Жидкий диэлектрик: 6. Жидкие диэлектрики – Жидкие диэлектрики: классификация, применение, диэлектрическая проницаемость

Жидкие диэлектрики — Мегаэнциклопедия Кирилла и Мефодия — статья

Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.

Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.

Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.

Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.

Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:

нефтяные масла — трансформаторное, конденсаторное и кабельное;

синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;

растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.

Нефтяные масла — слабовязкие, практически неполярные жидкости. По химическому составу представляют смесь различных углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов с небольшим (до 1% масс) содержанием присадок, улучшающих их стойкость к термоокислительному старению, а также температурно-вязкостные характеристики. Нефтяное трансформаторное масло получило наиболее широкое применение в высоковольтных аппаратах: трансформаторах, масляных выключателях, высоковольтных водах. Нефтяное трансформаторное масло является неполярным диэлектриком. Поэтому в чистом масле диэлектрические потери обусловлены в основном токами проводимости, величина которых мала, следовательно, малы и диэлектрические потери. При 20

оС и 100 Гц = 2, 2-2, 3, = 1010-1013Ом.м, Епр= 10-28 кВ/мм. В механизме пробоя основное влияние на образование газоразрядного канала проводимости имеет нерастворенная в масле полярная полупроводящая и проводящая примесь. Вода, растворенная в масле, увеличивает электропроводность и электрические потери, но мало влияет на электрическую прочность. Вода, выделенная в виде мелкодисперсных капель, вызывает резкое увеличение неоднородности поля, что приводит к снижению пробивного напряжения.

Нефтяное конденсаторное масло получают из трансформаторного путем его более глубокой очистки адсорбентами. Его электрические свойства лучше, чем у трансформаторного масла. При 20

оС и 1 Гц = 2, 1-2, 3, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Используют для пропитки бумажных конденсаторов, в особенности силовых. При пропитке в результате заполнения пор бумаги маслом увеличиваются диэлектрическая проницаемость и электрическая прочность бумаги, следовательно, возрастают емкость конденсатора и его рабочее напряжение.

Нефтяное кабельное масло применяют для пропитки бумажной изоляции силовых кабелей с рабочим напряжением до 35 кВ в свинцовой или алюминиевой оболочке, а также для заполнения металлических оболочек маслонаполненных кабелей на напряжение до 110кВ и выше.

Конденсаторные масла отличаются от трансформаторных масел более тщательной очисткой и меньшими значениями tg (до 2.10-4). Недостатки нефтяных масел — пожаро- и взрывоопасность, невысокая стойкость к тепловому и электрическому старению, гигроскопичность.

Наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов (совол, совтол), что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено.

Жидкие диэлектрики на основе кремнийорганических соединений (полиорганосилоксанов) являются нетоксичными и экологически безопасными. Они не вызывают коррозии металлов, обладают очень низкой гигроскопичностью и морозостойкостью. Эти жидкости представляют собой полимеры с низкой степенью полимеризации, в молекулах которых содержится повторяющаяся силоксанная группировка: Кремний-кислородная связь имеет высокую термическую и химическую стойкость, поэтому кремнийорганические соединения устойчивы при высоких температурах (до 250

оС). По своим диэлектрическим характеристикам полиорганосилоксановые жидкости приближаются к неполярным диэлектрикам. При 20 оС и 100 Гц = 2, 4-2, 8, = 1011-1012
Ом.м, Епр= 14-18 кВ/мм. Полиорганосилоксановые жидкости используют в импульсных трансформаторах, специальных конденсаторах, работающих при повышенной температуре, блоках радио- и электронной аппаратуры и в некоторых других случаях. Их недостаток — сравнительно быстрая воспламеняемость, кроме того, они значительно дороже нефтяных масел.

Жидкие диэлектрики на основе фторорганических соединений отличаются негорючестью, высокой химической, окислительной и термической стабильностью, высокими электрофизическими и теплопередающими свойствами. Молекулы фторорганических жидкостей состоят из атомов углерода и фтора, при этом молекулярную цепь образуют атомы углерода. Фторорганические жидкости — неполярные диэлектрики. При 20

оС и 100 Гц = 2, 2-2, 5, ρ = 1012-1014Ом.м, Епр= 12-19 кВ/мм. Они обеспечивают более интенсивный отвод тепла от охлаждаемых обмоток и магнитопроводов трансформатора, чем нефтяные масла и кремнийорганические соединения. Применяются для наполнения небольших трансформаторов, блоков электронного оборудования и других электрических аппаратов в тех случаях, когда рабочие температуры велики для других видов жидких диэлектриков. Некоторые перфторированные жидкие диэлектрики могут использоваться для создания испарительного охлаждения в силовых трансформаторах. Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.

К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.

Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0, 95-0, 97 Мг/м3, температура застывания от минус 10 до минус 180 °С; диэлектрическая постоянная Ɛ равна 4, 0 — 4, 5 при температуре 200 °С; Е

пр=15-20 Мв/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.

Льняное масло золотисто — желтого цвета получается из семян льна. Его плотность 0, 93-0, 94 Мг/м3, температура застывания — около -200 °С.

Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла — 94 Мг/м3, температура застывания — от 0 до минус 50 °С.
По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и дает водонепроницаемую пленку, чем льняное.

Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.

жидкие диэлектрики — это… Что такое жидкие диэлектрики?

жидкости с низкой электропроводностью (10–10 Ом–1·см–1). Используются в электротехнике как изоляционные материалы, наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.).

ЖИ́ДКИЕ ДИЭЛЕ́КТРИКИ, молекулярные жидкости, удельное электрическое сопротивление которых превышает 1010 Ом см. Как и твердые диэлектрики, жидкие диэлектрики поляризуются в электрических полях: для них характерна электронная и ориентационная поляризация. Диэлектрическая проницаемость (см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ) (статическая) жидких диэлектриков может достигать значений 102 (для частоты 104Гц). В сильных электрических полях происходит электрический пробой жидких диэлектриков, механизм которого (тепловой или электронный) зависит от природы жидкости, ее чистоты, температуры, и др.
Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь (см. КОВАЛЕНТНАЯ СВЯЗЬ) электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ).
Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.
Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.
Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.
Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.
Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:
нефтяные масла — трансформаторное, конденсаторное и кабельное;
синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;
растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.
Нефтяные электроизоляционные масла
Нефтяные масла — слабовязкие, практически неполярные жидкости. По химическому составу представляют смесь различных углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов с небольшим (до 1% масс) содержанием присадок, улучшающих их стойкость к термоокислительному старению, а также температурно-вязкостные характеристики. Нефтяное трансформаторное масло получило наиболее широкое применение в высоковольтных аппаратах: трансформаторах, масляных выключателях, высоковольтных водах. Нефтяное трансформаторное масло является неполярным диэлектриком. Поэтому в чистом масле диэлектрические потери обусловлены в основном токами проводимости, величина которых мала, следовательно, малы и диэлектрические потери. При 20оС и 100 Гц = 2,2—2,3, = 1010-1013Ом.м, Епр= 10—28 кВ/мм. В механизме пробоя основное влияние на образование газоразрядного канала проводимости имеет нерастворенная в масле полярная полупроводящая и проводящая примесь. Вода, растворенная в масле, увеличивает электропроводность и электрические потери, но мало влияет на электрическую прочность. Вода, выделенная в виде мелкодисперсных капель, вызывает резкое увеличение неоднородности поля, что приводит к снижению пробивного напряжения.
Нефтяное конденсаторное масло получают из трансформаторного путем его более глубокой очистки адсорбентами. Его электрические свойства лучше, чем у трансформаторного масла. При 20оС и 1 Гц = 2,1—2,3, = 1011-1012Ом.м, Епр= 14—18 кВ/мм. Используют для пропитки бумажных конденсаторов, в особенности силовых. При пропитке в результате заполнения пор бумаги маслом увеличиваются диэлектрическая проницаемость и электрическая прочность бумаги, следовательно, возрастают емкость конденсатора и его рабочее напряжение.
Нефтяное кабельное масло применяют для пропитки бумажной изоляции силовых кабелей с рабочим напряжением до 35 кВ в свинцовой или алюминиевой оболочке, а также для заполнения металлических оболочек маслонаполненных кабелей на напряжение до 110кВ и выше.
Конденсаторные масла отличаются от трансформаторных масел более тщательной очисткой и меньшими значениями tg (до 2.10-4). Недостатки нефтяных масел — пожаро- и взрывоопасность, невысокая стойкость к тепловому и электрическому старению, гигроскопичность.
Синтетические жидкие диэлектрики
Наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов (совол, совтол), что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено.
Жидкие диэлектрики на основе кремнийорганических соединений (полиорганосилоксанов) являются нетоксичными и экологически безопасными. Они не вызывают коррозии металлов, обладают очень низкой гигроскопичностью и морозостойкостью. Эти жидкости представляют собой полимеры с низкой степенью полимеризации, в молекулах которых содержится повторяющаяся силоксанная группировка: Кремний-кислородная связь имеет высокую термическую и химическую стойкость, поэтому кремнийорганические соединения устойчивы при высоких температурах (до 250оС). По своим диэлектрическим характеристикам полиорганосилоксановые жидкости приближаются к неполярным диэлектрикам. При 20оС и 100 Гц = 2,4—2,8, = 1011-1012Ом.м, Епр= 14—18 кВ/мм. Полиорганосилоксановые жидкости используют в импульсных трансформаторах, специальных конденсаторах, работающих при повышенной температуре, блоках радио- и электронной аппаратуры и в некоторых других случаях. Их недостаток — сравнительно быстрая воспламеняемость, кроме того, они значительно дороже нефтяных масел.
Жидкие диэлектрики на основе фторорганических соединений отличаются негорючестью, высокой химической, окислительной и термической стабильностью, высокими электрофизическими и теплопередающими свойствами. Молекулы фторорганических жидкостей состоят из атомов углерода и фтора, при этом молекулярную цепь образуют атомы углерода. Фторорганические жидкости — неполярные диэлектрики. При 20оС и 100 Гц = 2,2—2,5, = 1012-1014Ом.м, Епр= 12—19 кВ/мм. Они обеспечивают более интенсивный отвод тепла от охлаждаемых обмоток и магнитопроводов трансформатора, чем нефтяные масла и кремнийорганические соединения. Применяются для наполнения небольших трансформаторов, блоков электронного оборудования и других электрических аппаратов в тех случаях, когда рабочие температуры велики для других видов жидких диэлектриков. Некоторые перфторированные жидкие диэлектрики могут использоваться для создания испарительного охлаждения в силовых трансформаторах. Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.
Растительные масла
К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.

Жидкие диэлектрики

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Национальный исследовательский Томский политехнический Университет»

Институт

дистанционного образования

Электроэнергетика и электротехника

Теории пробоя жидких диэлектриков

Исполнитель:

студент группы

З-5А24 В№7

Половников К Ю

Томск  2014

Содержание

Введение 1.Жидкие диэлектрики

1.1 Применение жидких диэлектриков

1.2 Электропроводность жидких диэлектриков

1.3 Пробой жидких диэлектриков

1.4 Особенности пробоя жидких диэлектриков

2. Общие требования и свойства трансформаторных масел

2.1 Назначение трансформаторного масла

Список литературы

Введение

Все вещества по электрическим свойствам условно делятся на три группы: проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов. В отличие от диэлектриков в проводниках электрического тока электрические заряды не имеют таких связей, поэтому в проводниках электроны могут свободно перемещаться, создавая явление электрического тока. Практически в диэлектриках в силу ряда причин всегда имеется некоторое количество слабо связанных зарядов, способных перемещаться внутри вещества на большие расстояния. Иными словами, диэлектрики не являются абсолютными непроводниками электрического тока. Однако в нормальных условиях таких зарядов в диэлектриках очень мало, и обусловленный ими электрический ток, называемый током утечки, невелик. Обычно к диэлектрикам относятся вещества, имеющие удельную электрическую проводимость не больше 10-7 – 10-8 См/м, проводникам – имеющие проводимость больше 107 См/м. К диэлектрикам относятся все газы (включая пары металлов), многие жидкости, кристаллические, стеклообразные, керамические, полимерные вещества. Поскольку свойства вещества сильно зависят от его агрегатного состояния, обычно рассматривают отдельно физические явления в газообразных, жидких и твёрдых диэлектриках.

Жидкие диэлектрики молекулярные жидкости, удельное электрическое сопротивление которых превышает 1010 Ом см. Как и твердые диэлектрики, жидкие диэлектрики поляризуются в электрических полях: для них характерна электронная и ориентационная поляризация. Диэлектрическая проницаемость (статическая) жидких диэлектриков может достигать значений 102 (для частоты 104 Гц). В сильных электрических полях происходит электрический пробой жидких диэлектриков, механизм которого (тепловой или электронный) зависит от природы жидкости, ее чистоты, температуры, и др.  Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др.

Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.

    1. Применение жидких диэлектриков

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.

    1. Электропроводность жидких диэлектриков

В жидких диэлектриках бывают два основных механизма электропроводности: ионный и молионный. Ионная электропроводность определяется диссоциацией молекул жидкости, а также содержанием различных примесей или загрязнений, которые часто встречаются на практике, так как жидкости легко загрязняются.  В технически чистых жидких диэлектриках всегда содержатся те или иные примеси, обычно легче диссоциирующие, чем основной диэлектрик, поэтому проводимость в них сильно зависит от чистоты жидкости: на собственную проводимость диэлектрика накладывается примесная проводимость. В зависимости от природы жидкого диэлектрика в нём могут быть разные диссоциирующие примеси. Например, нефтяному электроизоляционному маслу сопутствуют некоторые органические кислоты; само масло является химически нейтральным углеводородом. Эти кислоты благодаря лёгкой диссоциации заметно повышают удельную проводимость масла. Загрязнением в жидком диэлектрике, в частности в том же масле, является и вода, попадающая в него непосредственно из атмосферного воздуха благодаря известной гигроскопичности масла.

Вода в жидком диэлектрике может быть в трёх состояниях: а) молекулярно — растворённое; б) в виде эмульсии, то есть в виде мельчайших капель, находящихся в жидком диэлектрике во взвешенном состоянии; в) в виде избыточной воды, не удерживающейся в эмульсии, выпадающей из неё. Избыточная вода или тонет в диэлектрике, если его плотность меньше 1000 кг/м3 (например, нефтяное масло), или всплывает на его поверхности, если плотность диэлектрика больше 1000 кг/м3 (например, хлорированный дифенил – совол). Вода в жидком диэлектрике может переходить из одного состояния в другое при изменении температуры за счёт изменения растворяющей способности диэлектрика. При повышении температуры растворяющая способность увеличивается и эмульсионная вода полностью или частично переходит в молекулярно растворённое состояние, а избыточная вода – в эмульсионное в зависимости от значения температуры. При понижении температуры происходит обратный процесс. При длительном воздействии высокой температуры сказывается эффект сушки (испарения воды) жидкого диэлектрика. Гигроскопичность жидкости зависит от её состава и от наличия полярных молекул. Полярные молекулы, как правило, отличаются большой активностью, поэтому полярные жидкости легче смешиваются с различными примесями и загрязнениями. Жидким загрязнением может быть не только вода, но и какая – либо другая посторонняя жидкость. Остановимся на растворимости в масле различных газов. Жидкие диэлектрики в обычных условиях всегда содержат растворённый газ; в частности, большой способностью к растворению газов отличается нефтяное масло. Разные газы по – разному растворяются в жидкости. Эта их способность обычно определяется в процентах по объёму (коэффициент растворимости). Для примера ниже приведены значения коэффициента растворимости в масле для некоторых газов: воздух 9.4; азот 8.6; кислород 16; углекислый газ 120; водород 7. Благодаря этому состав воздуха, растворённого в масле, отличается от состава атмосферного воздуха. Обычно атмосферный воздух содержи 78% азота и 21% кислорода (по объёму), а в масле соотношение их будет таким: 69.8% азота и 30.2% кислорода. Изменение температуры по – разному влияет на растворимость газов в масле. Например, при повышении температуры от 20 до 800С растворимость водорода и азота увеличивается, кислорода несколько понижается, а углекислого газа резко падает. Рассмотрим ионную электропроводность жидких диэлектриков как основной её вид. Собственная ионная проводимость зависит от способности молекул к диссоциации.

Легче диссоциируют молекулы, обладающие чисто ионными связями, так называемые гетерополярные. Диссоциация молекул жидкости происходит и без воздействия электрического поля; установлено, что отношение количества диссоциированных молекул в данном объёме жидкостей к их общему количеству, называемое степенью диссоциации, зависит от относительной диэлектрической проницаемости жидкости. В соответствии с этим правилом полярные жидкости, имеющие большую диэлектрическую проницаемость, имеют повышенную степень диссоциации и повышенную собственную проводимость. У жидкостей неполярных, например нефтяного электроизоляционного масла, собственная проводимость очень мала из – за слабой способности молекул углеводородов к диссоциации. У таких жидкостей электропроводность в основном носит примесный характер, а проводимость зависит как от свойств примеси, так и от её содержания в диэлектрике. Полярные жидкости особенно чувствительны к примесям. Это объясняется тем, что степень диссоциации молекул примесей в жидкости с большой относительной диэлектрической проницаемостью выше, чем в жидкости с малой диэлектрической проницаемостью. В связи с такой особенностью полярных жидкостью у них часто бывает затруднительно отделить собственную проводимость от примесной. Рассмотрим закономерности молионной электропроводности. При помощи современных оптических микроскопов с большой разрешающей способностью в жидкости можно обнаружить коллоидные частицы разного происхождения и проследить за характером их движения в электрическом поле. Коллоидные частицы переносятся электрическим полем к электроду определённого знака (при определённом напряжении). Для коллоидных частиц примесной жидкости знак заряда частицы зависит от соотношения относительных диэлектрических проницаемостей основной жидкости и примесей. Если относительная диэлектрическая проницаемость примеси меньше, чем основной жидкости, то частицы примеси заряжаются отрицательно, в противном случае – положительно. В случае неоднородного электрического поля коллоидные частицы стремятся в зону максимальной напряжённости электрического поля, к электроду соответствующего знака, вследствие этого концентрация загрязнений здесь сильно повышается за счёт известного снижения её в других зонах. Вообще при молионной электропроводности со временем частицы загрязнений сосредоточиваются у электродов, и таким образом происходит очистка жидкостей от загрязнений. При переменном напряжении вследствие непрерывного изменения направления движения коллоидных частиц эффект очистки от них не наблюдается. Вследствие эффекта очистки с течением времени после включения постоянного напряжения удельное сопротивление жидкости увеличивается.

3.7. Жидкие диэлектрики.

Материалы, для которых жидкое состояние является нормальным рабочим, называются жидкими. Жидкие диэлектрики используют для заполнения внутреннего пространства конденсаторов, кабелей, силовых трансформаторов. Они хорошо пропитывают пористые картоны, бумагу и при этом существенно повышают их диэлектрическую прочность, выполняют роль теплоотводящей среды.

Жидкие диэлектрики по своей химической природе (рис. 3.7) делятся на естественные (нефтяные масла) и синтетические (хлорированные углеводороды, кремнийорганические и др.).

Характеристики некоторых жидкостей приведены в таблице 1.3.

Таблица 1.3. Основные параметры жидких диэлектриков.

Наименование

Плотность, кг/м3

ρ, Ом·м

εr

tgδ

ЕПР, МВ/м

Нефтяные масла:

трансформаторное ТК

880

1014-1015

2,15

0,003

18

кабельное С-220

840

1013

2,1

0,003

20

конденсаторное

860

1016-1014

2,2

0,003

50

Синтетические:

совол

1560

1013

5,2

0,005

18

совтол-10

1540

1012

0,006

20

Нефтяные масла получают из нефти путём её ступенчатой перегонки и последующей тщательной очистки. Они являются неполярными диэлектриками и обладают следующими преимуществами:

–сравнительно дёшевы;

–имеют малый тангенс угла диэлектрических потерь и достаточно высокую электрическую прочность (при хорошей степени очистки).

Однако недостаточные пожаро- и взрывобезопасность нефтяных масел, а также их склонность к электрическому старению стали причиной разработки синтетических жидких диэлектриков.

Хлорированные углеводороды получают из различных углеводородов, замещая атомы водорода атомами хлора. Типичный их представитель – совол, являющийся полярным диэлектриком. Замена нефтяных масел на совол при пропитке конденсаторов уменьшает их объём почти в 2 раза. Преимущество совола – в его негорючести. К недостаткам следует отнести сильную токсичность. Из-за ярко выраженной полярности на параметры совола значительно влияют примеси: наличие примесей сказывается на потерях сквозной электропроводности при повышенной температуре, но практически не влияет на tg в области релаксационного максимума потерь (рис. 3.8).

Для уменьшения вязкости совола используют разбавитель – негорючий трихлорбензол. Смесь 90% совола и 10% трихлорбензола называется совтол-10 и применяется он как заливочная и пропиточная жидкость.

3.8. Твердеющие диэлектрики.

К данной группе относятся лаки, эмали, компаунды (рис. 1.2.). Общей чертой этих материалов является образование прочной твердой пленки, способной защищать поверхность изделия или придавать им товарный вид.

Компоненты современной РЭА и её сборочные единицы – радиоэлектронные ячейки – имеют небольшие размеры, почти не содержат механически перемещаемых деталей, часто вскрываемых крышек или отверстий. Это создаёт возможность защищать блоки и ячейки плёнкой, т.е. сплошноё оболочкой из лака, эмали или компаунда. Такой способ защиты и одновременно придания прочности называют бескорпусной герметизацией – “окукливанием”.

Этот способ обладает преимуществами по сравнению с герметизацией в корпусе:

– дешевизна;

– технологичность;

– малые размеры;

– возможность полной автоматизации;

Однако такие оболочки, непосредственно примыкающие к поверхности твердотельного активного прибора или проводника или резистора, могут не только подавлять массообмен между изделием и внешней средой, но и участвовать в нежелательных физико-химических процессах, влияющих на работоспособность РЭА. В этом случае надо учитывать и физическую, и химическую совместимость материалов, что ставит перед конструкторами новые, трудные задачи.

Лаки, эмали и компаунды применяют не только в качестве оболочек компонентов, но и для герметизации крышек корпусов РЭА и её блоков, а также для пропитки намоточных изделий, волокнистых и листовых наполнителей при изготовлении слоистых пластиков. В этом случае их называют пропиточными.

ЖИДКИЕ ДИЭЛЕКТРИКИ — это… Что такое ЖИДКИЕ ДИЭЛЕКТРИКИ?


ЖИДКИЕ ДИЭЛЕКТРИКИ
ЖИДКИЕ ДИЭЛЕКТРИКИ

        жидкости, уд. электрич. сопротивление к-рых превышает 1010 Ом•см. В электрич. поле Ж. д. (как и тв. диэлектрики) характеризуются диэлектрич. проницаемостью и диэлектрическими потерями; в сильных полях в них происходит пробой. Носители заряда в Ж. д.— ионы. Ж. д. играют важную роль в электротехнике как электроизоляц. материалы. Они обладают более высокими электрич. прочностью, диэлектрич. проницаемостью e и теплопроводностью по сравнению с воздухом и др. газами при атм. давлении. Особенность Ж. д.: в импульсном электрич. поле их электрическая прочность возрастает как t-1/3 при длительности импульса t

В кач-ве Ж. д. применяются нефтяные масла (смеси углеводородов с e=2,2—2,4 и с малым углом d диэлектрич. потерь, у к-рых после очистки и при норм. темп-ре tgd

Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

ЖИДКИЕ ДИЭЛЕКТРИКИ

— молекулярные жидкости с электропроводностью s[10-8 См. -1, в к-рых электроны связаны ковалентными связями в молекулах, а между молекулами действуют ван-дер-ваальсовы силы. Ж. д. являются насыщенные (CnH2n+2), ароматические (бензол — С 6 Н 6, толуол — С 6 Н 5 СН 3, ксилол — С 6 Н 4 (СН 3)2, дурол — С 6 Н 2 (СН 3)4), хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганич. соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы нек-рых халькогенидов и др. Дальний и ближний порядок). В нек-рых из них (бензол, орто- и парадихлорбензол, толуол, нафталин и др.) при переходе из твёрдого состояния в жидкое сохраняется форма молекул и мало изменяется их взаимное расположение. В других (н-парафины) при нагревании плавлению предшествуют полимфорные превращения, а само плавление сопровождается сильными изменениями упаковки молекул. Инертные газы, имеющие в твёрдом состоянии гранецентрированную решётку с координационным числом Z =12, в жидком состоянии имеют Z=8,5. В Ж. д. при повышении темп-ры Т возможны структурные изменения (изменения ближнего порядка). Они могут оказывать существ. влияние на свойства Ж. д.; напр., вязкость и электропроводность жидкой серы в интервале Т~433-453 К изменяются в 104 раз, что обусловлено разрушением высокомолекулярных и появлением низкомолекулярных образований серы Sx (x=2,3).В электрич. полях Ж. д. свойственны электронная и ориентац. поляризации (см. Диэлектрики), их диэлектрическая проницаемость (статич.) может достигать значений e~102 (для частоты ~104 Гц). Собств. проводимость Ж. д. имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитич. диссоциацией молекул, ионизацией молекул (в результате воздействия радиоакт. загрязнений, космич. лучей и др.). В насыщенных углеводородах наивысшей хим. чистоты собственная проводимость s~10-17 См. -1. Загрязнения Ж. д. (включая радиоактивные) увеличивают s за счёт возрастания кол-ва ионов и заряж. коллоидных частиц. По величине подвижности m ионов Ж. д. близки к электролитам: для углеводородов типа С n Н 2n+2 (n=5-9) подвижность связана с вязкостью hсоотношением: m=A.h-3/2 константа вещества).В сильных электрич. полях происходит электрич. пробой Ж. д., механизм к-poгo (тепловой или электронный) зависит от природы жидкости, её чистоты, темп-ры, материала электродов и др. Загрязнения, как правило, снижают электрическую прочность Ж. д. Повышение темп-ры сопровождается снижением пробивного напряжения вследствие уменьшения плотности и вязкости и возрастания подвижности электронов и ионов. Ж. д. применяются в электроизоляц. технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнич. аппаратуры. Лит.: Адамчевский И., Электрическая проводимость жидких диэлектриков, пер. с польск., Л., 1972; Полтавцев Ю. Г., Структура полупроводниковых расплавов, М., 1984. Ю. Г. Полтавцев.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

.

  • ЖЁСТКОСТЬ
  • ЖИДКИЕ КРИСТАЛЛЫ

Смотреть что такое «ЖИДКИЕ ДИЭЛЕКТРИКИ» в других словарях:

  • ЖИДКИЕ ДИЭЛЕКТРИКИ — жидкости с высоким удельным электросопротивлением ( 1010 Ом.см). Наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.) …   Большой Энциклопедический словарь

  • жидкие диэлектрики — жидкости с низкой электропроводностью (10–10 Ом–1·см–1). Используются в электротехнике как изоляционные материалы, наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.). * * * ЖИДКИЕ ДИЭЛЕКТРИКИ ЖИДКИЕ… …   Энциклопедический словарь

  • Жидкие диэлектрики —         жидкости, удельное злектрическое сопротивление которых превышает 1010 ом см. В электрическое поле Ж. д., как и твёрдые, характеризуются поляризацией и диэлектрическими потерями; в сильных полях имеет место пробой (см. Диэлектрики).… …   Большая советская энциклопедия

  • ЖИДКИЕ ДИЭЛЕКТРИКИ — жидкости с низкой электропроводностью (10 10Ом 1 х см 1). Используются в электротехнике как изоляц. материалы, наиб. применение имеют минер. масла (в трансформаторах, конденсаторах и т.д.) …   Естествознание. Энциклопедический словарь

  • Диэлектрики —         вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… …   Большая советская энциклопедия

  • Жидкие металлы —         непрозрачные жидкости с характерным блеском, обладающие большой теплопроводностью, электропроводностью и др. особенностями, свойственными твёрдым металлам (См. Металлы). Ж. м. являются все расплавленные металлы и сплавы металлов, а также… …   Большая советская энциклопедия

  • ЖИДКИЕ КРИСТАЛЛЫ — особое состояние нек рых органич. в в, в к ром они обладают реологич. св вами жидкости текучестью, но сохраняют определ. упорядоченность в расположении молекул и анизотропию ряда физ. св в, характерную для тв. кристаллов. Открыты в 1889 австр.… …   Физическая энциклопедия

  • ДИЭЛЕКТРИКИ — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом?м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… …   Современная энциклопедия

  • Диэлектрики — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом´м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… …   Иллюстрированный энциклопедический словарь

  • ДИЭЛЕКТРИКИ — вещества, плохо проводящие электрический ток (удельное электросопротивление 108 1012 Ом?см). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках… …   Большой Энциклопедический словарь

Диэлектрики жидкие — Энциклопедия по машиностроению XXL

Изменение напряжения на слое диэлектрика — жидкого кристалла в результате освещения структуры излучением с интенсивностью /г 8 течение времени Tib составляет  [c.169]

Диэлектрик жидкий 333 Дозатор порошка 303, 429  [c.483]

Диэлектрики жидкие. Методы определения электрических свойств. Рекомендация СЭВ по стандартизации, РС 3277—71.  [c.187]

Идеальная пропитка бумаги соответствует полному замещению воздуха в порах другими диэлектриками, жидкими или твердыми. Характер пространственного распределения отдельных составных частей пропитанной бумаги при этом не изменится.  [c.93]


Жидкие диэлектрики. Жидкие диэлектрики разделяются на природные (трансформаторное и другие нефтяные масла, касторовое масло) и синтетические (совол и др.). Основное назначение жидких диэлектриков — отвод тепла от катушек и сердечников трансформаторов, гашение дуги в масляных выключателях.  [c.306]

Динасовый кирпич 417 Диэлектрик жидкий 434 Длина 440  [c.458]

Наиболее распространенные диэлектрики жидкое стекло, бакелит, шеллак, полистирол, а также эпоксидные, полиэфирные и другие смолы. Диэлектрик должен хорошо покрывать частицы ферромагнетика и образовывать на них сплошную изолирующую пленку достаточной твердости, прочности и эластичности, чтобы предохранять изделия от разрушения при деформации. В настоящее время имеется ряд специализированных магнитодиэлектриков, обслуживающих весь диапазон частот, применяемых в технике связи, вплоть до ультракоротких волн.  [c.429]

П6.4. Компаундами полимерными называются композиции на основе эпоксидных, полиэфирных и других смол, а также на основе битумов, высокообразованных диэлектриков и термопластичных полимеров (полистирола, полиизобутилена и др.), жидкие в момент применения, а затем затвердевающие.  [c.270]

По электрическим свойствам тела можно разделить на проводники и диэлектрики. Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Примерами проводников могут служить металлические тела в твердом и жидком состоянии, жидкие растворы электролитов.  [c.140]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]


Эта формула пригодна для газообразных, но в ряде случаев с большим или меньшим приближением может быть применена также для жидких и твердых диэлектриков.) Таким образом, по физическому смыслу диэлектрическая проницаемость — количественная мера интенсивности процесса поляризации диэлектриков. Концентрация N поляризующихся частиц невелика в газах и намного выше в жидких и твердых диэлектриках. Поляризуемость частицы а зависит от механизма поляризации, определяемого природой диэлектрика.  [c.544]

Газы в обычных условиях характеризуются высоким удельным сопротивлением и очень малыми диэлектрическими потерями. К достоинствам газов относятся также восстановление электроизоляционных свойств после пробоя и отсутствие старения (ухудшение свойств со временем). Недостатком их является невысокая (по сравнению с жидкими и твердыми диэлектриками) электрическая прочность при нормальном давлении. Для увеличения электрической прочности используют как повышение давления газов, так и глубокое их разрежение. Повысить электрическую прочность газовой изоляции можно также, применяя электроотрицательные газы. Молекулы этих газов, содержащие обычно атомы фтора, хлора и других галогенов, способны захватывать свободные электроны и становиться малоподвижными отрицательными ионами. Удаление подвижных электронов затрудняет развитие электрического разряда, вследствие чего электрическая прочность газа возрастает.  [c.545]

Таблица 23.7. Характеристики хлорированных жидких диэлектриков [9] Таблица 23.7. Характеристики хлорированных жидких диэлектриков [9]
Таблица 23.8. Характеристики кремнийорганических жидких диэлектриков [9, 23] Таблица 23.8. Характеристики кремнийорганических жидких диэлектриков [9, 23]

Специальной физической и химической очисткой можно довести р неполярных жидкостей до 10 — 10 8 Ом-м, а пр —до 140—260 МВ/м [21]. В табл. 23.10 представлена зависимость электрической прочности Е р от Ег для высокочистых жидких диэлектриков, применяемых в качестве растворителей и для других целей.  [c.549]

Для ряда газообразных и жидких диэлектриков результаты расчета п с помощью этого уравнения хорошо совпадают с экспериментальными данными.  [c.767]

Многие вещества имеют несколько кристаллических фаз или аллотропических модификаций. В кристаллических и аморфных телах наблюдаются, кроме того, фазовые переходы второго рода, а в металлических материалах — переходы проводник—диэлектрик . У таких веществ фазовая диаграмма будет иметь не одну, а несколько тройных точек. В некоторых из этих точек в равновесии будут находиться две кристаллические модификации и жидкая (рис. 3.11) или газообразная фаза (рис. 3.12) или три кристаллические фазы (рис. 3.11). Равновесие газообразной, жидкой и одной из кристаллических фаз возможно только в одной точке, которая является основной тройной точкой. Фазовая диаграмма воды, у которой известны пять кристаллических модификации (///i, +///, ), изображена на рис. 3.14. Обычный лед р-ю мпа представляет собой кристаллическую модификацию ///j, остальные модификации образуются 200 при достаточно больших давлениях. Область  [c.215]

Статистическая обработка результатов испытаний. Процессы, протекающие в электроизоляционных материалах, в особенности такие, как механическое разрушение, электрический пробой, подчиняются статистическим закономерностям, и измеряемая величина для одного и того же материала при одинаковых условиях испытаний может претерпевать заметные колебания. Рассмотрим, например, определение электрической прочности. При определении электрической прочности твердых материалов после пробоя образец приходит в негодность, и для повторного определения Е р необходимо брать новый образец. При испытаниях газообразных и жидких веществ можно производить ряд повторных пробоев одного и того же образца (очищая периодически, если необходимо, электроды), так как после пробоя и выключения напряжения электрическая прочность восстанавливается при испытаниях жидких диэлектриков удаляют, кроме того, копоть, образующуюся между электродами.  [c.10]

Для измерения сопротивления образца электроды измерительной ячейки подключают к зажимам В, И, 3. Схема соединения зависит от того, какое удельное сопротивление требуется определить р или р . Переключатели П2 и ПЗ ставят в верхнее положение. Первоначально ставят переключа гель П4 в положение, соответствующее наименьшему току п = 10- ). Напряжение источника плавно увеличивают до значения, указанного в стандарте на материал. Для твердых и жидких диэлектриков это обычно 500 В, но могут быть использованы и другие значения напряжения, а для полимерных пленок — менее 10 В. Изменяют положение переключателя П4 таким образом, чтобы получить удобно отсчитываемое показание гальванометра. Если время выдержки под напряжением в стандарте на материал не указано, то отсчет по гальванометру а производят через 60 с после того, как приложено заданное напряжение. Необходимость выдержки объясняется тем,  [c.32]

Испытания на переменном токе производят без кенотронной приставки. Испытуемый образец присоединяют к высоковольтному выводу трансформатора (один электрод) и к заземленному зажиму (второй электрод). Испытания ведут в том же порядке, что и на постоянном токе. Для испытаний изоляционных масел и других жидких диэлектриков на электрическую прочность предназначена установка типа АИМ-80. Эта установка позволяет получить в условиях лаборатории действующее напряжение переменного тока промышленной частоты до 80 кВ. Мощность установки 0,5 кВ-А, объем испытательного сосуда 400 см .  [c.121]

Фторсодержащие диэлектрики . Жидкие перфторированные соединения находят применение в качестве диэлектрических жидкостей в электро- и радиотехнической промыщленности.  [c.256]

Простая модель электронного газа, созданная Друде в 1900 г., успещно предсказала законы Ома и Видемана — Франца. Однако она не объяснила зависимость электропроводности от температуры, а также магнитные свойства и малую величину электронной теплоемкости по сравнению с классическим значением 3/ . В настоящее время ясно, почему удельное сопротивление особо чистых металлов падает от типичного для комнатных температур значения 10 мкОм см до значения менее 10 з мкОм -см при температуре жидкого гелия в то время как удельное сопротивление концентрированного сплава падает всего в два раза в том же диапазоне температур. Поведение полупроводников также хорошо понято удельное сопротивление экспоненциально возрастает при уменьшении температуры, и при очень низких температурах чистые полупроводники становятся хорошими диэлектриками. Добавка в образец полупроводника небольшого количества примесей чаще всего существенно уменьшает удельное сопротивление (в противоположность чистым металлам, в которых наличие примесей ведет к увеличению удельного сопротивления).  [c.187]

Вместе с тем явление Керра нашло за последние годы ряд чрезвычайно важных научных и научно-технических применений, осгю-ванных на способности его протекать практически безынерционно, т. е. следовать за очень быстрыми переменами внешнего поля. Таким образом, и по теоретической, и по практической ценности явление двойного лучепреломления в электрическом поле принадлежит к числу крайне интересных и важных. Как уже упоминалось (см. 2), о желательности постановки подобных опытов писал еще Ломоносов (1756 г.) о неудаче попытки обнаружить, влияет ли электризация на преломляющую способность жидкости, сообщает Юнг (1800 г.) и лишь в 1875 г. были выполнены опыты Керра, надежно установившие явление. Керр показал, что многие жидкие диэлектрики становятся анизотропными под действием электрического поля. Опыты с жидкими диэлектриками имеют решающее значение, ибо для жидких веществ деформация, могущая возникнуть под действием электрического поля (электрострикция), не вызывает двойного лучепреломления ), так что в опытах с жидкостью мы имеем электрооптические явления в чистом виде. Описанный Керром эффект стал первым доказательством того, что оптические свойства вещества могут изменяться под влиянием электрического поля.  [c.528]

Фотолюминесценция — люминесценция, возникающая при возбуждении светом видимого и ультрафиолетового диапазонов частот фотовоэбуждение). На практике фотовозбуждение используется для получения люминесценции жидких растворов, стекол, твердых диэлектриков и полупроводников. При этом роль центров люминесценции играют специально вводимые в основное вещество ионы или молекулы. Так, например, в твердые диэлектрики и стекла вводят в виде небольших примесей ионы неодима (Nd +) и других редкоземельных элементов. В жидкие растворители вводят, в частности, молекулы органических красителей.  [c.184]

Теплопроводность кристаллов (экспериментальные данные) ). Эйкеп [25] измерил теплопроводность нескольких твердых диэлектриков до температур жидкого кислорода, а в нескольких случаях до температур жидкого водорода. Он нашел, что теплопроводность х кристаллов в обш ем случае, в согласии с формулой (9.7), меняется как и что теплопроводность больше для тех кристаллов, у которых дебаевская температура в больше.  [c.249]

Внезапное прекращение кипения представляет собой действительно очень эффектное зрелище, и с тех пор Х-точку именно так обычно и демонстрируют в широкой аудитории. Ни Мак-Лепнан, ни его сотрудники не пытались интерпретировать этот эффект. Это не было сделано даже после обнаружения необычайного роста тенлонроводности, когда стало очевидна связь между обоими явлениями. По-видимому, истинную природу изменения в гелии невозможно было понять потому, что не был известен ни один механизм, при помощи которого можно было бы объяснить, почему теплопроводность в жидком диэлектрике внезапно возрастает в миллион раз.  [c.789]

В физике твердых и жидких диэлектриков поляризуемостью называют также величину, равргую отношению поляризованности диэлектрика к произведению напряженности электрического поля Е и концентрации числа частиц , т. е. a = P/(En).  [c.114]

Жидкости легко загрязняются и трудно очищаются. Поэтому на практике применяют технически чистые жидкие диэлектрики, содержащие примеси как попадающие извне, так и образующиеся в результате процесса старения. Такие материалы характеризуются ионной и молионной электропроводностью. Ионная обусловлена диссоциацией молекул самой жидкости (собственная электропроводность) и примесей (примесная электропроводность). Для неполярных жидкостей характерна примесная электропроводность. Полярные же отличаются повышенной удельной проводимостью из-за наличия обоих видов ионной электропроводности, причем возрастание 8г приводит к росту проводимости, так что сильно полярные жидкости с г, более 20 (вода, спирты, кетоны  [c.548]

В табл. 23.6 приведены характеристики некоторых жидких органических природных и синтетических диэлектриков. К природным относятся нефтяные масла трансформаторное, конденсаторное и кабельные (маловязкое МН-2, С-220 средней вязкости и высоковязкое П-28), а также касторовое масло и конденсаторный вазелин к синтетическим — полиолефиновая жидкость октол и дц-эфиры, к которым принадлежит дибутилсебацинат. В табл. 23.7, 23.8 и 23.9 приведены характеристики синтетических жидких диэлектриков на основе хлорированных углеводородов, кремнийорганических и фторорганических соединений. Подробно свойства жидких диэлектриков рассмотрены в [9, 23-—26].  [c.549]

Так же как и в магнитной гидродинамике, в электрогидродинамике можно различать два протиЕ оположных процесса. Первый процесс — когда пондеромоторные силы, действуя на жидкие и газообразные диэлектрики, вызывают их перемещение. По аналогии с электромагнитными насосами установки, в которых происходит такое движение, будем называть электрогидродинами-ческими насосами.  [c.408]

Удельное объемное сопротивление р жидких диэлектриков определяют на образдах (пробах) объемом не менее 50 см , число проб — не менее двух. Испытуемую жидкость заливают в измерительную ячейку — специальный металлический сосуд с электродами, которые обычно изготовляются из нержавеющей стали. Рабочие поверхности электродов должны иметь покрытие из никеля, хрома или серебра с гладкой поверхностью. Измерительная ячейка представляет собой трехэлектродную систему. При плоских электродах (рис. 1-10, а) высоковольтный электрод 5 выполняется в виде тарелки с плоским дном. На бортики этого электрода опирается изоляционный элемент 4 кольцевой формы. Изоляционный элемент выполняется из плавленого кварца или фторопласта-4. На нем закреплен винтами охранный кольцевой электрод 2. Во внутреннюю выточку охранного электрода входит изоляционное кольцо 5, несущее центральный измерительный электрод /. Все электроды снабжены зажимами 5 для соединения с измерительной цепью.  [c.26]

Краевую емкость находят путем гра4юаналитических расчетов, исходя из геометрических размеров образца и электродов. Формулы для расчета приведены в 4-7. При испытаниях образцов твердых диэлектриков в форме трубок или при испытаниях жидких диэлектриков в цилиндрической измерительной ячейке можно исключить краевую емкость следующим образом. Емкость измеряют дважды при электродах различной длины. Вначале находят емкость С х при длине электрода 1, а затем емкость С х2 при длине электрода /а-Очевидно, что краевая емкость при первом и втором измерениях будет неизменной, а собственные емкости образцов С , и различные. Можно записать следующие равенства  [c.62]

Метод одной среды. Двухэлектродная измерительная ячейка заполняется жидким диэлектриком с известными, точно измеренными значейиями и tg б]. Измеряют емкость ячейки, заполненной этой жидкостью. Вставляют в жидкость между электродами плоский образец испытуемого материала и находят измерением новые емкость Са и tg 63 обычно емкости и Сз выражают в пикофарадах.  [c.87]

Измерение / р производят с помощью испытательных установок (рис. 5-7), содержащих устройство 1 для плавного регулирования напряжения, испытательный трансформатор 2 для. повышения напряжения, камеру 5, в которую помещается испытуемый образец 3 с электродами, и другие элементы. Регулирование найря-жения должно быть плавным, так чтобы изменения (скачки) его не превышали 0,005 номинального напряжения трансформатора. Рекомендуется повышать- напряжение автоматически. Мощность испытательной установки должна быть достаточной для того, чтобы установившийся ток короткого замыкания (действующий на стороне высокого напряжения был не менее 40 мА при испытаниях твердых диэлектриков и не менее 20 мА, при испытаниях жидких диэлектриков. Первичная цепь трансформатора снабжается выключателем 6, автоматически срабатывающим при пробое образца, и сигнальной лампочкой 4.  [c.104]

Например, углерод может существовать в модификации графита, являясь при этом проводником, и алмаза — диэлектриком такие типичные при нор.мгальных условиях полупроводники, как германий и гсремпий, при воздействии очень высоких гидростатических давлений становятся проводниками, а при воздействии очень низких температур — диэлектриками Твердые и жидкие металлы — проводники, но пары металлов являются диэлектриками.  [c.5]

У проводниковых материалов поверхностные токи исчезающе малы по сравнению с объемными поэтому у этих материалов поверхностное сопротивление не учитывается. Не определяется поверхностное сопротивление также у жидких и газообразных диэлектриков. Не и.меет смысла определение поверхностного сопротивления и у тонких слоев твердых диэ.вектрикоЕ (например, лаковых пленок), так как в этом случае практически невозможно отделить поверхностные токи утечки от объемных.  [c.103]


Жидкие диэлектрики — это… Что такое Жидкие диэлектрики?


Жидкие диэлектрики
        жидкости, удельное злектрическое сопротивление которых превышает 1010ом см. В электрическое поле Ж. д., как и твёрдые, характеризуются поляризацией и диэлектрическими потерями; в сильных полях — имеет место пробой (см. Диэлектрики). Электропроводность Ж. д, обусловлена ионами, образованными вследствие диссоциации собственных и примесных молекул жидкости. Пробой Ж. д. в сильном электрическом поле в основном связан с загрязнениями, которые содержит жидкость.

         Ж. д. имеют большое значение в электротехнике и в лабораторной практике. Они обладают более высокой электрической прочностью, диэлектрической проницаемостью ε и удельной теплопроводностью по сравнению с воздухом или др. газами при давлении, близком к атмосферному. Поэтому при удалении воздуха из пор в волокнистой или иной пористой изоляции и заполнении их Ж. д. допустимое рабочее напряжение электрических устройств повышается. Аналогичный эффект достигается при заливке Ж. д. корпусов трансформаторов, конденсаторов, блоков радиоаппаратуры, при пропитке Ж. д. бумажной изоляции конденсаторов или силовых кабелей высокого напряжения и т. п. При пропитке Ж. д. бумажной изоляции конденсаторов удаётся значительно повысить их ёмкость.

         Из Ж. д. наиболее широко применяются электроизоляционные минеральные (нефтяные) масла. По химическому составу — это смеси различных углеводородов с ε ≈ 2,2—2,4 и с малым углом δ диэлектрических потерь (См. Диэлектрические потери) (после хорошей очистки и при нормальной температуре tg δ          Хлорированные углеводороды с несимметричным строением молекул (в СССР — совол и совтол) являются полярными Ж. д. с повышенными значениями ε (3—6) и характерными зависимостями ε и tg δ от температуры и частоты. Широко применяются также синтетические Ж. д. — кремнийорганические и фторорганические жидкости (подробнее см. в ст. Электроизоляционные материалы).

         Лит.: Сканави Г. И., Физика диэлектриков, (Область слабых полей), М. — Л., 1949; его же. Физика диэлектриков. (Область сильных полей), М., 1958; Браун В., Диэлектрики, пер. с англ., М., 1961; Балыгин И. Е., Электрическая прочность жидких диэлектриков, М. — Л., 1964.

         А. Н. Губкин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Жидачов
  • Жидкие кристаллы

Смотреть что такое «Жидкие диэлектрики» в других словарях:

  • ЖИДКИЕ ДИЭЛЕКТРИКИ — жидкости, уд. электрич. сопротивление к рых превышает 1010 Ом•см. В электрич. поле Ж. д. (как и тв. диэлектрики) характеризуются диэлектрич. проницаемостью и диэлектрическими потерями; в сильных полях в них происходит пробой. Носители заряда в Ж …   Физическая энциклопедия

  • ЖИДКИЕ ДИЭЛЕКТРИКИ — жидкости с высоким удельным электросопротивлением ( 1010 Ом.см). Наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.) …   Большой Энциклопедический словарь

  • жидкие диэлектрики — жидкости с низкой электропроводностью (10–10 Ом–1·см–1). Используются в электротехнике как изоляционные материалы, наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т. д.). * * * ЖИДКИЕ ДИЭЛЕКТРИКИ ЖИДКИЕ… …   Энциклопедический словарь

  • ЖИДКИЕ ДИЭЛЕКТРИКИ — жидкости с низкой электропроводностью (10 10Ом 1 х см 1). Используются в электротехнике как изоляц. материалы, наиб. применение имеют минер. масла (в трансформаторах, конденсаторах и т.д.) …   Естествознание. Энциклопедический словарь

  • Диэлектрики —         вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… …   Большая советская энциклопедия

  • Жидкие металлы —         непрозрачные жидкости с характерным блеском, обладающие большой теплопроводностью, электропроводностью и др. особенностями, свойственными твёрдым металлам (См. Металлы). Ж. м. являются все расплавленные металлы и сплавы металлов, а также… …   Большая советская энциклопедия

  • ЖИДКИЕ КРИСТАЛЛЫ — особое состояние нек рых органич. в в, в к ром они обладают реологич. св вами жидкости текучестью, но сохраняют определ. упорядоченность в расположении молекул и анизотропию ряда физ. св в, характерную для тв. кристаллов. Открыты в 1889 австр.… …   Физическая энциклопедия

  • ДИЭЛЕКТРИКИ — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом?м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… …   Современная энциклопедия

  • Диэлектрики — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом´м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… …   Иллюстрированный энциклопедический словарь

  • ДИЭЛЕКТРИКИ — вещества, плохо проводящие электрический ток (удельное электросопротивление 108 1012 Ом?см). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках… …   Большой Энциклопедический словарь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *