Супрессор. Защитный диод.
Обозначение, параметры и применение защитных диодов
Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов. Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.
Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.
В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.
TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.
Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.
Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.
Обозначение на схеме.
На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 — симметричные; VD3 — однонаправленные).
Принцип работы супрессора (защитного диода).
У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а “излишки” уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.
До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники. У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.
Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).
Для однонаправленного супрессора схема выглядит чуть по-другому.
В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из «фишек» защитных диодов.
Основные электрические параметры супрессоров.
U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (
I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.
U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.
U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VC – Max. Clamping Voltage или просто Clamping Voltage.
I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!
P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова
Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).
Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.
ВАХ однонаправленного защитного диода (супрессора)
ВАХ двунаправленного супрессора
Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.
Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.
Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORB
Диоды выпускаются в корпусе DO-201.
Размеры указаны в дюймах и миллиметрах (в скобках). Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.
На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.
Диоды TRANSILTM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSILTM.
Двунаправленные диоды TRANSILTM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Ограничитель напряжения односторонний диод. Защитные диоды TRANSIL и TVS. Описание функционирования диодов TRISIL
Защита электроники от перенапряжения и мощных помех является проблемой важной не только для спецтехники, но и для промышленности, проводных сетей и устройств вычислительной техники, связи и бытовой электроники. Эта проблема решается достаточно просто с помощью супрессоров — TVS диодов (ограничителей напряжения), варисторов, TVS-тиристористоров и разрядников и с помощью ограничителей напряжения на обычных диодах. Здесь я расскажу о применении TVS- диодов и немного разрядников.
Защитный диод — это диод, который используется в цепи для защиты цепи от обратного напряжения и тока. Обратное напряжение и ток — это мощность, которая протекает в противоположном направлении обычного или обычного пути; вместо тока, идущего от положительной стороны источника напряжения к земле, а затем к отрицательной стороне источника напряжения, он перемещается с отрицательной стороны источника напряжения, через землю и на положительную сторону источника напряжения, поэтому, по существу, наоборот.
Защитный диод используется для блокировки этого потока обратного тока; это помогает защитить компоненты в цепи, которые могут быть повреждены от обратного тока. Диод — это устройство, которое позволяет потоку течь в одном направлении, но не в другом. Поэтому его можно использовать в схеме, чтобы ток пропускался только в прямом направлении, но блокировал ток в обратном направлении. Это может быть особенно полезно, когда компоненты схемы могут быть сильно повреждены током, протекающим через них в обратном направлении.
TVS диоды (супрессоры) — полупроводниковые диоды, позволяющие ограничивать импульсные всплески перенапряжения, амплитуда которых превышает напряжение лавинного пробоя диода. Эти перенапряжения возникают из-за внешних воздействий, таких как: электростатические разряды (ESD), грозовые разряды, подключение индуктивной нагрузки и др.
Основные параметры диодов TRISIL
Однако при работе силового диода, действующего в качестве защитного диода, ток не может проходить, поскольку диод по существу действует как разомкнутый контур, когда он находится в обратном направлении. Ниже приведена визуальная демонстрация этого свойства защитного диода.
Эта диаграмма снова показывает, как диод позволяет потоку течь в прямом направлении, но блокирует ток от потока в обратном направлении. Это служит для защиты устройств в цепи, которая может быть повреждена при обратном токе. Несмотря на то, что вышеуказанная схема обеспечивает защиту через диод, существует лучший способ использования защитного диода в цепи.
Статическое электричество – явление, при котором на поверхности и в объеме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд. Как правило, незаряженные атомы обладают одинаковым количеством положительных и отрицательных электронов, электрически заряженными объектами считаются, обладающие малым либо избыточным числом электронов. Взаимодействие точечных электрических зарядов описывается законом Кулона.
Схема ниже показывает улучшенную конструкцию использования защитного диода в цепи. Чтобы защитить компонент в цепи, диод обычно помещается в обратном направлении параллельно с компонентом. Когда диод размещается параллельно с компонентом, который вы хотите защитить от обратного смещения, если ток протекает по цепи в обратном направлении, ток протекает через диод, минуя двигатель. При большом количестве тока некоторый ток может все еще проходить через двигатель, но он будет разделен между диодом и двигателем.
Следовательно, весь ток не будет протекать через двигатель, как это было бы, если бы не было диода. Эта настройка с диодом в обратном смещении работает лучше, чем раньше, потому что в первой настройке диод потребляет энергию. Если это кремниевый диод, он обычно потребляет около 7 В, поэтому он не эффективен. При этой настройке диод потребляет ток только при обратном токе.
При стекании на металлоконструкции (в том числе и заземленные) происходит кратковременное повышение напряжения на металлоконструкции, проводниках, элементах электронных схем. Это повышение может многократно превышать напряжение питания электронных схем.
Переходный процесс
–
в электрической
цепи, явление, возникающее при переходе из одного режима работы
электрической цепи в другой, отличающийся от предыдущего
амплитудой, фазой, формой или частотой действующего в цепи
напряжения, значениями параметров или конфигурацией цепи.
Еще одной причиной его создания является огр
Защитные диоды TRANSIL, TVS
Окружающая среда, в которой мы живем, загрязнена огромным количеством помех, значительную часть которых создают так называемые переходные процессы. Данные процессы возникают при отключении емкостной или индуктивной нагрузки.
В особенности большие перенапряжения опасны для электронных компонентов. Для подавления таких перенапряжений были разработаны компоненты типа TRANSIL и TVS – защитные диоды, называемые «супрессорами».
Первое производство таких защитных диодов было организованно в 60е годы, на ирландском заводе GSI. Вскоре подобные диоды начала выпускать фирма SGS-Thomson под торговой маркой TRANSIL и TRISL.
В настоящее время электротехнический гигант GENERAL INSTRUMENT(GI) изготавливает диоды GSI. Защитные диоды производства фирмы GI имеют обозначение TVS — Transient Voltage Supressor ( подавитель напряжений переходных процессов). TVS и TRANSIL — это различные коммерческие названия одних и тех же диодов.
Диоды изготавливаются в однонаправленном и в двунаправленном исполнениях. На рис.1 схематически изображены симметричные и несимметричные диоды TRANSIL.
Рис.1. Обозначение симметричных (VD1, VD2) и несимметричного(VD3) диодов.
Однонаправленное исполнение (несимметричные супрессоры) применяют для подавления перенапряжений только одной полярности, таким образом диоды TRANSIL данного типа включаются в контур с учетом полярности.
Несимметричные супрессоры используются в сети питания постоянным током. Двунаправленные диоды TRANSIL (симметричные диоды) предназначены для подавления перенапряжений обеих полярностей и используются в сети питания переменного тока и всегда включаются параллельно защищаемому оборудованию.
Такой супрессор может быть составлен из двух однонаправленных диодов TRANSIL путем их встречно-последовательного включения.
Если сравнивать с варисторами, используемыми также для подавления перенапряжений, данные диоды являются более быстродействующими. Время срабатывания супрессоров составляет несколько пикосекунд.
К недостаткам диодов данного типа следует отнести зависимость максимальной импульсной мощности от длительности импульса. Обычно защитные диоды супрессоры используются при таком режиме работы, когда на вход подаются импульсы с минимальным временем нарастания (около 10 мкс) и небольшой длительности.
Основные параметры диодов TRANSIL:
Vrm — постоянное обратное напряжение (Peak Reverse Voltage) — максимальное рабочее напряжение, при котором диод открывается и отводит токовый импульс на «землю», не вызывая выхода защищаемого компонента из строя.
Vbr – напряжение пробоя (Break-down Voltage) — напряжение при котором происходит резкое увеличение протекающего тока, причем скорость увеличения тока превышает скорость увеличения напряжения. Величина напряжения обычно укказывается для температуры 25° C, температурный коэффициент положительный, допустимые отклонения в пределах 5% либо в интервале от — 5 до +10 %.
Vcl — напряжение фиксации (Clamping Voltage) — максимальное напряжение для так называемого «нормализованного» максимального импульса пикового тока Ipp.
Ipp — пиковый импульсный ток (Peak Puls Current) -пиковый ток в рабочем режиме.
Vf — прямое напряжение ( Forward Voltage) — напряжение в прямом направлении. Аналогично обычным диодам оно составляет 0,7 В.
If — прямой ток ( Forward Current) — максимальный пиковый ток в прямом направлении.
Принцип работы супрессора:
Супрессоры имеют нелинейную вольтамперную характеристику. При превышении амплитуды электрического импульса максимального напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя.
При поступлении на вход электрического импульса, диод ограничивает данный импульс напряжения до допустимой величины, а “излишки” энергии отводятся через диод на «землю». Более наглядно процесс выглядит на рисунке 2.
Рис.2. Принцип работы защитного диода.
На практике при возникновении импульса перенапряжения всегда происходит ограничение, причем вероятность возникновения сбоя в работе минимально.
На случай, если ожидается появление больших перенапряжений в следствии малого импеданса, в цепь рекомендуется включить предохранитель.
Супрессоры характеризуются хорошим быстродействием, то есть время срабатывания данных диодов мало, что является одной из главных причин их широкого использования.
На рисунке 3 представлены схемы включения диодов TRANSIL с предохранителем.
а
б
Рис.3. Схемы включения защитных диодов с предохранителем (а — симметричного. б — несимметричного).
Применение:
Супрессоры специально предназначены для защиты от перенапряжений электронного оборудования автомобилей, цепей телекоммуникации и передачи данных, защиты мощных транзисторов и тиристоров и т д.
Широко применяются такие диоды в импульсных источниках питания. Диоды TRANSIL удобно использовать как для защиты биполярных так и МОП-транзисторов. Супрессоры можно использовать для защиты как управляющего электрода МОП-транзисторов, так и для защиты самого p-n перехода.
При этом стоит всегда учитывать характер импульсов перенапряжения — однократные или периодические.
<< Предыдущая Следующая >>Защита устройств от неправильной подачи полярности питания / Habr
При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы — как традиционные так и редко применяемые на практике методы защиты.
Простейшее решение, которое напрашивается с ходу — включение последовательно с прибором обычного полупроводникового диода.
Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток — большое напряжение падения на открытом диоде.
Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей
0.85В х 2А = 1.7Вт.
Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.
Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.
0.55В х 2А = 1.1Вт
Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?
Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.
Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты — с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:
При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико — в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.
Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!
При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.
Думаю читателям не составит труда самим разобраться как работает эта схема.
Уже после публикации статьи уважаемый пользователь Keroro в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.
Защита микросхем от ESD и перенапряжений
Выводы интегральных микросхем, предназначенные для подключения к внешним цепям или периферийным устройствам, подвержены риску воздействия электростатических разрядов.
Электростатический разряд (electrostatic discharge — ESD) представляет собой передачу энергии между двумя телами с разными электростатическими потенциалами. Он может происходить как в результате прямого контакта, так и в результате пробоя атмосферы между телами.
Разряд вызывает протекание импульса тока через внутренние цепи микросхемы и может приводить к ее частичному или полному повреждению.
Для защиты микросхем от электростатического разряда применяют дополнительные электронные компоненты – резисторы, диоды, стабилитроны, TVS диоды или супрессоры, буферные микросхемы. Данная статья представляет собой краткий обзор этих компонентов и схем на их основе.
Самая простая схема защиты от электростатического электричества представляет собой резистор, включенный между источником заряда и выводом интегральной микросхемы.
Последовательное сопротивление вместе с паразитной емкостью входа микросхемы (а также емкостью монтажа) образует низкочастотный пассивный фильтр. Этот фильтр будет подавлять высокочастотную составляющую электростатического разряда, в которой сосредоточена большая часть его энергии. Кроме того резистор будет ограничивать ток, протекающий через внутренние защитные цепи микросхемы вследствие разряда.
R1 – защитный резистор 50 – 200 Ом; D1, D2 – внутренние защитные диоды; C1 – паразитная емкость входа ~ 5 – 10 пФ
Чем выше значение сопротивления защитного резистора, тем лучшую защиту от ESD он будет обеспечивать. Естественно с ростом сопротивления резистора частота среза НЧ фильтра на входе микросхемы будет уменьшаться. Это нужно учитывать, если данный вход используется для ввода высокочастотного сигнала.
Многие интегральные микросхемы имеют встроенные защитные диоды. Как правило, эти диоды не рассчитаны на большие значения тока и имеют недостаточное быстродействие. Например, встроенные защитные диоды микроконтроллеров AVR выдерживают ток всего лишь в единицы миллиампер.
Перед тем как принять решение, требуется ли дополнительная схема защиты или можно ограничиться встроенной, внимательно изучите спецификацию на микросхему. Хотя данных на диоды или выдерживаемое напряжение разряда в спецификации может и не быть.
Схема на диодах будет ограничивать входное напряжение в пределах от – Vd до Vcc + Vd, где Vd – падение напряжения на диоде в прямом направлении. Ток разряда будет проходить или через верхний или через нижний диод, и «поглощаться» фильтрующими конденсаторами, источником питания и самими диодами. Иногда для дополнительной защиты между плюсом питания и «землей» подключают стабилитрон или TVS диод (D3 на схеме).Если вход микросхемы используется для ввода высокочастотного сигнала, следует принимать во внимание тот факт, что диоды вносят дополнительную паразитную емкость. Величину паразитной емкости можно найти в спецификации на элемент.
Для защиты входов микросхем производители полупроводниковых компонентов выпускают специальные диодные сборки, в которых содержится сразу несколько диодов.
Традиционно стабилитрон применяется для получения стабилизированного (опорного) напряжения, но его также можно использовать для защиты входов интегральных микросхем от ESD, подключив между выводом микросхемы и «нулем» питания. Такая схема будет ограничивать напряжение на входе микросхемы в пределах от –Vd до Vs, где Vd – падение напряжения на стабилитроне в прямом направлении, а Vs – номинальное напряжение стабилизации.
Чтобы стабилитрон не оказывал влияние на работу схемы в штатном режиме, номинальное напряжение стабилизации должно быть выше напряжения входного сигнала.
Стабилитроны имеют большую емкость (десятки пФ) и поэтому плохо подходят для защиты высокоскоростных линий.
TVS (transient voltage supressor) диод – это полупроводниковый компонент, предназначенный для ограничения выбросов напряжений, амплитуда которых превосходит напряжение лавинного пробоя диода.
В нормальных условиях TVS диод находится в высокоимпедансном состоянии. Когда напряжение на диоде превышает рабочее, импеданс диода понижается, и ток разряда начинает течь через него. При понижении напряжения на TVS диоде он снова возвращается в высокоимпедансное состояние.
Вольтамперная характеристика TVS диода аналогична характеристике стабилитрона, поэтому их иногда путают друг с другом. На самом деле это разные приборы. TVS диоды были разработаны специально для защиты цепей от импульсов перенапряжения, в то время как стабилитроны предназначены для стабилизации напряжения и не рассчитаны выдерживать значительные импульсы тока .
TVS диоды имеют высокое быстродействие, низкое рабочее напряжение и маленькую емкость, что делает их идеальными компонентами для защиты полупроводниковых компонентов от электростатического разряда.
Еще один вариант защиты входов/выходов интегральных микросхем от электростатического разряда — это использование буферных микросхем. Например, изображенный на схеме двунаправленный буфер 74ACTh345 согласно своей спецификации способен выдерживать электростатические разряды от 200 до 2000 вольт в зависимости от используемой модели разряда.
Диапазон рабочих температур: -55…+150°C Назначение TVS диодов
Защитные диоды работают на обратимом лавинном пробое полупроводникового перехода, поэтому их справедливо называть лавинными диодами. Лавинно пролетные диоды для защиты от перенапряжений применяются в цепях питания радиоэлектронной аппаратуры. Совместно с газовыми разрядниками и варисторами обеспечивают молниезащиту электрооборудования. Для защиты от импульсного перенапряжения и статическогго электричества в интерфейсах передачи данных применяется одиночный ESD супрессор или многоканальная защитная диодная сборка. Защита цепей питания от превышения тока потребления осуществляется предохранителями. Различают одноразовые плавкие предохранители и многоразовые самовосстанавливающиеся предохранители. Технические характеристики защитных диодов в SMA Технические характеристики защитных диодов в SMC Производитель TVS диодов супрессоров — PANJIT. | Электронный каталог
Корзина Корзина пуста |