Зависимость тока от частоты переменного тока – электродинамика как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты переменного тока

Содержание

Закон Ома для переменных тока и напряжения.Зависимость от частоты. — КиберПедия

Для переменного тока справедлив закон Ома, однако сопротивление цепи зависит частоты изменения тока.

Переменный ток можно рассматривать как вынужденные электромагнитные колебания. Представим 3 разных цепи, к каждой из которых приложено переменное напряжение U=Umax*cosωt.

Сила тока в цепи с резистром (первый рисунок) будет изменяться в фазе с приложенным напряжением так: I=Imax*cosωt, сила тока в цепи с катушкой индуктивности (центральный рисунок) будет отставать по фазе от приложенного напряжения на π/2 : I=Imax*cos(ωt- π/2), а ток в цепи с конденсатором (правый рисунок) будет опережать по фазе напряжение на π/2 :

I=Imax*cos(ωt + π/2).

Отношение амплитуды напряжения (Umax) к амплитуде силы тока (Imax) по закону Ома выражает сопротивление.

Для цепи с резистором омическое сопротивление R=UmaxR/Imax,

для цепи с катушкой индуктивности – индуктивное сопротивление XL = Umax*L/Imax=Lω,

для цепи с конденсатором – емкостное сопротивление XC = Umax*C/Imax=1/Cω

Реактивное сопротивление — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).

Величина XL индуктивного сопротивления зависит от индуктивности L элемента и частоты ω протекающего тока. XL =Lω=2πfL. Величина XC ёмкостного сопротивления зависит от ёмкости С элемента и частоты протекающего тока f. XC = 1/Cω=1/2πfC, здесь ω – циклическая частота, равная 2πf.

Прямая и обратная зависимость этих сопротивлений от частоты тока f приводит к тому, что с увеличением частоты всё большую роль начинает играть индуктивное сопротивление и всё меньшую ёмкостное.

16. Импеданс в электрических схемах…

Импеданс — полное электрическое сопротивление цепи переменному току. Полная цепь переменного тока — это цепь из генератора, а также R, C, и Lэлементов, взятых в разных сочетаниях и количествах. Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи. Последовательная цепь — это такая цепь, где все элементы могут быть соединены последовательно. При последовательном соединении сопротивления R и емкости Е импеданс: , для угла разности фаз

В параллельной цепи R, C, L элементы соединены параллельно.

для угла разности фаз

Импеданс изменяется с изменением частоты тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.



Особенности полной цепи:

1.Соблюдается закон Ома

2.Полная цепь оказывает переменному току сопротивление. Это сопротивление

называется полным (мнимым, кажущимся) или импедансом.

3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и

вычисляется не простым, а геометрическим (векторным) суммированием. Для

последовательно соединенных элементов формула импеданса имеет следующее

значение:

здесь:

Z — импеданс последовательной цепи,

R — активное сопротивление,

XL – индуктивное и XC – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

 

импеданс изменяется с изменением частоты

тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода Т переменного тока. Если время, в течение которого

электрическое поле направлено в одну сторону (Т/2), больше времени релаксации τ какого-либо вида поляризации, то поляризация достигает своего наибольшего значения, и до тех пор, пока T/2>τ, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод T/2 переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть своего максимального значения. После этого диэлектрическая проницаемость начинает

уменьшаться с частотой, а проводимость — возрастать

 

17 . Электрический диполь- система, состоящая из 2х равных, но противоположных по знаку точечных эл.зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя). Основная

хар-ка эл.диполя – электрический или дипольный момент р(с вектором)=[Кл*м] = произведению заряда на плечо диполя направленный от «-» заряда к «+»



Диполь сам является источником поля.

Понятие о мультиполе.

Диполь является частным случаем системы эл. зарядов, обладающих определенной симметрией. Общее название подобных распределений зарядов – электрические мультиполя.

Они бывают разных порядков(L=0,1,2,и т.д.), число зарядов мультиполя определяется выражением 2L. Так, так мультиполем нулевого порядка(20=1) является одиночный точечный заряд, мультиполем первого порядка(21=2)-диполь, мультиполем второго порядка(22=4)квадруполь, мультиполем третьего порядка(23=8) октуполь.

Потенциал поля мультиполя убывает в значительных расстояниях от него пропорционально 1/RL+1. Так, для заряда (L=0) ).

Если заряд распределен в некоторой области пространства, то потенциал электрического поля вне системы зарядов можно представить в виде некоторого приближенного ряда:

Здесь R – расстояние от системы зарядов до точки А с потенциалом , f1,f2,f3,… — некоторые функции, зависящие от вида мультиполя, его зарядов и от направления на точку А.

19. Токовый монополь— единичный источник электрического потенциала. потенциал поля токового монополя в бесконечно проводящей среде: ,где jплотность электрического тока,p-удельное сопротивление среды,фи-потенциал электрического поля, r-расстояние от униполя.

В вакууме или в идеальном диэлектрике эл.диполь может сохраняться сколько угодно долго. В проводящей среде под действием эл.поля диполя возникает движение свободных зарядов и диполь либо экранируется, либо нейтрализуется. При подключении к диполю источника постоянного напряжения диполь в слабо проводящей среде сохраняется, несмотря на наличии тока, такая двухполюсная система –

токовый диполь, а ее полюса- истоком и стоком тока. Дипольный момент токового диполя: Рт=I*l,

l- расстояние между электродами.[Рт]=[А*м].

Потенциал поля токового диполя в безгранично проводящей среде: φ=(1/4πϪ)*(Рт*соsἀ/r2),где Ϫ=1/ρ = удельная эл. проводимость. ρ- удельное сопротивление.

21.Диэлектрики— тела, не проводящие эл. Тока. Относят тв.т: эбонит,фарфор, жидк:чистая вода, газы.

При изменении внешних условий диэлектрик может проводить электрический ток. Изменение состояния диэлектрика при помещении в электрическое поле можно объяснить его молекулярным строением.

Условно выделяют три класса диэлектриков:1) с полярными молекулами;2) с неполярными молекулами;3)кристаллические.

К первому классу принадлежат такие вещ-ва, как вода, нитробензол и др. молекулы этих диэлектриков не симметричны,и они обладают электрическим моментом диполя даже когда электрического поля нет. При отсутствии электрического поля дипольные моменты молекул ориентированы хаотически и векторная сумма моментов всех n молекул равна нулю. Если диэлектрик поместить в электрическое поле, то дипольные моменты молекул стремятся ориентироваться вдоль поля.

Ко второму классу диэлектриков относят такие вещества (водород, кислород), молекулы которых при отсутствии электрического поля не имеют дипольных моментов. Если неполярную молекулу поместить в электрическое поле, то разноименные заряды несколько сместятся в противоположную стороны и молекула будет иметь дипольный момент.

Третий класс-кристаллические диэлектрики(поваренная соль), решетка которых состоит из положительных и отрицательных ионов. Его можно схематически рассматривать как совокупность двух «подрешеток»,одна из которых заряжена+, др—. При отсутствии поля подрешетки расположены симметрично и суммарный электрический момент такого диэлектрика равна нулю. Если диэлектрик поместить в электрическое поле, то подрешетки немного сместятся в противоположные стороны и диэлектрик приобретет электрический момент.

Все эти процессы, происходящие в разных диэлектрика, находящиеся в электрическом поле, объединяют общим термином поляризация, т.е. приобретение диэлектриком полярности.

22. Пьезоэле́ктрики — диэлектрики, в которых наблюдается пьезоэффект, то есть те, которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности (прямой пьезоэффект), либо под влиянием внешнего электрического поля деформироваться (обратный пьезоэффект). Оба эффекта открыты братьями Кюри.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны.

23. Электробезопасность медицинской аппаратуры – комплексная система мероприятий, осуществляемых при разработке, промышленном выпуске и эксплуатации медицинской аппаратуры и направленных на обеспечение полной электробезопасности для обслуживающего персонала и пациентов. Необходимость их обусловлена возможностью поражающего действия электрического тока, используемого в физиотерапевтических аппаратах либо для лечебного воздействия, либо для обеспечения их энергией.

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента.

Основное требование – сделать недоступным касание частей аппаратуры находящихся под напряжением. Для этого изолируют части приборов и аппаротов, находящихся под напряжением друг от друга и от корпуса аппаратуры. Изоляция, выполняющая такую роль-

основная (рабочая).

Ни одна изоляция не обеспечивает полную безопасность по 2 причинам:

1.сопротивление приборов и аппаратов переменному току не бесконечно, так же оно не бесконечно между проводами электросети и землей.Поэтому при касании человеком корпуса аппаратуры через тело пройдет ток – ток утечки.

2.неисключено, что благодаря порче рабочей изоляции(стар., влажность окр.воздуха) возникает эл.замыкание внутренних частей аппаратуры с корпусом – «пробой на корпус». И внешняя доступная для касания часть апп. окажется под напряжением.

При конструировании и создании мед.аппар. необходимо учитывать допустимую силу тока, как при нормальной работе, так и в случае единичного нарушения — отказ одного из средств защиты от паражения эл.током. допустимые силы токов утечки различают по типам электромедицинских изделий от поражения током.

Н –нормальная степень защиты- такая ст.защиты эквивалентна защите бытовых приборов.

 

 

В –изделия с повышенной степенью защиты.

BF- изделия с повышенной степенью защиты и изолированной рабочей частью.

CF-изделия с наивысшей степенью защиты и изолир раб. частью, к этому типу относят в частности изделия с рабочей частью, имеющей эл.контакт с сердцем.♥

24. Классы приборов по способу доп защиты от поражения эл.током.

Н –нормальная степень защиты- такая ст.защиты эквивалентна защите бытовых приборов.

 

 

В –изделия с повышенной степенью защиты.

BF- изделия с повышенной степенью защиты и изолированной рабочей частью.

CF-изделия с наивысшей степенью защиты и изолир раб. частью, к этому типу относят в частности изделия с рабочей частью, имеющей эл.контакт с сердцем.♥

Защитное заземление — преднамеренное соединение с землей частей электроустановки. Защитное заземление значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Зануление— преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Техника безопасности:

— Очень опасно прикосновение к оголенному проводу.

— Опасно пользоваться неисправными электрическими приборами. Электрические приборы должны периодически осматривать квалифицированные специалисты.

— Нельзя собирать, разбирать и исправлять что-либо в электрическом приборе, не отключив его от источника.

25 .Медицинская аппаратура должна нормально функциониро вать.

Важным параметром является ве­роятность безотказной работы. Она оценивается эксперимен­тально отношением числа N работающих за время t изделий к общему числу N0 испытывавшихся изделий:

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количе­ственным показателем надежности является интенсивность от­казов лямбда(t). Этот показатель равен отношению числа отказов dN за время dt к произведению времени dt на общее число N работаю­щих элементов:

Знак «—» поставлен в связи с тем, что dN < 0, так как число рабо­тающих изделий убывает со временем.

Функция лямбда(t) может иметь различный вид. Наиболее характер­ная ее форма изображена графически на рис.

три области: I- период приработки. Интенсивность отказов при этом может быть достаточно велика;

II -период нормальнойэксплуата­ции, интенсивность отказов значительное время может сохранять постоянное значение. III — пе­риод старения, интенсивность отказов воз­растает со временем. Р- вероятность безотказной работы, λ -интенсивность отказов. Если

λ= const (период II) то:

Закон изменения со временем вероятности безотказной работы. Этот закон можно использовать для оценки надежности аппаратуры.

В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:

А — изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала. Вероятность безот­казной работы изделий этого класса должна быть не менее 0,99-в течение установлен­ного для них срока службы. К изделиям этого класса относятся приборы для наблюдения за жизненно важными функциями боль­ного.

Б — изделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала. Вероятность безотказной работы изде­лий этого класса должна быть не менее 0,8. К таким изделиям относятся системы, следящие за больными, аппараты для стиму­ляции сердечной деятельности и др.;

В — изделия, отказ которых снижает эффективность или за­держивает лечебно-диагностический процесс в некритических си­туациях, либо повышает нагрузку на медицинский или обслужи­вающий персонал, либо приводит только к материальному ущер­бу.

Г — изделия, не содержащие отказоспособных частей. Элек­тромедицинская аппаратура к этому классу не относится.

 

26. Основные группы медицинских электронных приборов и аппаратов.Медицинскую электронную аппаратуру можно разделить на два класса: медицинские приборы и медицинские аппараты. Медицинский прибор —техническое устройство, предназначенное для диагностических или лечебных измерений (медицинский термометр, электрокардиограф)

Медицинский аппарат — техническое устройство, позволяющее создавать энергетическое воздействие (часто дозированное) терапевтического, хирургического или бактерицидного свойства (аппарат УВЧ терапии) и обеспечить сохранение определенного состава некоторых субстанций.

Выделены следующие основные группы приборов и аппаратов, используемые для медико-биологических целей.

— Устройство для получения, передачи и регистрации медико-биологической информации.

-Кибернетические электронные устройства.

В большинстве приборов электрический сигнал, поступающий от преобразователя, должен пройти обработку, прежде чем он примет форму, удобную для дальнейшего его использования в устройстве отображения. Такая модификация или обработка сигнала выполняется в специальных блоках прибора — блоках обработки сигналов.

Электрический сигнал, получаемый от большинства преобразователей, мал, поэтому его следует усилить. Усиление осуществляется с помощью электронных приборов, т. е. приборов, в которых осуществляется управление электронными потоками.

27.Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках.

Усилитель на транзисторе с общей базой(тк входное и выходное напряжение имеют на базе общую точку).

 

 

Д-делитель, Е- ЭДС, I-сила тока, Iэ=Iк+Iб; Iб мала, значит Iэ~Iк, R-сопротивление

Источник тока Е эмиттера подключен к эмитерной цепи1 он создает на эмитерном переходе прямое напряжение. Это напряжение(Uвх) можно измерить используюя делитель напряженияД. На коллекторном переходе источник Ек создает обратное напряжение, усиленное по сравнению с Uвых. Напряжение Uвых. снимается с резистора нагрузки Rн коллекторной цепи 2. Работа резистора основана натом, что напряжение и следоват. ток эмиторного перехода влияют на ток в цепи коллектора. Сила тока в цепи коллектора не велика при отсутствии напряжения в эмитерной цепи тк р-n переход между коллектором и базой соответствует запирающему напряжению. Если создать и увеличить напряжение между эмитером и базой, то будет возрастать сила тока в цепи эммитера. Дырки попадая в базу в значительном кол-ве продифундируют через нее и окажутся в коллекторе. Сила тока в цепи коллектора возрастет. Прохождению дырок через р-n переход способствует контактная разность потенциалов между коллектором и базой. В базе дырки могут рекомбинировать с ē и не достигать коллектора, поэтому толщину базы делают достаточно малой и большинство дырок попадают в коллектор. Т.о. сила тока в цепи эмитера оказывает влияние на сопротивление перехода. Uвых=Ек/ 1+(Rк/Rн).

 

 

.28Генераторы гармонических колебаний.

1.1 Генераторы синусоидальных колебаний
Данная группа генераторов предназначена для получения колебаний синусоидальной формы требуемой частоты. Их работа основана на принципе самовозбуждения усилителя ,охваченного положительной обратной связью (рис.1.1). Коэффициент усиления и коэффициент передачи звена обратной связи приняты комплексными, т.е. учитывается их зависимость от частоты. При этом входным сигналом для усилителя в схеме рис.1.1 является часть его выходного напряжения , передаваемого звеном обратной связи
1.1 – Структурная схема генератора.
Для возбуждения колебаний в системе рис.1.1 необходимо выполнение двух условий. Первое состоит в обеспечении баланса фаз, которое заключается в том, чтобы фазовые сдвиги, создаваемые усилителем ( и звеном обратной связи( , в сумме должны быть кратными:
.
Второе условие , необходимое для возникновения генерации, это условие баланса амплитуд , которое вытекает из общей формулы для усилителя, охваченного положительной обратной связью: .
При выполнении баланса амплитуд усилитель компенсирует ослабление сигнала, создаваемое звеном обратной связи, и в схеме возникают устойчивые автоколебания. Для получения синусоидальной формы выходного сигнала используют несколько способов построения схем. Одини из них LC-генераторы
На рис.1.2 показана схема LC-генератора c трансформаторной связью, которая представляет собой усилительный каскад, выполненный по схеме с общим эмиттером. В качестве коллекторной нагрузки используется резонансный LC-контур с высокой добротностью. Р. 1.2 — Схема генератора с трансформаторной связью.

Сигнал обратной связи снимается со вторичной обмотки резонансного контура и через разделительный конденсатор Ср подается на базу транзистора обеспечивая суммарный фазовый сдвиг равный (баланс фаз). Если принять индуктивную связь между первичной (w1) и вторичной (w2) обмотками идеальной, для обеспечения баланса амплитуд необходимо выполнить условие:
где — коэффициент усиления по току транзистора, число витков первичной и вторичной обмоток, соответственно. Частота генерируемых колебаний близка к резонансной частоте колебательного контура:

.

 

29.Осциллограф – это измерительное устройство для визуального наблюдения или записи функциональной зависимости двух величин, преобразованных в электрический сигнал. Осциллографы широко используют для наблюдения временной зависимости переменной величины.Главой частью электронного осциллографа является электронно-лучевая трубка (ЭЛТ). Ее элементы расположены в вакуумном баллоне. Они включают в себя люминесцирующий экран, отклоняющую систему из двух пар отклоняющих пластин и электронную пушку, состоящую из подогревного катода, подобного катоду диода, и специальных электродов, которые ускоряют и фокусируют электроны. На пластины вертикального и горизонтального отклонения подается разность потенциалов. В зависимости от ее знака и значения пучок электронов отклоняется в вертикальном или горизонтальном направлении. Сформированный и определенным образом направленный электронный пучок попадает на люминесцентный экран – переднюю стенку элт, покрытую люминофорами, которые способны светиться под воздействием ударов электронов.Пучок электронов на экране изобразится светящейся точкой. Изменяя напряжение на отклоняющих пластинах, светящуюся точку можно перемещать по экрану. Для наблюдения зависимости сигнала от времени следует светящейся точке сообщить одновременно равномерное движение в горизонтальном направлении.Поэтому напряжение, подаваемое на горизонтально отклоняющиеся пластины, должно иметь пилообразный вид. Для того чтобы периодический процесс отображался на экране неподвижным изображением, необходимо подобрать достаточно точно частоту развертки: на один период времени развертки должно приходиться целое число периодов исследуемого сигнала. Это условие выполнятся блоком синхронизации развертки. Ручки «Диапазон частот» и «Частота плавно» позволяют задавать нужную частоту развертки.. Этот режим развертки действует каждый раз и только тогда, когда возникает регистрируемый процесс.В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки.Чувствительность-отклонение светогого пятна при изменении напряжения на отклоняющих пластинах на 1В. Синхронизация это процесс застопорения движущейся линии для получения картинки как Фигуры Лиссажу.

30. Электроды – это проводники специальной формы.Соединяющие измерительную цепь с биологической системой.

Важная физическая проблема. Относящаяся к электродам для съема биоэлектрического сигнала, заключается в минимизации потерь полезной информации, особенно на переходном сопротивлении электрод-кожа. Эквивалентная

электрическая схема контура

Eбп – ЭДС источника биопотенциалов

r–сопротивление внутренних тканей биологической системой

R – сопротивление кожи и электродов контактирующих с ней

Rbx – входное сопротивление усилителя биопотенциалов.

Eбп = Ir + IR+ IRbx = IRi = IRbx (Ri = r+R)

По назначению электроды для съема биоэлектрического сигнала подразделяют на группы:

Для кратковременного применения в кабинетах функциональной диагностики.

Для длительного использования

Для использования на подвижных обследуемых

Для экстренного применения.

Проблемы при использовании электродов в электрофизиологических исследованиях

Возникновение гальванической ЭДС при контакте электродов с биологической тканью

Электролитическая поляризация электродов, что проявляется в выделении на электродах продуктов реакци1 при прохождении тока.

31.Датчиком называют устройство, преобразующее измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования или регистрации. Датчик, к которому подведена измеряемая величина, т. е. первый в измерительной цепи, называется первичным.В рамках медицинской электроники рассматриваются только такие датчики, которые преобразуют измеряемую или контролируемую неэлектрическую величину в электрический сигнал.. Генераторные датчики под воздействием измеряемого сигнала непосредственно генерируют напряжение или ток: 1) пьезоэлектрические, пьезоэлектрический эффект;

2) термоэлектрические, термоэлектричество 3)индукционные, электромагнитная индукция; 4)фотоэлектрические,фотоэффектПараметрические датчики под воздействием измеряемого сигнала изменяют какой-либо свой параметр. Типы этих датчиков и измеряемый с их помощью параметр:

1)емкостные, емкость;

2)реостатные, омическое сопротивление; 3) индуктивные, индуктивность или взаимная индуктивность.

Чувствительность датчика показывает, в какой мере выходная величина реагирует на изменение входной:

Она в зависимости от вида датчика выражается, например, в (Ом/мм),или (мВ/К) и т. д.

Формула расчета периода переменных и постоянных токов в электротехнике

Изобретение электричества поставило человечество на новую грань развития. Технический прогресс опирался на два направления движения с использованием электроэнергии. В одном случае применялся постоянный ток, во втором – переменный. Внедрение источников электричества и электропотребителей вылилось в столетнюю войну между приверженцами двух видов энергии. В конце концов, победу одержали те, кто продвигал идею повсеместного использования её переменного вида.

Синусоида переменного электричества в системе координат

Синусоида переменного электричества в системе координат

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.

Сигнал на экране осциллографа

Сигнал на экране осциллографа

Периодический переменный ток

Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.

Период и амплитуда синусоидального колебания

Период и амплитуда синусоидального колебания

Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.

Её можно вычислить по формуле частоты переменного тока:

f = 1/T,

где:

  • f – частота, Гц;
  • T – период, с.

Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).

Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1. К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.

Стандарты частоты

Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:

  • 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
  • 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.

В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.

К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.

Переменный синусоидальный ток

Это тот ток, который периодически меняется во времени, и его изменения подчиняются закону синусоиды. Это элементарное движение электрических зарядов, потому дальнейшему разложению на простые токи оно не подлежит.

Вид формулы такого переменного тока:

i = Im*sinωt,

где:

  • Im – амплитуда;
  • sinωt – фаза синусоидального тока, рад.

Здесь ω = const, называется угловой частотой переменного электричества, причём угол ωt находится в прямой временной зависимости.

Зная частоту f исходного тока, можно вычислить его угловую частоту, применив выражение:

ω = 2πf = 2π/Т.

Тут 2π это выраженное в радианах значение центрального угла окружности:

  • Т = 2 π радиан = 3600;
  • Т/2 = π = 1800;
  • Т/4 = π/2 = 900.

Если выразить 1 рад в градусах, то он будет равен 57°17′.

Синусоидальное переменное движение электронов

Синусоидальное переменное движение электронов

Многофазный переменный ток

Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.

Трёхфазный ток

Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.

Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.

Трёхфазный переменный ток

Трёхфазный переменный ток

Двухфазный ток

Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.

Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.

Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска.

График двухфазного напряжения и схематический рисунок двухфазного генератора

График двухфазного напряжения и схематический рисунок двухфазного генератора

Действующее значение синусоидального тока

Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.

Тогда действующее значение для синусоидального тока определяют по формуле:

I =  * Im ≈ 0,707* Im,

где Im – величина амплитуды тока.

 Действующее значение тока

Действующее значение тока

Генерирование переменного тока

Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.

Инвертор

Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.

Инвертор 12/220 В, мощностью 1500 Вт

Инвертор 12/220 В, мощностью 1500 Вт

Фазорасщепитель

Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.

Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.

Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.

Сети переменного тока

По назначению и применению эти сети можно классифицировать следующим образом:

  • общие системы: питание объектов промышленного, транспортного, сельскохозяйственного и бытового назначения;
  • автономные сети: снабжение передвижных и стационарных автономных субъектов.

Общие сети переменного трёхфазного тока построены по четырёхпроводной схеме, где три провода – это «фаза», четвёртый – «ноль». Трансформаторные подстанции построены по схеме с глухо заземлённой нейтралью. Передача на дальние расстояния производится при высоком напряжении, которое затем понижается на подстанциях до напряжения 0,4 кВ и раздаётся потребителям.

Бытовые объекты подключаются по однофазной схеме. В этом случае требуются два провода: «фазный» и «нулевой».

Определение частоты и периода

Частота электрического тока – это величина физическая, она определяет количество колебаний за 1 секунду. Время, за которое происходит одно целое колебание, называется периодом.

Взаимосвязь частоты и работы электрооборудования

Частота тока – это один из параметров электроэнергии, который влияет на стабильную работу электроустановок и оборудования. При поставке энергии потребителю этот параметр строго контролируется, так же, как и напряжение.

Нить взаимосвязи выражается формулой номинального количества оборотов в минуту для вращающихся машин. КПД (коэффициент полезного действия) заложен в самой конструкции агрегатов. Он максимален при:

n = 60f/p,

где:

  • n – количество об./мин.;
  • f – частота;
  • p – количество пар полюсов.

Количество оборотов турбины генераторов напрямую связано с частотой вырабатываемого переменного тока, полученная частота отвечает за оптимальный режим вращения электродвигателя потребителя. При снижении частоты в сети обороты машины снижаются автоматически. Происходит перегрузка на валу, и страдает двигатель.

В то же время технологическая линия, в которую он передаёт энергию вращения, также терпит изменения в работе:

  • изменяется скорость движения конвейера, что влечёт за собой сбой технологического процесса и брак в итоге;
  • снижаются мощность и частота вращения насосов, вентиляторов, что приводит к нестабильной работе систем, в которых они установлены;
  • снижение частоты в энергосистеме на 1% приводит к падению общей мощности на нагрузке до 2%.

Для контроля этого важного электрического параметра применяют частотомеры.

Внимание! Снижение частоты на 10-15% вызывает падение производительности механизмов даже на самой электростанции до нуля. При частоте тока в сети 50 Гц (критической величиной являются 45 Гц) происходит лавинный спад.

Частотомер

Это прибор, предназначенный для измерения частоты и отображения полученного результата на экран. Для контроля в электросетях применяют приборы непосредственной оценки синусоидальных колебаний аналоговой конструкции.

Различают по методу установки:

  • стационарные;
  • щитовые;
  • переносные.

Частотомеры в современном исполнении имеют цифровое отображение результатов на электронном дисплее.

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Период пульсаций и частота

Частота переменного тока может иметь другое название – пульсация. Периодом пульсации называют время единичной пульсации.

Интенсивность циклов

Для электросети с частотой 50 Гц период пульсации составит:

Т = 1/50 = 0,02 с.

При необходимости, зная эту зависимость, можно по времени цикла вычислить частоту.

Опасность разночастотных зарядов

Как постоянный, так и переменный ток при определённых значениях представляет опасность для человека. До 500 В разница в безопасности находится в соотношении 1:3 (42 В постоянного к 120 В переменного).

При значениях выше 500 В это соотношение выравнивается, причём константное электричество вызывает ожоги и электролизацию кожных покровов, изменяющееся – судороги, фибрилляцию и смерть. Тут уже частота пульсации имеет большое значение. Самый опасный интервал частот – от 40 до 60 Гц. Далее с повышением частоты риск поражения уменьшается.

Влияние частоты на пороговый ток

Влияние частоты на пороговый ток

Частота переменного электричества – важный параметр. Она влияет не только на работу электроустановок потребителей, но и на человеческий организм. Изменяя частоту электрических колебаний, можно менять технологические процессы на производстве и качество вырабатываемой энергии.

Видео

ИССЛЕДОВАНИЕ RLC-КОНТУРА | sibac.info

Тихонов Владимир

класс 11 «Б», ОПШМТ № 11, г. Павлодар

Гордова Наталья Владимировна

научный руководитель, преподаватель физики, ОПШМТ № 11, г. Павлодар

Emailetih@yandex.ru

 


Введение


Интерес, проявляемый в настоящее время к колебатель­ным процессам, весьма широк и далеко выходит за пределы изучения качаний маятника, как это было в начале XVII века, когда ученые только начали интересоваться колебаниями.


По современным представлениям науки звуковые, тепловые, световые, электромагнитные явления, т. е. важнейшие фи­зические процессы окружающего нас мира, являются раз­личными видами колебаний. Они играют исключительную роль в таких веду­щих отраслях техники, как электричество и радио.


Выработка, передача и потребление электрической энергии, телефония, телеграфия, радиовещание, радиолокация — все эти важные и сложные отрасли техники основаны на использовании электрических и электромагнитных колебаний.


Среди различных колебательных систем особое место занимают электромагнитные системы, при которых электрические величины (токи, заряды) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей.


Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур. Колебательный контур — это электрическая цепь, состоящая из последовательно включенных резистора, катушки индуктивности и конденсатора. Именно такой колебательный контур нашел широкое применение в радиоаппаратуре.


Цель данной работы — исследовать механизм электромагнитных колебаний в RLC контуре на примере его компьютерной модели и подтвердить теоретические выводы, используя реальный RLC-контур, на практике.


Для этого необходимо решить следующие задачи:


· исследовать компьютерную модель RLC-контура в программе «Открытая физика», найти резонансную частоту контура, на резонансной частоте исследовать зависимость добротности контура от сопротивления, построить графики.


· исследовать реальный RLC-контур с использованием компьютерной программы «Audiotester», а в качестве генератора частоты — звуковую плату компьютера. Также найти резонансную частоту контура, на резонансной частоте исследовать зависимость добротности контура от сопротивления и построить графики.


· сделать выводы о совпадении теоретических и практических результатов.


Новизна данной работы заключается в том, что в практической части используется компьютер, звуковая плата которого заменяет генератор переменной частоты и вольтметр переменного напряжения. Для управления звуковой платой и обработки информации применяется специальная программа «Audiotester».


1.  Основные положения


Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями. Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.


Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой W, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте W0.


Если частота W0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте W внешнего источника.


Явление возрастания амплитуды колебаний тока при совпадении частоты W внешнего источника с собственной частотой W0 электрической цепи называется электрическим резонансом. При последовательном резонансе (W = W0) амплитуды UCи UL напряжений на конденсаторе и катушке резко возрастают.


Существует понятие добротности RLC-контура. Она равна отношению амплитуды напряжения на конденсаторе Uc к амплитуде напряжения генератора U: Q = Uc/U.


На рисунке изображен последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рисунок 1):


e(t) = Eds0 cos ωt,

где: Eds0 — амплитуда,


ω — круговая частота.


 


Eds

Рисунок 1. Вынужденные колебания в контуре.


 


2.  Исследование компьютерной модели RLC-контура.

Изучим механизм возникновения вынужденных электрических колебаний и вхождения системы в резонанс; определим зависимость тока в контуре от частоты генератора. Для этого будем использовать программу «Открытая физика 1.1» [1, c. 135] .


Запустим на компьютере модель RLC-контура. Появившееся окно эксперимента разбито на несколько частей (рисунок 2). В левой верхней части окна изображена электрическая схема контура. В правой верхней части окна расположена резонансная кривая контура. В левой нижней части находятся движки изменения сопротивления, индуктивности, емкости контура и частоты колебаний генератора. В правой нижней части окна показана векторная диаграмма напряжений и тока в элементах контура. Кнопки вверху слева вызывают звуковое сопровождение, документ с теоретической частью и справочную информацию.


 

Eds

Рисунок 2.


 


В компьютерной модели можно изменять параметры RLC-контура, а также частоту W внешнего источника. При изменении параметров на дисплее высвечивается новая резонансная кривая, на которой точкой отмечается результат компьютерного эксперимента. Одновременно высвечивается векторная диаграмма, на которой с помощью векторов изображаются колебания тока и напряжений на элементах цепи.


Выбираем значения параметров RLC-контура: С=50 мкФ, R=1 Ом, L=2 мГн.


Рассчитаем собственную циклическую частоту Wo , собственную частоту fo контура и добротность Q.

Wo = 1/Eds, fo = Wo/(2*П), Q = Uc/U.


Получаем: Wo = 3162 с-¹, fo= 503,5 Гц , Q = 1,24


В состоянии резонанса будем увеличивать сопротивление R и отслежи-вать значение добротности контура Q на экране. Данные заносим в таблицу 1.

Таблица 1

R, Ом

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

Q

12.66

6.33

4.22

3.16

2.53

2.11

1.81

1.58

1.27

1.05


 


Построим график зависимости добротности контура от активного сопро-тивления в состоянии резонанса (W=Wo):


 

Eds

Рисунок 3. График зависимости добротности от активного сопротивления в состоянии резонанса


 


Из графика хорошо видно, что с увеличением сопротивления добротность контура падает.


Рассчитаем в состоянии резонанса реактивные сопротивления Хс и ХL для данной колебательной системы (С=50 мкФ, R=1 Ом, L=2 мГн) Хс = 1/(W*C) , XL = W*L. Получаем: Xc = 6.329 Ом, ХL = 6.32 Ом.


Смотрим на компьютерной модели значения Xc и ХL = 6,3 Ом (рисунок 2). Расчетные значения совпали со значениями модели почти точно.


Теперь изменяем параметры системы: емкость С = 50 мкФ, сопротивление R = 2 Ом, индуктивность L = 2 мГн.


Используя компьютерную модель, рассчитываем полное сопротивление цепи переменного тока, силу тока по формулам:

Z = Eds, I=U/Z и заполняем таблицу 2:

Таблица 2.

W, c

1260

1880

2510

3140

3770

4400

5020

5650

Z, Ом

13.55

7.09

3.6

2

2.97

4.74

6.32

8.05

I, A

0.3

0.56

1.11

2

1.35

0.84

0.63

0.5

Xl

2.5

3.8

5.0

6.3

7.5

8.8

10

11.3

Xc

15.9

10.6

8.0

6.4

5.3

4.5

4

3.5

Q

1.18

1.49

2.24

3.18

1.77

0.97

0.62

0.44


 


Строим график зависимости действующего значения тока в контуре от циклической частоты (рисунок 4):


 

Eds

Рисунок 4. График зависимости силы тока от частоты


 


И график зависимости добротности от циклической частоты (рисунок 5):


 

Eds

Рисунок 5. График зависимости добротности от частоты


 


Таким образом можно сделать следующие выводы:


· резонанс в цепи с колебательным контуром наступает при совпадении частоты генератора W c частотой колебательного контура Wo;


· с увеличением сопротивления добротность контура падает. Самая высокая добротность при небольших значениях сопротивления контура;


· самая высокая добротность контура ― на резонансной частоте;


· полное сопротивление контура минимально на резонансной частоте.


3. Экспериментальное исследование RLC-контура.


Теперь проведем экспериментальное исследование RLC контура с реальными катушкой индуктивности, конденсатором, сопротивлением и подтвердим совпадение теоретических и экспериментальных измерений. Для исследования RLC контура при различных значениях R будем использовать переменное сопротивление.


Для проведения эксперимента необходим генератор переменного напряжения, вольтметр или амперметр переменного тока и сам RLC контур. В качестве генератора переменного напряжения и вольтметра мы будем использовать компьютер, оснащенный аудиокартой. Существует ряд программ по управлению выходным сигналом аудиокарты и измерению входного сигнала, поступающего на аудиокарту, что и позволяет производить радиотехнические измерения с использованием реальных радиотехнических деталей.


Таким образом состав исследовательской установки включает в себя:


компьютер с аудиокартой, исследуемый RLC контур, комплекс программ AudioTester, вольтметр для калибровки аудиокарты компьютера, тестер для измерения сопротивления контура.


В комплекс компьютерной программы AudioTester входят три программы:


1.программа «Генератор», позволяющая получить на выходе аудиокарты переменные напряжения различной частоты, формы и амплитуды;


2.программа «Осциллограф», позволяющая на экране компьютера наблюдать сигналы, поступающие на вход аудиокарты;


3.и непосредственно сама программа AudioTester, позволяющая производить различные радиотехнические измерения.


Схема установки для исследования изображена на рисунке 6.


 

Eds

Рисунок 6. Схема измерительной установки

 


В теоретической части измерялся ток, здесь будем измерять напряжения на контуре и отдельно на конденсаторе. Так как сопротивление RLC контура, особенно на частоте резонанса, мало, в схему было добавлено сопротивление R1, ограничивающее ток через схему. Это позволило использовать относительно слабый выход звуковой платы (разъем «наушники») для получения переменного напряжения. Катушка и конденсатор выбраны таким образом, что частота резонанса контура не намного отличается от частоты контура, полученной в теоретической части.На фотографии показана собранная установка, представляющая собой RLC контур, подключенный к компьютеру.


 

Eds


 


Подготовка к измерениям и калибровка


Рассмотрим подробнее работу программы AudioTester. Эта программа была создана для проведения различных радиотехнических измерений. Программа позволяет получать на выходе аудиокарты сигналы различной частоты, формы и амплитуды, анализировать входной сигнал, поступающий на вход аудиокарты и сохранять все поступающие данные в файлы на диск компьютера. Между входом и выходом аудиокарты подключается исследуемое устройство. Таким образом, мы можем изменять параметры сигнала, подаваемого на вход исследуемого устройства и анализировать сигналы, поступающие с выхода исследуемого устройства. На рисунке 7 показано основное окно программы.


 

Eds

Рисунок 7.


 


В этом режиме программа позволяет генерировать сигнал с изменяемой частотой и измерять два напряжения, поступающие на левый и правый входы аудиокарты. Нажав на кнопку Setup, переходим в окно настроек (рисунок 8):


 

Eds

Рисунок 8.


 


Раздел настроек <Frequency generating> позволяет задавать начальную и конечную частоту генератора напряжения.Мы задали диапазон изменения частоты f от 100 до 4000 Гц.


В окне <Step count> задается количество точек, на которое будет разбит заданный частотный диапазон. В данном случае 200.


Для получения достоверных результатов необходимо произвести калибровку выхода аудиокарты (который является генератором) и линейного входа этой же аудиокарты (который используется как вольтметр переменного напряжения).


Калибровка генератора производилась по следующей методике. Задавался частотный диапазон 50—75 Герц, то есть частоты, далекие от частоты резонанса контура и измерялось напряжение на контуре с помощью лампового вольтметра переменного напряжения. Значение в окне <Level dig> подбиралось таким образом, чтобы вольтметр показывал напряжение 0,1 Вольт.


Следующий этап работы ― калибровка линейного входа аудиокарты. Для калибровки входного усилителя аудиокарты использовалось окно Calibration. Здесь выставлялось напряжение <mV rms> в секции <Soundcard input voltage calibration > таким образом, чтобы сигнал на графике зависимости напряжения на контуре от частоты генератора соответствовал 0,1 Вольт, генерируемого аудиокартой (рисунок 9):


 

Eds

Рисунок 9.


 


Измерения


Запускаем программу Audiotester. Устанавливаем значение переменного сопротивления R2 = 8 Ом. Измерения напряжения проводились в частотном диапазоне от 100 Герц до 4000 Герц. Как видно из следующего графика, резонансная частота контура равна приблизительно 750 Герц (рисунок 10):


 

Eds

Рисунок 10.


 


Получим графики зависимости напряжения на контуре от частоты при различных значениях сопротивления контура R2. Нами измерялось суммарное сопротивление R2 и катушки контура. Это обусловлено тем, что у нас имеется не идеальная катушка, а вполне реальная, имеющая также свое активное сопротивление. Значения R2 устанавливаются равными от 8 до 64 Ом с шагом 8 Ом. Полученные графики представлены на рисунке 11.


 

Eds

Рисунок 11.


 


Из графиков видно, что напряжение на контуре в точке резонанса существенно зависит от значения R контура. Нижняя кривая соответствует сопротивлению контура, равному 8 Ом, а верхняя ― 64 Ом. Таким образом, видно, что при увеличении значения R напряжение в точке резонанса также увеличивается. На рисунке 12 показаны графики зависимости напряжения на конденсаторе контура от частоты при различных значениях сопротивления R.


Верхняя кривая графика соответствует меньшему значению сопротивления, а нижняя ― большему.


 

Eds

Рисунок 12.


 


Программа AudioTester позволяет сохранить полученные графики в виде табличных файлов. Далее эти данные были перемещены в Excel-таблицу, в которой и были произведены все необходимые вычисления.


Нам известно значение емкости конденсатора C, с помощью программы мы определили резонансную частоту контура fo = 750. Значение индуктивности можно вычислить по следующей формуле:

L = 1 / (2*П * fo) ² * C, L = 1/((2*П*750) ² * 2e-6) = 0,0225 Гн


Мы получили значение индуктивности 0,0225 Гн.


Затем, изменяя частоту генератора f, измеряем напряжение на контуре (Uк) и напряжение на конденсаторе контура (Uс). Получаем значение добротности для различных частот, которая вычисляется по формуле:

Q = Uс / Uк


Анализируя полученные результаты, можно сделать следующие выводы:


·добротность контура растет с увеличением частоты и достигает максимума на частоте резонанса. При дальнейшем увеличении частоты добротность уменьшается;


·значения добротности на краях заданного частотного диапазона практически не изменяются при изменении сопротивления контура;


·при исследовании изменения добротности на резонансной частоте видно, что значение добротности Q тем выше, чем меньше сопротивление контура R.


Выбрав из полученных результатов значение добротности на резонансной частоте контура для разных значений сопротивления, мы получаем следующую таблицу:

Таблица 3.

R, Ом

8

16

24

32

40

48

56

64

Q

8,09

4,69

3,72

2,85

2,38

2,03

1,76

1,58


 


И график, соответствующий этой таблице:


 

Eds

Рисунок 13. График зависимости добротности от сопротивления контура в состоянии резонанса.


 


Также была составлена таблица с результатами вычислений полного сопротивления контура, реактивных сопротивлений катушки индуктивности и конденсатора для различных значений частоты генератора. Активное сопротивление выбрано 8 Ом, С контура ― 2.0 мкФ,

ХL=2*П*f*L ,

Хс=1/(2*П*f*C),

Z= Eds


Приведем часть таблицы

Таблица 4.

f (Гц)

R = 8 Ом

X (L)

Х(C)

Z контура

638.34

90.24

124.66

35.34

650.29

91.93

122.37

31.47

662.46

93.65

120.13

27.66

674.85

95.40

117.92

23.89

687.48

97.19

115.75

20.21

700.34

99.01

113.63

16.66

713.44

100.86

111.54

13.34

726.79

102.75

109.49

10.46

740.39

104.67

107.48

8.48

754.24

106.63

105.51

8.08

768.35

108.62

103.57

9.46

782.73

110.66

101.67

12.03

797.37

112.73

99.80

15.20

812.29

114.84

97.97

18.67

827.49

116.98

96.17

22.30

842.97

119.17

94.40

26.03

858.74

121.40

92.67

29.83

874.81

123.67

90.97

33.67

891.18

125.99

89.29

37.55


 


Выделенные значения соответствуют частоте резонанса контура. Видно, что на низких частотах емкостное сопротивление конденсатора Хс переменному току велико. При увеличении частоты емкостное сопротивление конденсатора Хс убывает. Индуктивное сопротивление ХL катушки мало на низких частотах, но увеличивается с ростом частоты.


На резонансной частоте индуктивное сопротивление ХL катушки равно емкостному сопротивлению конденсатора Хс. Полное сопротивление на частоте резонанса имеет минимальное значение (рисунок 14):


 

Eds

Рисунок 14. График зависимости индуктивного, ёмкостного и полного сопротивления от частоты генератора.


 


Полученные нами выводы в практической части работы полностью согласуются с выводами, сделанными нами в теоретической части при изучении компьютерной модели RLC-контура.


Заключение


Таким образом в данной работе проведены теоретические и практические исследования работы RLC-контура в цепи переменного тока.


Мы исследовали компьютерную модель RLC-контура в программе «Открытая физика», нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.


В практической части работы исследовали реальный RLC-контур с использованием компьютерной программы «Audiotester». Нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.


Выводы, сделанные нами в теоретической и практической части работы, совпали полностью.


Применение в практической части специальной программы «Audiotester» позволило провести исследования в широком диапазоне значений частоты без дополнительных измерительных приборов, получить и сохранить данные на компьютере, произвести их компьютерную обработку и построить графики на экране компьютера разных величинных зависимостей.

 

Список литературы:


1.Сорокин А.В., Торгашина Н.Г., Ходос Е.А., Чиганов А.С. Физика: наблюдение, эксперимент, моделирование. Элективный курс: Методическое пособие. М.: БИНОМ. Лаборатория знаний, 2006. ― 175 c.

83. Сопротивление живой ткани переменному току, его зависимость от частоты тока.

14.2. Переменный ток

В широком смысле слова переменный ток — любой ток, изменяющийся со временем. Однако чаще термин «переменный ток» применяют к квазистационарным токам, зависящим от времени по гармоническому закону.

Квазистационарным называют такой ток, для которого время установления одинакового значения по всей цепи значительно меньше периода колебаний.

Будем считать, что для квазистационарных токов, так же как и для постоянных, сила тока одновременно одинакова в любом се­чении неразветвленного проводника. Для них справедлив закон Ома, однако сопротивление цепи зависит от частоты изменения тока. Потерями энергии на электромагнитное излучение этих токов пренебрегаем. Переменный ток можно рассматривать как вы­нужденные электромагнитные колебания.

Отсюда следует, что моделировать электрические свойства биологических тканей можно, используя резисторы, которые обладают активным сопротивлением, и конденсаторы — носители емкостного сопротивления. В качестве модели обычно используют эквивалентную электрическую схему тканей организма. Она представляет собой схему, состоящую из резисторов и конденсаторов, частотная зависимость (дисперсия) импеданса которой близка к частотной зависимости импеданса биологической ткани.

Из (14.48) следует, что условие (14.47) означает частотную зависимость диэлектрической проницаемости при воздействии переменным (гармоническим) электрическим полем: = f(). Изменение диэлектрической проницаемости с изменением часто­ты, электрического поля означает изменение электроемкости и, как следствие, изменение импеданса.

Запаздывание изменения поляризованности относительно изменения напряженности электрического поля зависит от механизма поляризации вещества. Самый быстрый механизм — электронная поляризация (см. § 12.6), так как масса электронов достаточно мала. Это соответствует частотам (около 1015 Гц), которые существенно превышают области -, -, и -дисперсии.

Ориентационная поляризация воды, молекулы которой имеют сравнительно малую массу, соответствует -дисперсии (частоты около 20 ГГц).

Крупные полярные органические молекулы, например белки, имеют значительную массу и успевают реагировать на переменное электрическое поле с частотой 1 —10 МГц. Это соответствует -дисперсии.

При -дисперсии происходит поляризация целых клеток в результате диффузии ионов, что занимает относительно большое время, и -дисперсии соответствует область низких частот (0,1 — 10 кГц). В этой области емкостное сопротивление мембран очень велико, поэтому преобладают токи, огибающие клетки и протекающие через окружающие клетки растворы электролитов.

Итак, области -, -, и -дисперсии импеданса объясняются тем, что с увеличением частоты переменного электрического поля в явлении поляризации участвуют разные структуры биологических тканей: при низких частотах на изменение поля реагируют все структуры (-дисперсия), с увеличением частоты реагируют крупные молекулы-диполи органических соединений и молекулы воды (-дисперсия), а при самых больших частотах реагируют только молекулы воды (-дисперсия). Во всех случаях имеет место электронная поляризация. С увеличением частоты электрического тока (электрического поля) все меньше структур будет реагировать на изменение этого поля и меньше будет значение поляризо-ванности Рет. Отсюда, согласно (14.48), с увеличением частоты будет уменьшаться диэлектрическая проницаемость , а следовательно, и электроемкость С, а это, согласно (14.33), приведет к увеличению емкостного сопротивления Хс и импеданса Z. Следовательно, на фоне общего хода зависимости Z = f() (см. рис. 14.10) появляются области с меньшим убыванием Z при возрастании частоты (области -, - и -дисперсии).

Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма, что важно знать для пересадки (трансплантации) тканей и органов. Различие в частотных зависимостях импеданса получается и в случаях здоровой и больной ткани.

Импеданс тканей и органов зависит также и от их физиологического состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности.

Диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности, называют реографией (импеданс-плетизмография).

С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени и конечностей. Измерения обычно проводят на частоте 30 кГц.

В заключение отметим, что знание пассивных электрических свойств биологических тканей важно при разработке теоретических основ методов электрографии органов и тканей, так как со­здаваемый токовыми диполями электрический ток проходит через них. Кроме того, представления о дисперсии импеданса позволяют оценить механизм действия токов и полей, используемых в терапевтических целях.

интенсивность колебания зарядов в электрической сети, способы измерения

Переменный ток Направленное движение заряжённых частиц под действием электрической движущей силы (ЭДС) называют электротоком, он бывает переменным и постоянным. В последнем случае перемещение нуклонов происходит во времени стабильно, а в первом — периодически обращает направление и величину. Один из основных параметров переменного тока — частота. Зависит характеристика от периодичности колебаний электронов, может измеряться несколькими способами и приборами.

Переменный электрический ток

В английском языке этому термину соответствует выражение alternating current — аббревиатура AC, в энерготехнике как буквенное обозначение используют знак тильда (~). Переменный ток изменяется в периоде по синусоиде. Источниками служат генераторы, вырабатывающие ЭДС посредством электромагнитной индукции. Характеризуется АС следующими параметрами:

  • напряжение сети U в вольтах;
  • сила тока I=Q/Δt, [A] — количество зарядов, прошедших через поперечник проводника в единицу времени;
  • Переменный ток и его параметрыпериод Т — отрезок времени полного цикла изменений;
  • частота f — количество колебаний в течение секунды: f =1/Т, [Гц] в отечественных сетях стандарт 50 герц;
  • плотность тока j=I/S, [A/мм2] — векторная величина, где S площадь сечения проводника, направление j совпадает с курсом движения электронов;
  • фаза — состояние АС, может быть одно- и многофазным;
  • амплитуда I max — высота синусоиды, максимальная величина мгновенно достигаемого за период значения тока.

В энергетике преимущественно используются трёхфазные сети: 3 отдельных электроцепи с одинаковыми напряжением и частотой при сдвиге φ=120°. От стабильности колебательных движений нуклонов в системе зависит устойчивость и надёжность работы всей энергосети.

Период пульсаций и частота

Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.

Переменный и постоянный ток

Интенсивность циклов

Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.

Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:

Количество нулей после единицы Приставка к размерности герц
3 (тысяча) Кило (кГц)
6 (миллион) Мега (мГц)
9 (миллиард) Гига (ГГц)

В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:

  • промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
  • Переменный ток формулазвуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
  • технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
  • радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.

Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.

Для выработки ТВЧ используют энергомашинные генераторы и колебательные контуры. В последнем случае устройство представляет собой цепь с включением в состав ёмкости и индуктивности.

Опасность разночастотных зарядов

Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:

  • Переменный ток параметры40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
  • свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
  • токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.

На относительной безопасности ТВЧ основано их применение в медицине для физиотерапевтических процедур. Тяжесть поражения электротоком зависит не только от физических параметров заряда, но и от состояния организма человека.

Измерительные приборы

Для определения интенсивности колебаний используют осциллограф, на котором можно увидеть частоту и форму сигнала. Существуют также специальные приборы — частотомеры. В них применяют следующие способы определения параметра:

  • Магнитоэлектрический амперметрперезаряд конденсатора — среднее значение силы тока пропорционально соотносится с его интенсивностью и измеряется магнитоэлектрическим амперметром со шкалой в герцах;
  • дискретный счёт — фиксирование импульсов нужной частоты за определённый период, получают данные достаточной точности: погрешность в пределах 2%, этого хороший показатель для бытового применения прибора;
  • резонансный метод основан на одноимённом электрическом явлении, возникающем в цепи с настраиваемыми элементами; частота — больше 50 Гц, определяется по шкале регулировочного механизма.

Ещё один известный способ применяется в осциллографах, основан на смешивании и сравнении эталонного параметра с измеряемой частотой. Вследствие наложения возникают биения, а при выравнивании на экране устанавливается определённая фигура. Рассчитывают искомую характеристику по зафиксированному графику посредством математических формул.

Конспект урока «Зависимость силы тока от частоты колебаний в цепи переменного тока»

Конспект урока физики в 11 классе

Учитель Васильчуковской СОШ филиала МБОУ «Ключевская СОШ №1»

Попов Андрей Геннадьевич

Тема урока:

«Зависимость силы тока от частоты колебаний в цепи переменного тока»

Тип урока: изучение нового материала.

Цели урока:

Образовательная:  установить зависимость силы тока от частоты, используя математическую и физическую модели.

Развивающая: развивать у учащихся умение применять полученные знания о переменном токе в практическом применении в быту и технике; способность анализировать, обобщать, выделять главное.

Воспитательная: формирование познавательного интереса к физике.

Ход урока

1.Организационный момент: объявление темы и целей урока.

2.Актуализация опорных знаний

1) Проверка домашнего задания.

К сегодняшнему уроку было задано:

— выяснить значение оптимальной частоты переменного тока в бытовых сетях;

— привести примеры бытовых приборов, в которых мощность может регулироваться.

Предполагаемые ответы: 50 Гц; холодильник, телевизор, микроволновка, мобильный телефон, радиоприемник и т.п.

2) Вопросы для фронтального опроса:

  • Какие колебания называются электромагнитными?

  • В каком устройстве создаются электромагнитные колебания?

  • Из каких частей состоит колебательный контур?

  • От каких величин зависит частота и период колебаний в контуре?

  • Как будут меняться колебания в реальном контуре с течением времени?

  • Что приводит к затуханию колебаний?

3) Тест:

А1. Если сопротивлением колебательного контура можно пренебречь, то при увеличении ёмкости конденсатора в 4 раза период свободных колебаний…

1) увеличится в 2 раза 3) увеличится в 4 раза

2) уменьшится в 2 раза 4) уменьшится в 4 раза

А2. Как изменится частота свободных электромагнитных колебаний в контуре, если расстояние между пластинами конденсатора увеличить в 4 раза?

1) увеличится в 2 раза 3) увеличится в 4 раза

2) уменьшится в 2 раза 4) уменьшится в 4 раза

А3. Заряд на пластинах конденсатора колебательного контура с течением времени меняется в соответствии с уравнением q = 10-5∙cos104πt. Какое из уравнений выражает зависимость силы тока от времени?

1) I = 0,1π∙ sin 104πt 2) I = 0,1∙ cos(104πt + hello_html_m1409237e.gif) 3) I = 0,1∙ sin(104πt + hello_html_m1409237e.gif)

А4. Согласно предыдущего условия задачи определить собственную частоту колебаний ω.

1) 0,5·10hello_html_m7a7b8d23.gifГц 2) 0,5·10hello_html_m7a7b8d23.gifπ рад/с 3) 10hello_html_m7a7b8d23.gifπ рад/с 4) 10-5 рад/с

А5. Последовательно соединены конденсатор, катушка индуктивности и резистор. Если при неизменной частоте и амплитуде напряжения на концах цепи увеличивать емкость конденсатора от 0 до ∞, то амплитуда тока в цепи будет

1) монотонно убывать 3) монотонно возрастать

2) сначала возрастать, затем убывать 4) сначала убывать, затем возрастать

3.Объяснение нового материала

1) Рассмотрим действие осциллографа. С помощью регуляторов мы наблюдаем изменения частоты, амплитуды переменного тока.

2) Обратимся к математической модели: формула Томсона

hello_html_m45f242c8.jpgЗная, что период и частота обратно пропорциональны, видим, что при уменьшении ёмкости увеличивается частота. По-другому формулу Томсона можно записать так: hello_html_26dedfeb.jpg, она более очевидно представляет обратную зависимость частоты и ёмкости.

3) Теперь вопрос: а где сила тока? Математическое выражение зависимости будет иметь следующий вид: I = UCω; здесь показана прямая зависимость силы тока от напряжения, ёмкостного сопротивления и частоты.

Можно сделать вывод: при повышении частоты снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи. 

4) Проделаем опыт по данному рисунку.

hello_html_m748afaa9.gif


Вывод: чем быстрее поворачивается рамка в магнитном поле, тем больше отклонение стрелки гальванометра (силы тока)

.  

5) Рассмотрим видеоэксперимент (на диске). Вывод:

4.Закрепление и обобщение нового материала.

1) Итак, что же сегодня мы с вами выяснили,  как связаны сила тока и частота колебаний контура?

2) Вопрос: что произойдет, если частота свободных колебаний контура совпадет с частотой вынужденных колебаний?

3) Решим задачу: В цепь переменного тока с частотой 500 Гц включена катушка индуктивностью 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Подсказка: формула Томсона.

5.Подведение итогов урока. Выставление оценок и их комментарии.

6.Задание на дом: § 17-19 а1 – а3 с. 76

Самоанализ урока физики в 11 классе

Проведенный мною урок по теме: «Зависимость силы тока от частоты

колебаний в цепи переменного тока» стал ответом на ежегодные вопросы школьников: можно ли увеличить силу тока без потерь энергии? Как увеличить (уменьшить) силу тока в цепи, меняя частоту электромагнитных колебаний? И т. п.

При построении урока были учтены следующие требования к теме: знать физическую сущность постоянного и переменного тока, электродинамических параметров.

В ходе урока опытный факт получает теоретическое обоснование, а теоретическое положение подтверждается опытом.

Чтобы проверить прочность полученных знаний, учащимся был предложен небольшой тест (по форме ЕГЭ).

В 11 классе 5 девочек. В ходе урока используются такие формы самостоятельной работы как: фронтальный опрос, тестирование, самопроверка, работа в парах при сборке моделей генераторов переменного тока, привлечение ученика как лаборанта при работе с осциллографом и генератором.

На уроке были использованы источники:

http://pue8.ru/elektrotekhnik/413-elektricheskoe-soprotivlenie.html

http://school.mephi.ru/content/file/elibrary/phy/lekciya_18.pdf

(формулы, рисунок)

CD «Школьный физический эксперимент»

83. Сопротивление живой ткани переменному току, его зависимость от частоты тока.

14.2. Переменный ток

В широком смысле слова переменный ток — любой ток, изменяющийся со временем. Однако чаще термин «переменный ток» применяют к квазистационарным токам, зависящим от времени по гармоническому закону.

Квазистационарным называют такой ток, для которого время установления одинакового значения по всей цепи значительно меньше периода колебаний.

Будем считать, что для квазистационарных токов, так же как и для постоянных, сила тока одновременно одинакова в любом се­чении неразветвленного проводника. Для них справедлив закон Ома, однако сопротивление цепи зависит от частоты изменения тока. Потерями энергии на электромагнитное излучение этих токов пренебрегаем. Переменный ток можно рассматривать как вы­нужденные электромагнитные колебания.

Отсюда следует, что моделировать электрические свойства биологических тканей можно, используя резисторы, которые обладают активным сопротивлением, и конденсаторы — носители емкостного сопротивления. В качестве модели обычно используют эквивалентную электрическую схему тканей организма. Она представляет собой схему, состоящую из резисторов и конденсаторов, частотная зависимость (дисперсия) импеданса которой близка к частотной зависимости импеданса биологической ткани.

Из (14.48) следует, что условие (14.47) означает частотную зависимость диэлектрической проницаемости при воздействии переменным (гармоническим) электрическим полем: = f(). Изменение диэлектрической проницаемости с изменением часто­ты, электрического поля означает изменение электроемкости и, как следствие, изменение импеданса.

Запаздывание изменения поляризованности относительно изменения напряженности электрического поля зависит от механизма поляризации вещества. Самый быстрый механизм — электронная поляризация (см. § 12.6), так как масса электронов достаточно мала. Это соответствует частотам (около 1015 Гц), которые существенно превышают области -, -, и -дисперсии.

Ориентационная поляризация воды, молекулы которой имеют сравнительно малую массу, соответствует -дисперсии (частоты около 20 ГГц).

Крупные полярные органические молекулы, например белки, имеют значительную массу и успевают реагировать на переменное электрическое поле с частотой 1 —10 МГц. Это соответствует -дисперсии.

При -дисперсии происходит поляризация целых клеток в результате диффузии ионов, что занимает относительно большое время, и -дисперсии соответствует область низких частот (0,1 — 10 кГц). В этой области емкостное сопротивление мембран очень велико, поэтому преобладают токи, огибающие клетки и протекающие через окружающие клетки растворы электролитов.

Итак, области -, -, и -дисперсии импеданса объясняются тем, что с увеличением частоты переменного электрического поля в явлении поляризации участвуют разные структуры биологических тканей: при низких частотах на изменение поля реагируют все структуры (-дисперсия), с увеличением частоты реагируют крупные молекулы-диполи органических соединений и молекулы воды (-дисперсия), а при самых больших частотах реагируют только молекулы воды (-дисперсия). Во всех случаях имеет место электронная поляризация. С увеличением частоты электрического тока (электрического поля) все меньше структур будет реагировать на изменение этого поля и меньше будет значение поляризо-ванности Рет. Отсюда, согласно (14.48), с увеличением частоты будет уменьшаться диэлектрическая проницаемость , а следовательно, и электроемкость С, а это, согласно (14.33), приведет к увеличению емкостного сопротивления Хс и импеданса Z. Следовательно, на фоне общего хода зависимости Z = f() (см. рис. 14.10) появляются области с меньшим убыванием Z при возрастании частоты (области -, - и -дисперсии).

Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма, что важно знать для пересадки (трансплантации) тканей и органов. Различие в частотных зависимостях импеданса получается и в случаях здоровой и больной ткани.

Импеданс тканей и органов зависит также и от их физиологического состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности.

Диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности, называют реографией (импеданс-плетизмография).

С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени и конечностей. Измерения обычно проводят на частоте 30 кГц.

В заключение отметим, что знание пассивных электрических свойств биологических тканей важно при разработке теоретических основ методов электрографии органов и тканей, так как со­здаваемый токовыми диполями электрический ток проходит через них. Кроме того, представления о дисперсии импеданса позволяют оценить механизм действия токов и полей, используемых в терапевтических целях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *