и выполнять защиту от токовых перегрузок.
- Ограниченно зависимые. Максимальная токовая МТЗ защита трансформатора, относящаяся к этой группе, объединяет в себе характеристики 2 предыдущих. А именно: рост тока до определенного значения пропорционально сокращает время срабатывания. Дальнейшее же увеличение первого не приводит к снижению выдержки времени. Поэтому изображение зависимости этих параметров является гиперболой, переходящей в прямую линию.
Встречается также комбинированный вид защиты МТЗ. Он отличается большей помехозащищенностью и меньшим числом ложных срабатываний. Принцип действия этой мтз трансформатора состоит в том, что необходимость отключения питания определяется не только по росту потребляемого тока, но и по снижению питающего напряжения. Что достигается сочетанием токовой защиты с реле минимального напряжения. Такая конфигурация не допускает отключения питания в момент запуска мощного электродвигателя, когда возникает значительный быстрый рост потребляемой мощности на участке сети. Так как сработка токовой защиты блокируется из-за отсутствия падения напряжения.
Инсталляция МТЗ
При КЗ электроток идет от источника питания к месту замыкания.
Поэтому чем ближе к ИП установлен блок защитного устройства, тем обширнее участок сети на возникновение, неисправности в котором она будет реагировать. К примеру, рассмотрим защиту понижающего трансформатора. Автоматика, установленная на кабель высокого напряжения ближе к ИП, среагирует на возникновение неисправности этого кабеля, устройств коммутации, самого трансформатора, проводки низкого напряжения и подключенных к ней потребителей. А при ее установке на шины пониженного напряжения возникающие дефекты трансформатора и подвода питающего напряжения останутся «незамеченными».
Следовательно, для максимального контроля участка сети защитой ее необходимо устанавливать на кабель, подающий питание возможно ближе к источнику. Но 1 защитное устройство для всего участка сети удобно в эксплуатации только при небольшом количестве потребителей на нем. Так как защитное отключение участка с большим числом электроприемников, во-первых, обесточивает не только вышедшей из строя потребитель, но и все исправные. А во-вторых не позволяет определить, в какой зоне произошла авария. Поэтому для удобства работы и облегчения содержания электросети в исправном состоянии следует также установить автоматику на стороне низкого напряжения.
Определение защитных параметров
Задание уставок МТЗ с блокировкой по напряжению сводятся к выбору значений выдержки времени, а также тока и напряжения срабатывания. Юстировка независимых МТЗ ограничивается подбором тех же параметров, что в предыдущем случае. Для максимальных токовых защит с зависимой и ограниченно зависимой связью понятие тока срабатывания корректируется.
Оно означает его величину, которая ставит систему на грань срабатывания, но еще недостаточна для сработки. Время же задается для независимого участка ограниченно зависимой время токовой взаимосвязи. Причем иногда оно назначается для тока, превышающего номинальный более чем в 10 раз. Как, например, в некоторых моделях автомата «Электрон».
Уставки
Требования к току срабатывания.
- Достаточность для уверенного определения аварийных ситуаций.
- Исключение случаев срабатывания автоматики при максимальных рабочих токах потребителей и их поставарийных перегрузках. Для этого ток сработки должен превышать наибольший ток потребителя, и перегрузки после восстановления питания.
- Согласование устройства по всем параметрам срабатывания с автоматикой соседних участков электросети. Находящихся как ближе к ИП (в основной зоне), так и дальше от него (в зоне резервирования).
Рис.1 Защитные зоны
Ток возврата реле в исходное положение должен быть больше рабочего тока участка сети, после устранения КЗ. Для того чтобы отключение аварийного участка оператором автоматически приводило к восстановлению питания других, обесточенных защитным устройством потребителей.
Некоторые схемные решения
Трехфазное устройство защитного отключения (УЗО). Чувствительно ко всем типам замыкания любой фазы. Основой этого устройства являются токовые реле 1. Они срабатывают при подаче на них сигнала КЗ. Их нормально разомкнутые контактные группы запараллелины, поэтому срабатывание любого из них приводит к пуску времязадающего реле 2.
По истечении установленного промежутка времени оно включает реле-повторитель 3, срабатывающее без задержки и подающее на выключатель сигнал отключения. Реле 3 необходимо в случае, когда мощность катушки выключателя слишком велика для исполнительных контактов реле времени. Реле 4 (блинкерное) служит для индикации срабатывания выключателя. Оно подключается последовательно катушке выключателя. Поэтому его срабатывание происходит одновременно с выключателем УЗО, а выпавший в результате этого блинкер (сигнализатор) указывает на факт отключения питания участка.
Двухфазное УЗО. Отслеживает все межфазные КЗ и замыкание 2 из 3 фаз с землей на участке сети. Не имеет принципиальных отличий от трехфазного устройства. К ее преимуществам можно отнести более низкую стоимость за счет меньшего количества комплектующих и монтажных проводов. А также лучшую селективность при замыканиях с землей в 2 различных точках.
Недостатки: меньшая чувствительность при КЗ во вторичных обмотках понижающего трансформатора.
Благодаря своим качествам этот тип устройств часто используется в электросистемах с изолированной нейтралью. При необходимости повышения чувствительности на нулевой провод устанавливают дополнительное токовое реле.
назначение и классификация, требования к материалам
При передаче электроэнергии от источника переменного тока к какому-нибудь потребителю, по соображениям безопасности необходимо изолировать конечное устройство от источника питания. Таким образом, изоляция у трансформаторов предотвращает генерацию вредных гармоник напряжения на распределительную шину.
Назначение изоляции в силовом трансформаторе
Поскольку системы бесперебойного питания работают беспрерывно, то они осуществляют выборку входного сигнала, воздействуя на него таким образом, чтобы обеспечить «чистую» мощность на выходе. Оценивая диэлектрическую способность изоляционной конструкции, необходимо учитывать три фактора:
- Распределение напряжения должно быть рассчитано между различными частями обмотки.
- Величина диэлектрических напряжений должна учитывать геометрические параметры трансформатора.
- Для определения расчетного запаса фактические напряжения необходимо сравнивать со значениями напряжения пробоя.
При установившемся потоке напряжения в сердечнике распределение напряжения является линейным. Это происходит во время всех испытаний частоты и рабочих условий, а также в значительной степени – в импульсных условиях переключения, когда время фронта составляет десятки и сотни микросекунд. В подобных условиях всегда наблюдается тенденция к усилению основной изоляции, а не внутренней.
Для более коротких по длительности импульсов (таких как двухполупериодная, прерывистая или фронтальная волна), напряжение не делится линейно внутри обмотки и должно определяться расчётом или измерением низкого напряжения. Начальное распределение определяется емкостной сетью обмотки.
Классификация
Изоляция силовых трансформаторов подразделяется на главную, продольную и уравнительную. Эксплуатация каждой их них имеет свою специфику.
Главная
Разделяет обмотки высокого и низкого напряжения и обмотки сердечника. Форма обмотки сердечника влияет на равномерность начального распределения импульсов напряжения. Поэтому при изготовлении обмотки используются электростатические экраны на клеммах катушки. Статические экраны обычно используются с целью предотвращения чрезмерных концентраций напряжений в линии.
После начального периода электрические колебания происходят уже только внутри обмоток. Эти колебания создают большие напряжения от средних частей обмоток к земле, которые прямо пропорциональны длине волны. Очень быстрые импульсы создают самые большие напряжения между витками и частями катушки.
Для главных обмоток трансформатора важен тип импульсных переходных напряжений, которые могут быть двух типов: апериодические и колебательные. В отличие от апериодических волн, колебательные могут возбуждать собственные частоты обмотки и вызывать опасные напряжения во внутренней изоляции обмотки.
Продольная
Концевые повороты, которые возникают при увеличении эффективной ёмкости внутри катушки, определяют надёжность продольной изоляции. Для увеличения последовательной ёмкости катушки и увеличения диэлектрической прочности используют либо чередование витков, либо предусматривают плавающие металлические экраны.
Уравнительная
Используется для защиты от скачков напряжения в линиях электропередачи, сигнальных и питающих линиях. Если скачок переходного напряжения является случайным, то энергия кратковременного электрического возмущения характеризуется временем нарастания, которое не превышает 10 мкс.
При этом около 80% зарегистрированных скачков напряжения переходного процесса происходят из-за внутренних переходных процессов переключения в трансформаторах. Поэтому задача уравнительной изоляции – отвести преобладающую часть переходной энергии от нагрузки, создавая эквивалентный потенциал между подключенными линиями. Уравнительная изоляция подразделяется на три класса:
- первый класс предусматривается для главных распределительных плат, защищая электроустановки от прямых ударов молнии;
- второй класс предотвращает распространение перенапряжения;
- третий класс предусматривается как дополнение к уравнительной изоляции второго класса в местах особо чувствительных нагрузок.
Требования
Нормируемые параметры устанавливаются согласно ГОСТ 8865-93.
До 35 кВ
Для маломощных трансформаторов размер зазора между изоляционными прокладками обычно не превышает 6 мм, при этом расстояние от обмотки до наружной стенки резервуара с трансформаторным маслом не должно быть меньше 65 мм. Изоляционный промежуток, который определяется конфигурацией токоведущей и заземляющей частей трансформатора устанавливается размером от 40 мм на каждую сторону.
110 кВ
При дальнейшем увеличении мощности требовании к качеству изоляции увеличиваются. Так, размер масляного канала возрастает до 10 мм, расстояние от обмотки до стенки масляного бака должно быть не менее 90 мм (если толщина изоляционного слоя превышает 20 мм, то это достояние допустимо уменьшать, но не меньше, чем на 15 мм).
150 кВ
Для трансформаторов средней мощности характерно увеличение расстояния между токопроводящими и заземлёнными элементами – оно составляет 840 мм и должно строго выдерживаться на протяжении всего участка ввода.
220 кВ
Обязательному контролю подлежат следующие элементы конструкции:
- Соединительная арматура.
- Целостность свинцовой оплётки.
- Зазоры в намотке.
- Фактическое заземляющее напряжение.
- Изоляция нейтрали.
- Индуцирующее напряжение.
Испытания проводят при тестовых значениях напряжений, которые не менее чем на 15 % превышают номинальные.
330 кВ
Контролируются те же параметры, что и в предыдущем случае, с учётом нормативных значений, определяемых стандартом.
500 кВ
Дополнительно принимаются во внимание следующие факторы:
- Исполнение трансформатора – открытое или закрытое.
- Тип циркуляции воздуха – естественный или принудительный.
- Высота установки над уровнем моря.
- Колебания внешней температуры воздуха.
- Наибольшие колебания нагрузки.
- Степень загрязнённости окружающей среды.
- Возможные механические воздействия.
Данные проверки сравниваются с нормативными величинами, которые приводятся в ГОСТ Р 52719-2007.
Какие материалы используются
Системы изоляции в силовых трансформаторах состоят из жидкости (либо газа) вместе с твердыми материалами. Жидкости должны иметь высокую температуру вспышки (силиконы, некоторые виды углеводородов, хлорированные бензолы).
Газовые системы включают азот, воздух и фтор газ. Флюорогазы используются, чтобы избежать воспламеняемости и ограничить вторичные эффекты внутренней недостаточности. Иногда используется фреон, который позволяет улучшить теплопередачу с использованием двухфазной системы охлаждения.
Внешняя
Низкая стоимость, высокая диэлектрическая прочность, отличные характеристики теплопередачи и способность восстанавливаться после перенапряжения в диэлектрике делают минеральное масло наиболее широко используемым изоляционным материалом для внутренней изоляции трансформаторов. Газ выгоднее использовать в системах, имеющих продолжительный режим работы при номинальной мощности.
Внутренняя
Проводники обмотки обычно изолируются эмалированной или обёрточной бумагой на основе дерева или нейлона. Использование таких материалов увеличивает прочность конструкции. При этом предел диэлектрической прочности обычно равен маслу.
Для проводов, идущих от обмотки, обычно используется материал высокой плотности. В этом случае снижаются механические напряжения в масле путём перемещения границы раздела от поверхности проводника к его периферии. Изоляция из целлюлозы выполняет три функции:
- Действует как диэлектрик, накапливая электрический заряд.
- Поддерживает обмотки.
- Способствует улучшению теплоотвода.
Сроки испытания изолирующих материалов трансформаторов регламентируются приложением 3 Правил технической эксплуатации потребительских электроустановок (ПТЭЭП).