Зенеровский диод – зенеровский или опорный диод — со всех языков на русский

Диод Зенера — Википедия

Материал из Википедии — свободной энциклопедии

Стабилитрон в стеклянном корпусе с рассеиваемой мощностью 0,5 Вт
Zener diode symbol ru.svg
Zener diode symbol ru 2a.svg
Условные графические обозначения обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя[1]. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко[1]. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм

[1]. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов[2].

Основное назначение стабилитронов — стабилизация напряжения[1][2]. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В[3]. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений.

Терминология и классификация[ | ]

В русскоязычной литературе понятие «стабилитрон» без уточняющего «полупроводниковый» применяется именно к полупроводниковым стабилитронам. Уточнение необходимо, если нужно противопоставить стабилитроны полупроводниковые — устаревшим газонаполненным стабилитронам тлеющего и коронного разряда. Катодом стабилитрона обозначается вывод, в который втекает обратный ток (n-область обратно-смещённого p-n-перехода), анодом — вывод, из которого ток пробоя вытекает (p-область p-n-перехода). Двуханодные (двусторонние) стабилитроны состоят из двух стабилитронов, включенных последовательно во встречных направ

Стабилитрон со скрытой структурой — Википедия

Стабилитрон со скрытой структурой (ССС, англ. buried zener) — интегральный кремниевый стабилитрон в котором, в отличие от обычных стабилитронов, под p-n-переходом создана скрытая область (островок) с высокой концентрацией акцепторных примесей. Благодаря тому, что ток пробоя такого стабилитрона концентрируется не в приповерхностных, а в скрытых слоях, его характеристики стабильны и предсказуемы. Прецизионные интегральные источники опорного напряжения (ИОН) на ССС — наиболее точные и стабильные из всех производимых типов ИОН. Лучшие ИОН на ССС приближаются по совокупности показателей точности к нормальному элементу Вестона.

Поперечный разрез стабилитрона со скрытой структурой. Стрелка — путь тока пробоя стабилитрона. Соотношение вертикального и горизонтального масштаба и толщин слоёв — условное
Упрощённая топология прецизионного стабилитрона со скрытой структурой LTZ1000

Обычные, поверхностные, стабилитроны интегральных схем строятся на основе типовых транзисторных структур. Эмиттер npn-транзистора становится катодом стабилитрона, база — анодом. Напряжение пробоя перехода база-эмиттер при типовых концентрациях носителей составляет 6,2 В ±10 %, а температурный коэффициент этого напряжения (ТКН) равен +2,5 мВ/°C[1]. Если последовательно соединить такой стабилитрон с прямо смещённым диодом (таким же переходом база-эмиттер, включенным в противоположном направлении), имеющим ТКН около −2,2 мВ/°C, то ТКН такого термокомпенсированного диода снизится до величины не более 0,5 мВ/°C, или 80 ppm/°C[2]. Недостатки поверхностных стабилитронов — высокий уровень шума и высокий дрейф напряжения — обусловлены тем, что ток стабилитрона сосредоточен в приповерхностном слое кремния. Но там же сосредоточены дефекты кристаллической решётки и посторонние примеси, которые и порождают шум и нестабильность

[2]. Для того, чтобы избежать этого, следует загнать ток пробоя вглубь кристалла (в «скрытую структуру»), и не допускать пробоя перехода база-эмиттер в приповерхностном слое.

В основе ССС лежит обычная транзисторная структура, изготовленная по биполярной эпитаксиальной технологии с изоляцией p-n-переходом[3]. Вначале на поверхности монокристаллической пластины с низкой концентрацией акцепторов (p-тип проводимости) формируются широкие островки n+-типа — будущие скрытые слои коллекторов биполярных транзисторов. Затем на подложке выращивается эпитаксиальный коллекторный слой n-типа проводимости и проводится глубокая диффузия p-примесей — изоляция p-n-переходом[3]. На этом этапе в центре будущего стабилитрона создаётся островок p

+-типа проводимости[3]. Обычный изоляционный слой p+-типа проникает через эпитаксиальный слой насквозь, замыкаясь на p-слой подложки, но под островком стабилитрона расположен скрытый слой n+-типа, не позволяющий замкнуть прокол[3].

Затем проводятся стандартные шаги базовой и эмиттерной диффузии и металлизации. Базовый слой p-типа становится анодом стабилитрона, эмиттерный слой n+-типа — его катодом, а непосредственно под катодом по-прежнему лежит скрытый островок p+-типа. Таким образом, боковые стенки p-n-перехода имеют профиль проводимости p-n+, а его дно — p+-n+[4]. Напряжение пробоя p+-n+ перехода существенно ниже, чем напряжение пробоя p-n+-перехода, поэтому весь ток пробоя стабилитрона сосредотачивается на его дне, а приповерхностные участки перехода анод-катод, неизбежно загрязнённые посторонними примесями и неоднородностями, ток не проводят

[4]. Именно поэтому, из-за перемещения зоны пробоя вглубь кристалла, стабилитрон со скрытой структурой стабилен, предсказуем, и меньше шумит, чем стабилитрон обычный[4].

ИОН LTZ1000 на стабилитроне со скрытым слоем имеет характерную концентрическую топологию. В центре кристалла расположен стабилитрон, непосредственно к нему примыкают транзисторы — датчики температуры, а вокруг них «уложена» спираль подогревателя, также выполненная по планарной технологии. При такой конфигурации градиент температуры кристалла направлен от спирали к внешнему краю, а внутри спирали, где и размещён стабилитрон, поддерживается практически однородная температура. Таким образом, стабилитрон защищён от термических «перекосов», увеличивающих нестабильность опорного напряжения.

Первый дискретный ССС был выпущен в 1974 году. Существовавшие в то время ИОН типа бандгап (первого поколения) и ИОН на обычных стабилитронах вполне удовлетворяли конструкторов стабилизаторов напряжения, но в середине 1970-х годов начался выпуск первых интегральных аналого-цифровых преобразователей, и требования к точности ИОН многократно возросли[5]. В 1976 году National Semiconductor выпустила разработанную Бобом Добкиным LM199 — первый интегральный ССС на 6,95 В[6]. Благодаря встроенному подогревателю с терморегулятором, который поддерживал стабильную температуру кристалла (+90 °C), конструкторы и технологи National добились революционных для своего времени показателей[7]. Температурный коэффициент напряжения (ТКН) серийных LM199 не превышал 1 ppm/°C, а типичный ТКН составлял всего 0,3 ppm/°C при уровне шума в звуковом диапазоне частот не более 7 мкВ скв

[8]. LM199 и её аналоги, при всех их достоинствах, были дороги и непригодны для использования в низковольтных и микромощных устройствах[9]. Высокая цена прецизионных ССС определяется длительной заводской электротермотренировкой.

За LM199 последовала экономичная, лишённая терморегулятора LM129, а затем выпуск усовершенствованных схем на ССС начали Analog Devices, Burr-Brown и Linear Technology[10]. Абсолютный рекорд точности серийных ИОН, не побитый и в XXI веке, поставил в 1980-е годы тот же Боб Добкин. Его ИОН LTZ1000, выпущенный на Linear Technology, гарантировал ТКН не более 0,05 ppm/°C при среднесрочном дрейфе не более 2 ppm/месяц и уровне шума в 2 мкВ (от пика до пика)[11]. Лучшие показатели точности среди всех твердотельных ИОН, сравнимые с показателями нормального элемента Вестона (долгосрочный дрейф 2 ppm/год и ТКН в 0,1 ppm/°C), декларирует компания Fluke Corporation

[12]. Эталоны напряжения Fluke строятся на серийных LTZ1000, отобранных по минимальной нестабильности, при этом термостат поддерживает температуру стабилитрона +50 °C — существенно меньше, чем в типовых решениях на LTZ1000. По утверждению компании, меньшая температура термостабилизации позволяет снизить длительный дрейф в два раза[13].

Типичные прецизионные ИОН на ССС, восходящие к разработкам 1980-х годов, имеют начальный допуск от 0,01 до 0,05 %, ТКН от 0,05 до 10 ppm/°C и долгосрочный дрейф не более 25 ppm за первые 1000 часов эксплуатации, что удовлетворяет требованиям 14-разрядных измерительных АЦП. В 1980-е и 1990-е годы ни одна конкурирующая технология не могла приблизиться к этим характеристикам. Лучшие усовершенствованные бандгапы по схеме Брокау имели на один-два порядка худшие показатели точности и шума. Однако в начале XXI века на рынок вышли супербандгапы и прецизионные приборы, построенные на фундаментально других принципах: XFET компании Analog Devices и FGA компании Intersil. К 2005 году супербандгапы и ИОН типа FGA приблизились к ССС, превзойдя психологически важный рубеж — ТКН в 1 ppm/°C. Однако по совокупности всех точностных и шумовых параметров стабилитрон со скрытым слоем по прежнему не имеет равных

[14].

  1. ↑ Harrison, 2005, pp. 416-417.
  2. 1 2 Harrison, 2005, p. 417.
  3. 1 2 3 4 Mitchell, 1999, p. 10.
  4. 1 2 3 Mitchell, 1999, p. 11.
  5. ↑ Harrison, 2005, pp. 2, 5.
  6. ↑ Harrison, 2005, p. 7.
  7. ↑ Harrison, 2005, p. 415.
  8. ↑ Harrison, 2005, p. 7, 323, 415.
  9. ↑ Harrison, 2005, p. 323.
  10. ↑ Harrison, 2005, p. 418.
  11. ↑ Harrison, 2005, p. 420.
  12. ↑ Авербух, 2000, p. 1.
  13. Fluke Corporation. A practical approach to maintaining DC reference standards // Fluke Corporation. — 2000. — P. 6.
  14. ↑ Harrison, 2005, p. 11.

P-N Диод переключения и стабилитрон 2020

Диод — самый простой полупроводниковый элемент, который имеет одно PN-соединение и два терминала. Это пассивный элемент, потому что ток течет в одном направлении. Зенеровский диод, наоборот, позволяет протекать обратный ток.

Что такое Зенеровский диод?

Через не проницаемое поляризованное p-n-соединение протекает небольшой обратный ток постоянного насыщения. Однако в реальном диоде, когда напряжение непроницаемой поляризации превышает определенное значение, возникает внезапная утечка тока, так что ток в конечном итоге увеличивается практически без какого-либо дальнейшего увеличения напряжения.

Значение напряжения, при котором возникает внезапная утечка тока, называется пробой или напряжением Зенера. Физически две причины приводят к разрушению барьера p-n. В очень узких барьерах, которые образуются при очень высоком загрязнении полупроводников типа p и n, валентные электроны могут туннелироваться через барьер. Это явление объясняется волновой природой электрона.

По словам исследователя, который впервые объяснил это, разбивка этого типа называется разбитием Зинера. В более широких барьерах неосновные носители, свободно пересекающие барьер, могут получить достаточную скорость при высоких напряженности поля, чтобы разрушить валентные связи внутри барьера. Таким образом создаются дополнительные пары электронных дырок, которые способствуют увеличению тока.

Вольт-амперная характеристика диода Зенера для области поляризации полосы пропускания не отличается от характеристик общего выпрямительного полупроводникового диода. В области непроницаемой поляризации проникновение диодов Зенера обычно имеет более низкие значения, чем проникающие напряжения обычных полупроводниковых диодов, и они работают только в области непроницаемой поляризации.

Как только произойдет пробой связи p-n, ток может быть ограничен некоторым допустимым значением только с внешним сопротивлением, в противном случае диоды будут уничтожены. Значения проникающего напряжения стабилитрона можно контролировать в процессе производства. Это позволяет производить диоды с пробивным напряжением от нескольких вольт до нескольких сотен вольт.

Диоды с напряжением пробоя менее 5 В не имеют ярко выраженного пробивного напряжения и имеют отрицательный температурный коэффициент (повышение температуры уменьшает напряжение Зенера). Диоды с UZ> 5V имеют положительный температурный коэффициент (повышение температуры увеличивает напряжение Зенера). Зенеровские диоды используются в качестве стабилизаторов и ограничителей напряжения.

Разница между диодом P-N и диодом Зенера

  1. Определение диодов перехода P-N и диода Зенера

Диод является электронным компонентом, который позволяет поток электричества в одном направлении без сопротивления (или с очень небольшим сопротивлением), в то время как в противоположном направлении имеет бесконечное (или, по крайней мере, очень высокое) сопротивление. Зенеровские диоды, наоборот, допускают обратный ток при достижении напряжения Зенера.

  1. Конструкция диода J-D и диодов Zener

Соединительный диод P-n состоит из двух полупроводниковых слоев (p-типа — анода и n-типа — катода). В случае Зенеровских диодов концентрации примесей в полупроводниках должны быть точно опре

Эффект Зенера — Википедия

Материал из Википедии — свободной энциклопедии

Эффе́кт Зе́нера, тунне́льный пробо́й — явление резкого нарастания тока через обратносмещённый p-n переход, вызванный туннельным эффектом, то есть квантовомеханическим «просачиванием» электронов сквозь узкий потенциальный барьер.

При обратном смещении возникает перекрытие энергетических зон (см. рисунок), вследствие чего электроны могут переходить из валентной зоны p-области в зону проводимости n-области.

Наложенное электрическое поле в обеднённом слое перехода вызывает туннелирование электронов из валентной зоны в зону проводимости, что приводит к резкому нарастанию обратного тока через переход[1]. Если ток ограничивается каким либо образом во избежание разрушения перехода, то пробой обратимый.

Явление туннельного пробоя используется в стабилитронах.

Различие зенеровского и лавинного пробоя[править | править код]

Эффект Зенера отличается по механизму от лавинного пробоя, при котором происходит лавинное размножение носителей в обеднённом слое перехода, электроны, ускоренные электрическим полем до энергии, достаточной для генерации электронно-дырочных пар при столкновениях с атомами кристаллической решётки полупроводника порождают носители заряда, а те, в свою очередь, при последующем ускорении могут вызвать новые акты генерации.

Туннелирование электронов и лавинный эффект могут происходить одновременно. В сильнолегированных переходах пробой наблюдается при напряжении ниже 5 В и обусловлен в основном эффектом Зенера. В более слаболегированных переходах, с напряжением резкого нарастания тока немногим выше 5 В пробой вызван как лавинным, так и туннельным механизмами. Пробой при бо́льших напряжениях вызван, в основном, лавинным механизмом. Изменение механизма пробоя зависит от толщины обеднённого слоя, которая зависит от степени легирования, чем выше степень легирования, тем у́же обеднённый слой. При туннельном механизме в сильно легированных переходах напряжённость электрического поля в тонком обеднённом слое достигает 3·107 В/м.

От механизма пробоя зависит знак температурного коэффициента напряжения пробоя, при лавинном пробое — с увеличением температуры напряжения пробоя увеличивается, при туннельном пробое увеличение температуры снижает напряжение. При напряжении пробоя около 5,6 В имеют место оба механизма пробоя примерно с равным вкладом в ток перехода и напряжение пробоя практически не зависит от температуры.

zener diode — с английского на русский

  • zener diode — ☆ zener diode [zē′nər ] n. [after Clarence Zener (1905 93), U.S. physicist] a semiconductor diode usually used as a voltage regulator because its resistance breaks down at a precise, predetermined voltage level (zener voltage), at which time it… …   English World dictionary

  • Zener Diode —  Zener Diode  Диод Зенера   Полупроводниковое, двухполюсное устройство с обратным смещением в область пробоя.   Устройство имеет высокий импеданс при приложении напряжения ниже, чем напряжение пробоя. Ток увеличивается существенно при приложении… …   Толковый англо-русский словарь по нанотехнологии. — М.

  • Zener diode — A Zener diode is a type of diode that permits current in the forward direction like a normal diode, but also in the reverse direction if the voltage is larger than the breakdown voltage known as Zener knee voltage or Zener voltage . The device… …   Wikipedia

  • Zener-Diode — Eine Zener Diode, oder auch Z Diode, ist eine besonders dotierte Silicium Diode mit geringer Sperrschichtdicke, die nach dem amerikanischen Physiker Clarence Melvin Zener, dem Entdecker des Zener Effekts, benannt ist. Die Charakteristik von Z… …   Deutsch Wikipedia

  • Zener diode — Zinerio diodas statusas T sritis fizika atitikmenys: angl. Zener diode vok. Zener Diode, f rus. диод Зинера, m pranc. diode à effet Zener, f; diode de Zener, f; diode Zener, f …   Fizikos terminų žodynas

  • Zener-Diode — Zinerio diodas statusas T sritis fizika atitikmenys: angl. Zener diode vok. Zener Diode, f rus. диод Зинера, m pranc. diode à effet Zener, f; diode de Zener, f; diode Zener, f …   Fizikos terminų žodynas

  • zener diode — ˈzēnə(r) , ˈzen noun Usage: often capitalized Z Etymology: after Clarence Melvin Zener died 1993 American physicist : a silicon semiconductor device used especially as a voltage regulator * * * /zee neuhr/, Electronics. a semiconductor diode… …   Useful english dictionary

  • Zener-Diode — Zenerdiode; Z Diode * * * Ze|ner|di|o|de auch: Ze|ner Di|o|de 〈[zi:nə(r) ] f. 19〉 ein Halbleiterbauelement, das bei Übersteigen einer bestimmten Spannung einen sehr starken Stromabfall zeigt, verwendet in Regelstrecken u. zur Konstanthaltung von… …   Universal-Lexikon

  • zener diode — /zee neuhr/, Electronics. a semiconductor diode across which the reverse voltage remains almost constant over a wide range of currents, used esp. to regulate voltage. Also, Zener diode. [1955 60; after U.S. physicist Clarence Melvin Zener (born… …   Universalium

  • Zener diode — A semiconductor used on British motorcycles for many years as a voltage regulator. When the voltage across the Zener diode reached a certain point, the element would begin to conduct current, routing it to ground, thus preventing the battery from …   Dictionary of automotive terms

  • Zener diode — /zɛnə ˈdaɪoʊd/ (say zenuh duyohd) noun a diode which has a stable Zener voltage which is used for a reference. {named after Clarence Melvin Zener, 1905–93, US physicist} …   Australian English dictionary

  • Лавинный диод — Википедия

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 августа 2017; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 августа 2017; проверки требует 1 правка. Вольт-амперная характеристика лавинного диода. На рисунке в качестве примера показано, что при обратном напряжении на диоде 17,1 В начинается лавинный пробой, дальнейшее увеличение обратного напряжения вызывает быстрое нарастание тока. Для наглядности масштаб оси напряжений при прямом смещении диода увеличен.

    Лави́нный дио́д — электронный прибор, полупроводниковый диод, разновидность стабилитрона, обычно изготавливаемый из кремния, работа которого основана на обратимом лавинном пробое p-n перехода при обратном включении, то есть при подаче на слой полупроводника с p-типом проводимости (анода) отрицательного относительно n-слоя (катода) напряжения.

    Лавинный пробой возникает при напряжённости электрического поля в p-n переходе достаточном для ударной ионизации, при которой носители заряда, ускоренные полем в переходе генерируют пары электрон-дырка. При увеличении поля количество порожденных пар нарастает, что вызывает нарастание тока, поэтому напряжение на диоде остаётся практически постоянным.

    Вообще в стабилитронах при обратном смещении перехода имеются два механизма обратимых пробоев: туннельный (зенеровский) и лавинный, но их вклад зависит от удельного сопротивления базы (при низких удельных сопротивлениях пробой носит туннельный характер, а при высоких — лавинный), которая в свою очередь зависит от материала полупроводника и типа проводимости базы (так, например, для электронного германия равенство лавинной и туннельной составляющей наблюдается при 1 Ом см)[1], при этом напряжение пробоя зависит от степени легирования полупроводника, чем слабее легирование, тем выше напряжение начала пробоя (то есть стабилизации, для стабилитронов).

    Для лавинного пробоя характерно увеличение напряжения стабилизации при повышении температуры, для пробоя по зенеровскому механизму — наоборот. При напряжении начала пробоя ниже 5,1 В преобладает пробой по зенеровскому типу, выше — преобладает лавинный пробой, поэтому у стабилитронов с напряжением стабилизации 5,1 В нет температурного дрейфа напряжения стабилизации, так как температурные дрейфы пробоя по этим двум механизмам взаимно компенсируют друг друга.

    Таким образом, любые стабилитроны с напряжением стабилизации более 5,1 В можно считать лавинными диодами.

    Применяется в электронике в качестве стабилитронов. Также применяются для защиты электрических цепей от перенапряжений. Защитные лавинные диоды конструируют так, чтобы исключить повышенную концентрацию (шнурование) тока в одной или нескольких точках p-n перехода, приводящее к локальному перегреву полупроводниковой структуры, для избежания необратимого разрушения диода. Диоды, предназначенные для защиты от перенапряжения, часто называют супрессорами.

    Лавинный механизм обратного пробоя используется также в лавинных фотодиодах и диодных генераторах шума.

    • Зи, С. М. Физика полупроводниковых приборов. — М.: Мир, 1984. — Т. 1. — 456 с. — 16 000 экз.
    • Хоровиц П., Хилл У. Искусство схемотехники. — 3-е изд.. — М.: Мир, 1986. — Т. 1. — 598 с. — 50 000 экз.
    1. Степаненко И. П. «Основы теории транзисторов и транзисторных схем» М., «Энергия», 1977 г.

    Диод Зенера — с русского на все языки

  • диод Зенера — стабилитрон — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы стабилитрон EN Zener diode …   Справочник технического переводчика

  • Диод Зенера — Обозначение стабилитрона на принципиальных схемах Обозначение двуханодного стабилитрона на принципиальных схемах Типовая схема включения стабилитрона …   Википедия

  • Диод Зенера —  Zener Diode  Диод Зенера   Полупроводниковое, двухполюсное устройство с обратным смещением в область пробоя.   Устройство имеет высокий импеданс при приложении напряжения ниже, чем напряжение пробоя. Ток увеличивается существенно при приложении… …   Толковый англо-русский словарь по нанотехнологии. — М.

  • Диод (значения) — Диод: ОАО «Диод»  российская фармацевтическая компания, второй по величине российский производитель биологически активных добавок. Полупроводниковые и электровакуумные приборы Диод Электровакуумный диод Диод Ганна Диод Зенера Диод Шоттки… …   Википедия

  • Диод — У этого термина существуют и другие значения, см. Диод (значения). Четыре диода и диодный мост. Диод (от др. греч …   Википедия

  • Зенеровский диод — Обозначение стабилитрона на принципиальных схемах Обозначение двуханодного стабилитрона на принципиальных схемах Типовая схема включения стабилитрона …   Википедия

  • Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) …   Википедия

  • кремниевый стабилитрон — диод Зенера — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы диод Зенера EN Zener diode …   Справочник технического переводчика

  • P — n-переход — (n  negative  отрицательный, электронный, p  positive  положительный, дырочный), или электронно дырочный переход  разновидность гомопереходов, Зоной p n перехода называется область полупроводника, в которой имеет место… …   Википедия

  • Р — n-переход — p  n переход (n  negative  отрицательный, электронный, p  positive  положительный, дырочный), или электронно дырочный переход  разновидность гомопереходов, область полупроводника, в которой имеет место пространственное изменение типа проводимости …   Википедия

  • Электронно-дырочный переход — p  n переход (n  negative  отрицательный, электронный, p  positive  положительный, дырочный), или электронно дырочный переход  разновидность гомопереходов, область полупроводника, в которой имеет место пространственное изменение типа проводимости …   Википедия

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *