Защита трансформатора предохранителями – Защита с трансформаторов предохранителями на стороне 10 кВ (Страница 1) — Релейная защита и автоматика трансформаторов, реакторов и автотрансформаторов — Советы бывалого релейщика

Содержание

Защита трансформаторов 6 и 10 кВ плавкими предохранителями

Страница 8 из 24

3-3. Защита трансформаторов 6 и 10 кВ плавкими предохранителями типа ПК
Основные условия выбора предохранителей. Плавкий предохранитель должен отвечать следующим основным условиям.
Номинальное напряжение предохранителей и их плавких вставок должно быть равно номинальному напряжению сети:
(3-3)
Плавкие предохранители в СССР выпускаются на номинальные напряжения, соответствующие ГОСТ 721—77, в том числе на 6; 10; 20; 35; 110 кВ. Номинальное напряжение указывается в наименовании предохранителя, например ПК-6, ПК-10, ПСН-10, ПСН-35 и т. п.
Установка предохранителя, предназначенного для сети более низкого напряжения, т. е. создание условия Uном пр < Uном. с не допускается во избежание к.з. из-за перекрытия изоляции предохранителя. Наряду с этим не допускается без специального указания завода-изготовителя применение предохранителя в сетях с меньшим номинальным напряжением из-за опасности возникновения перенапряжений при отключении к. з.

Номинальный ток отключения выбранного предохранителя должен быть равен или больше максимального значения тока к. з. в месте установки предохранителя:
(3-4)
Применительно к силовым трансформаторам ток /к. макс рассчитывается для трехфазного к. з. на выводах высшего напряжения трансформатора, т. е. там, где установлены плавкие предохранители. При этом режим питающей системы принимается максимальным, что соответствует наименьшему сопротивлению питающей системы до места подключения рассматриваемого трансформатора. Следует учитывать также подпитку места к. з. электродвигателями, включенными на той же секции, что и рассматриваемый трансформатор.
Номинальные токи отключения указаны в ГОСТ и заводских информациях. Предохранители напряжением свыше 1000 В выпускаются с номинальным током отключения от 2,5 до 40 кА (ГОСТ 2213—70). (Прежнее наименование номинального тока отключения — предельно отключаемый ток.)

Рис. 3-7. Выбор номинального тока плавкой вставки для предохранителей на сторонах ВН и НН понижающего трансформатора 10(6)/0,4 кВ
Номинальный ток плавкой вставки /ном. вс для предохранителей, защищающих трансформаторы 6 и 10 кВ со стороны высшего напряжения, выбирается в соответствии с директивными указаниями [14] равным примерно двукратному номинальному току трансформатора:
(3-5)
При этом условии обеспечивается несрабатывание предохранителя при возможных перегрузках трансформатора, при бросках тока намагничивания во время включения трансформатора под напряжение, а также, как правило, обеспечивается селективность с предохранителями, установленными на стороне низшего напряжения этого же трансформатора и выбранными по условию /ном. ВС ^ я# /ном.тр (рис. 3-7). Таким образом кратность номинального тока вставки предохранителя на стороне ВН относительно номинального тока вставки предохранителя на стороне НН (токи приведены к напряжению одной и той же стороны трансформатора), должна быть равна примерно двум, а если возможно, то и больше [14].
При таком выборе /ном. вс предохранители на стороне НН защищают трансформатор от перегрузок, а сеть НН — от к. з. Предохранители на стороне ВН предназначаются только для защиты трансформатора от к. з. на выводах ВН и от повреждений внутри трансформатора [14].
Предохранители с плавкой вставкой, выбранной по условию (3-5), обеспечивают отключение трансформатора при любых значениях тока к. з. за время, меньшее, чем допустимо по условию термической стойкости трансформатора (1-1).
Рекомендуемые в соответствии с [14] значения номинальных токов плавких вставок предохранителей, защищающих силовые трансформаторы, приведены в табл. 3-1.
Номинальный ток предохранителя необходимо выбирать равным номинальному току плавкой вставки:
(3-6)
Проверка селективности между предохранителями на стороне ВН и защитными аппаратами на стороне НН трансформатора.

Рекомендуемые значения номинальных токов плавких вставок 1ном вс предохранителей для трехфазных силовых трансформаторов
6/0,4 и 10/0,4 кВ

 

Номинальный ток, А

Мощность трансформатора, кВ* А

трансформатора на стороне

плавкой вставки на стороне

0,4 кВ

6 кВ

10 кВ

0,4 кВ

6 кВ

10 кВ

25

36

2,40

1,44

40

8

5

40

58

3,83

2,30

60

10

8

63

91

6,05

3,64

100

16

10

100

145

9,60

5,80

150

20

16

160

231

15,4

9,25

250

32

20

250

360

24,0

14,40

400

50

40

400

580

38,3

23,10

600

80

50

630

910

60,5

36,4

1000

160

80

Примечание Предполагается, что на стороне 0,4 кВ применены предохранители типа ПН-2, на стороне 6 кВ—типа ПК-6, на стороне 10 кВ—типа ПК-10.
Возможны три варианта выполнения защиты на стороне 0,4 кВ рассматриваемых трансформаторов: плавкими предохранителями; автоматами с мгновенным действием; селективными автоматами (с выдержкой времени).
Для проверки селективности между последовательно включенными предохранителями разных типов необходимо сопоставить их защитные характеристики во всем диапазоне токов, возможных при перегрузках и коротких замыканиях. Сопоставление производится следующим образом. Для нескольких значений токов / определяются по защитным характеристикам соответствующие значения времени плавления /Пл. Защитные характеристики предохранителей типа ПК даны на рис. 3-2. Защитные характеристики низковольтных предохранителей типа ПН-2 показаны на рис. 3-8. При определении tпл токи / должны быть приведены к номинальному напряжению своей стороны. Затем сравниваются найденные значения tun предохранителей сторон ВН и НН (/плвя и /пл нн) для каждого из соответствующих значений токов: 1вн и Iнн.

Селективность между предохранителями обеспечивается, если значения и^вн при всех токах оказываются по крайней мере в 3 раза большими, чем Ълнн [15], т. е. соблюдается условие:

Условие (3-7) учитывает возможные значительные разбросы защитных характеристик существующих предохранителей.

Рис. 3-8. Защитные характеристики предохранителей типа ПН-2
Проделаем такую проверку для трансформатора 10/0,4 кВ мощностью 250 кВ-А. Из табл. 3-1 находим рекомендуемые значения: /ном. вс = 40 А — для ПК-10 и /ном. вс — 400 А — для ПН-2. Одновременно проверим селективность предохранителя ПК-10 с /ном. вс = 32 А, которая рекомендовалась до 1976 г., т. е. до выпуска нового каталога предохранителей типа ПК- Расчеты сведены в табл. 3-2.
Значения <пл вн и или нн определялись по соответствующим защитным характеристикам рис. 3-2 и 3-8.
Из табл. 3-2 видно, что при /ном. вс=32 А не выполняется условие селективности (3-7), и поэтому в табл.
1 для трансформаторов этой мощности рекомендуется  /ном. вс = 40 А, что не противоречит директивным указаниям [14].
Следует обратить внимание на то, что защитные характеристики предохранителей типа ПК, изданные в 1976 г., существенно отличаются от ранее изданных характеристик (1967 г.), приведенных в существующей литературе [5, 11]. Основное отличие состоит в том, что характеристики, изданные в 1976 г., идут значительно более круто. Для примера на рис 3-9 показана часть защитных характеристик предохранителей ПК-10 для /ном. вс = 30 А (каталог 1967 г.) и для /НОм. вс = = 32 А (каталог 1976 г.) Штриховой линией показана защитная
Таблица 3-2
Пример проверки селективности плавких предохранителей ПК-10 и ПН-2 для трансформатора 10/0,4 кВ, 250 кВ — А

характеристика для /ном. вс — 40 А (каталог 1976 г.). Сравнивая характеристики токов 30 и 32 А, можно определить, что при характерном значении tnn = 5 с значение тока / было равно примерно 165 А, а теперь —примерно 105 А. Наряду с этим снизилось значение /пл при больших кратностях тока. Например, при / = 300 А или Ю/ном. вс было tnn « 0,4 с (по характеристике для тока 30 А), а при / = 320 А оказывается /пл«0,1 с (по характеристике для тока 32 А). Очевидно, что при более крутых характеристиках (каталог 1976 г.) труднее обеспечить селективность предохранителей ПК с защитными аппаратами на стороне НН трансформатора, но зато облегчается выполнение селективной настройки релейной защиты питающей линии по отношению к предохранителям ПК на стороне ВН трансформаторов [5, 11].

Рис. 3-10. Схема двухтрансформаторной подстанции 10(6)/0,4 кВ с АВР на секционном автоматическом выключателе (САВ)


Рис. 3-9. Сравнение защитных характеристик предохранителей типа ПК-10 (каталоги 1967 и 1976 гг.)
При установке на стороне 0,4 кВ трансформатора автоматического выключателя (автомата) мгновенного действия, например типа А-3100 или АП-50 с временем — отключения t0 ^ 0,035 с, селективность между предохранителями типа ПК С /ном. вс, принятыми по табл. 3-1, и этими автоматами обеспечивается даже при максимально возможных токах к.з. за трансформатором.
При установке на стороне 0,4 кВ трансформатора селективного автомата, например типа АВМ, минимальное время действия которого составляет 0,25 с, требуется индивидуальная проверка селективности между предохранителями ПК на стороне ВН и автоматами на стороне НН. Проверка должна производиться путем сопоставления их защитных характеристик при всех реально возможных значениях тока к. з. за трансформатором, поскольку время срабатывания селективных автоматов, так же как и у предохранителей, зависит от значения тока к. з.
Особенно важно обеспечить селективность между предохранителями ПК и автоматами 0,4 кВ на двухтрансформаторных подстанциях (рис. 3-10). Типовые подстанции с предохранителями ПК-6 или ПК-10 выполняются с двумя трансформаторами мощностью по 400 или 630 кВ-А. Если вести расчет по металлическому трехфазному к. з., оказывается, что предохранитель ПК с / ном.вс — 80 А на трансформаторе 630 кВ-А расплавится за 0,4 с, а предохранитель с /ном. вс = 50 А на трансформаторе 400 кВ-А — за 0,2 с. При этом очевидно, что не может быть обеспечена селективность не только с селективным автоматом на вводе 0,4 кВ своего трансформатора, но даже с секционным автоматом САВ. В этом случае возможно либо не применять предохранители на стороне ВН, либо не считаться с малой вероятностью металлического трехфазного к.з. на секции 0,4 кВ, а расчет вести по к.з. через переходное сопротивление (§ 2-6). Тогда, например, для трансформатора 630 кВ-А получится « 1,5 с, что обеспечит селективность между предохранителем и селективным автоматом.
Проверка селективности между релейной защитой питающей линии и плавкими предохранителями трансформаторов подробно рассмотрена в работе [5].
В заключение следует напомнить директивные указания [14], в которых говорится о том, что при неоднократном перегорании правильно выбранных предохранителей из-за перегрузки трансформатора ни в коем случае нельзя заменять их предохранителями на больший номинальный ток, а необходимо» принимать меры к разгрузке трансформатора или к замене его трансформатором большей мощности. При замене трансформаторов необходимо одновременно производить замену предохранителей в соответствии с мощностью вновь устанавливаемого трансформатора. Дежурный и ремонтный персонал должен быть обеспечен таблицами, в которых указаны номинальные токи плавких вставок для всех установленных трансформаторов, а также достаточным количеством запасных калиброванных предохранителей и калиброванных плавких вставок.

Для любителей предохранителей | Проект «РЗА»

Защита трансформаторов предохранителямиМногие типы трансформаторов защищаются сегодня предохранителями. Это ТНы, небольшие ТСНы и даже силовые трансформаторы 6(10)/0,4 кВ малой мощности. Дешево, сердито и не нужно ничего настраивать.

Сегодня я предлагаю вам рассмотреть последствия установки предохранителя на масляный силовой трансформатор 6/0,4 кВ, в части получаемых защитных характеристик (чувствительность и время отключения). Обещаю, будет интересно!

Возьмем для примера ТП 6/0,4 кВ с трансформаторами 400 кВА. Соединение обмоток естественно D/Yo. Защищать предохранителями трансы Y/Yo – это уже из разряда невероятного, и, вроде, таким никто не занимается.

Стандартный уровень тока трехфазного короткого замыкания на шинах 6 кВ таких ТП составляет обычно 8-12 кА. Для расчета примем 10 кА.

Разделять токи на минимальный и максимальный режимы не будем потому, что это не сильно влияет на уровень токов КЗ на стороне 0,4 кВ, особенно за такими маломощными трансформаторами. Среднее напряжение сети 6,3 кВ.

Расчетная схема приведена на Рис.1

Расчетная схема предохранитель и трансформаторРис. 1

Теперь давайте рассмотрим наиболее интересные моменты, касающиеся предохранителей

1. Времена отключения коротких замыканий

Найдем номинальный ток трансформатора на стороне 6,3 кВ

Расчетная схема предохранитель и трансформатор

Согласно [1, стр.49] номинальный ток предохранителя 6,3 кВ принимается примерно равным 2*Iном.т

Расчетная схема предохранитель и трансформатор

Принимаем предохранитель ПКТ-6-80, с номинальным током 80А. Его характеристику возьмем из [2, стр. 335]

Характеристики предохранителей ПКТ для защиты трансформатора 10/0,4 кВ

Теперь найдем минимальный ток короткого замыкания на шинах 0,4 кВ (конец зоны защиты для ПКТ-6-80), чтобы проверить время отключения предохранителя. Для этого сначала рассчитаем сопротивления схемы.

1. Сопротивление системы

Характеристики предохранителей ПКТ для защиты трансформатора 10/0,4 кВ

2. Сопротивление трансформатора

Характеристики предохранителей ПКТ для защиты трансформатора 10/0,4 кВ

3. Отношение сопротивления системы к сопротивлению трансформатора

Характеристики предохранителей ПКТ для защиты трансформатора 10/0,4 кВ

С точки зрения проверки чувствительности защиты/времени действия предохранителя критическим является ток однофазного КЗ на выводах 0,4 кВ трансформатора. Найдем этот ток для по кривым из [3, Приложение, Рис. П1]

Кривые токов КЗ за трансформатором

Помня про наше соотношение Хс/Хт получаем минимальные токи КЗ через предохранитель (приведенный на сторону 6,3 кВ).

Металлический однофазный ток КЗ:

Кривые токов КЗ за трансформатором

Дуговой однофазный ток КЗ:

Кривые токов КЗ за трансформатором

Коэффициент 0,58 появляется из-за искажения тока КЗ при трансформации со стороны 0,4 на 6,3 кВ через обмотки D/Yo (см. видео по защитам трансформатора)

Ну, и наконец, получаем время отключения этих коротких замыканий по кривой ПКТ-6-80 (см. выше)

Время отключения металлического КЗ — 1,3 с

Время отключения дугового КЗ — 7 с

Если вспомнить, что на стороне 0,4 кВ практически не бывает металлических КЗ (все через дугу), то время отключения правильно выбранного предохранителя будет около 7 с! При этом ток КЗ в баке ТМГ на стороне 0,4 кВ не такой уж и маленький — 8,3 кА. Для транса это настоящая печалька.

 

2. Защита трансформатора от перегрузки

Максимальный рабочий ток ТМГ-400 с учетом срабатывания АВР на стороне 0,4 кВ (СВ на Рис. 1 включен) примерно равен 1,4*Iном.т

Кривые токов КЗ за трансформатором

Ток защиты от перегрузки (ступень на отключение) выбирается обычно на 5% больше максимального рабочего тока присоединения

Кривые токов КЗ за трансформатором

Этот ток меньше номинала ПКТ-6-80, поэтому предохранитель вообще не может осуществлять защиту от перегрузки

 

3. Согласование с вышестоящими защитами.

Предположим наша ТП питается от вышестоящей РП 6 кВ через фидер 1 (см. Рис. 2). На фидере 1 установлена защита с независимой характеристикой.

Согласование релейной защиты с предохранителем

Рис. 2

Ориентировочные уставки защиты фидера 1:

Так как фидер питает одну ТП, то максимальный рабочий ток фидера можно принять равным максимальному рабочему току трансформатора.

Согласование релейной защиты с предохранителем 

Помним, что такая же уставка МТЗ будет у вводного автомата 0,4 кВ потому, что она тоже отстраивается от максимального рабочего тока трансформатора. Для согласования чувствительности защит примем ток защиты фидера на 10% больше.

Согласование релейной защиты с предохранителем

Стандартное время МТЗ защиты фидера на городских ТП примерно 1 с.

Согласование релейной защиты с предохранителем 

Теперь, используя Гридис-КС, построим карту селективности защиты фидера и нашего предохранителя

Карта селективности независимая защитная кривая с предохранителем

Рис. 3

Как видно из карты защитные кривые пересекаются, причем при минимальных токах КЗ на стороне 0,4 кВ защита фидера будет работать быстрее, неселективно отключая ТП. Изменить эту ситуацию не получится потому, что для этого нужно двигать кривую защиты фидера «вверх и вправо». Вверх нельзя потому, что там уже стоит защита СВ 6 кВ РП со своими выдержками времени, и их менять нельзя. А вправо не получится потому, что мы перестанем резервировать КЗ за трансформатором (минимальный Кч.рез.=1,2)

Если даже попытаться подобрать зависимую характеристику на фидере, то придется многим пожертвовать. Например, защитой от перегрузки фидера. Она просто исчезнет из-за увеличения начального тока характеристики.Карта селективности зависимая защитная кривая с предохранителем

Рис. 4

Например, на Рис. 4 подобрана нормально инверсная характеристика с начальным током 240 А, вместо 85,1 А, иначе полной селективности добиться сложно. Можно конечно попробовать подобрать другой наклон и начальный ток кривой, но из графика видно, что оптимально все равно не получиться.

Есть и еще одна проблема. Как только вы примете на фидере зависимую характеристику защиты, то она перестанет согласовываться с независимой характеристикой СВ и ввода РП.

В итоге получаем, что при использовании предохранителя 6 кВ на практике невозможно добиться полной селективности с вышестоящими защитами. Это тоже не очень хорошо

 

Выводы

1. Предохранитель защищает только от коротких замыканий. Для защиты от перегрузки вам придется искать другие способы (например, вводной автомат 0,4 кВ)

2. Времена отключения токов КЗ в конце зоны защиты (обмотки и выводы НН
трансформатора) у предохранителя очень большие. Это увеличивает объем
повреждения и будет негативно сказываться на сроке службы трансформатора

3. Предохранитель очень сложно согласовать с вышестоящими защитами. Фактически вы всегда будете нарушать условие селективности

4. При несимметричных КЗ на стороне 0,4 кВ через предохранители 6 кВ будут
протекать разные по величине токи. Таким образом, один из предохранителей может сработать раньше остальных и мы получим неполнофазный режим. Данный режим особенно опасен для двигателей.

Так, что, не использовать предохранители для защиты силовых трансформаторов?

Я бы сказал, что лучше не использовать, но это мнение релейщика. Для заказчика предохранители — это способ сэкономить и упростить электроустановку, поэтому он их и применяет и будет применять.

Единственно, что нужно помнить о всех недостатках предохранителей перед
нормальной релейной защитой и не использовать их для ответственных
объектов.

 

Список литературы

  1. «Защита трансформаторов распределительных сетей», М.А. Шабад., 1981 г, Энергоиздат
  2. «Расчеты релейной защиты и автоматики распределительных сетей», М.А. Шабад., 2003 г, ПЭИПК
  3. “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, А.В. Беляев, 1988г., Энергоатомиздат

Защита с трансформаторов предохранителями на стороне 10 кВ (Страница 1) — Релейная защита и автоматика трансформаторов, реакторов и автотрансформаторов — Советы бывалого релейщика

evdbor пишет:

В руках сейчас держу проект, где трансформатор ТСЗ-1600/10 защищен предохранителями 100А.
Номинал вставки в этом случае равен номинальному току трансформатора.
Как правило, трансформаторы 1000 кВА и мощнее защищаются выключателями с полноценной РЗА.
Необходимо выдать соответствующие замечания по сему проекту.
Сборник директивных материалов 1978 года в сети не нашел.

Имеются ли более современные нормативные документы по выбору предохранителей ВН, или может быть найдется Сборник 1978 год?
Есть ли в НТД ограничения по мощности трансформатора защищенного предохранителями?

Я думаю найти НТД по выбору предохранителей — предприятие с малой вероятностью успеха. По опыту поиска документов могу сказать — что если документ не выложен в сети — найти его задача трудновыполнимая. Только если повезет и найдется человек с таким «эксклюзивным документом»

Поэтому, я как релейщик, действовал бы другим путем

Я бы написал бы  замечания о неправильном выборе Fu (а в вашем примере он выбран неправильно) и обосновал бы их с помощью других НТД

В частности:

1. Ток на стороне ВН трансформатора 1600 кВА, 10 кВ — I ном ВН = 92, 4 А

2. Сухие трансформаторы (в примере ТСЗ) согласно НТД допускают перегрузку 1.2

НТП ЭПП-94  Проектирование электроснабжения промышленных предприятий

6.4.6. Для сухих трансформаторов предельное значение коэффициента допустимой перегрузки трансформатора следует принимать равным 1,2.

Следовательно по режимы работы возможна (в ходе эксплуатации докинут нагрузку) перегрузка с током 92,4 х 1,2 = 111 А.

3. Возможный ток нагрузки больше номинального тока Fu :  111 > 100 А  — предохранитель сработает ложно (пускай и через значительное время — около 2 часов — кратность 1,1)

4. В замечании написал бы следующее:

«Номинальный   ток   предохранителей   (плавких вставок) выбирается из условий   несрабатывания   при   допустимых перегрузках трансформатора и   при   работе трансформатора   в   режиме   холостого хода (отстройка от бросков тока намагничивания,   которые   в   течение   небольшого   промежутка   времени   могут   в несколько   раз   превосходить   номинальный ток трансформатора).»

Далее привел вы выкладки п. 1-3

далее написал бы фразу:
» Требуется заменить выбранный ранее предохранитель на предохранитель с номинальным током, который не вызовет ложное срабатывание при при   допустимых перегрузках трансформатора и   при   работе трансформатора   в   режиме   холостого ход (отстройка от бросков тока намагничивания). По опыту многолетней эксплуатации трансформаторов 10 кВ при выборе рекомендуется пользоваться следующей таблицей выбора предохранителей: «

Вставил бы таблицу из Шабада

Далее написал бы фразу: «По таблице номинальный ток предохранителя для трансформатора 1600 кВА рекомендуется определить эмпирическим путем с коэффициентом номинального ряда мощностей 1,6. »

ИМХО — я бы действовал таким образом
Предохранитель для Т 1600 кВА должен быть не менее 200 А.

Защита трансформаторов 35 кВ плавкими предохранителями

Страница 9 из 24

4. Защита трансформаторов 35 кВ плавкими предохранителями типа ПСН-35
Стреляющие предохранители типа ПСН-35 получили довольно широкое распространение в 50—60-х годах. И сейчас еще число трансформаторов, защищаемых этими предохранителями, составляет несколько тысяч. Однако опыт эксплуатации ПСН-35 выявил их высокую повреждаемость из-за старения плавких вставок, а также большую вероятность излишних (неселективных) срабатываний при к.з. на линиях 6(10) кВ, отходящих от трансформаторов относительно большой мощности. Поэтому в настоящее время область их применения ограничена трансформаторами мощностью до 1 MB-А включительно. Вместо предохранителей ПСН-35, снятых с производства, сейчас
выпускаются предохранители ПС-35МУ1, в которых используются плавкие вставки предохранителей ПСН-35.
На рис. 3-11 приведена схема подстанции с одним трансформатором, на стороне 35 кВ которого установлены плавкие предохранители 3, а на стороне 10(6) кВ — включатель 4 с релейной защитой. Питание трансформатора осуществляется от сети 35 кВ через выключатели / и 2, оборудованные устройствами релейной защиты. Отходящие линии 10(6) кВ с выключателями 5 также имеют релейную защиту, действующую, как правило, с выдержкой времени.

Рис. 3-11. Схема сети 35 кВ (а) и карта селективности (б) для проверки селективности работы предохранителей типа ПСН-35 и релейной защиты питающих и отходящих элементов
Предохранители ПСН-35 и их плавкие вставки выбираются в соответствии с условиями (3-3) и (3-4), а затем в соответствии с условиями обеспечения селективности между релейной защитой питающей линии (на выключателе 2, рис. 3-11) и ПСН-35 (3), а также между ПСН-35 (3) и релейной защитой на стороне НН трансформатора (4) или, в крайнем случае, — релейной защитой отходящих линий (5). Кроме того, выбранная плавкая вставка должна обеспечивать надежную защиту трансформатора от токов к. з., т. е. плавиться за меньшее время, чем допустимо по условию (1-1). При невозможности выполнить это условие и одновременно обеспечить селективность между ПСН-35 и устройствами релейной защиты плавкие предохранители ПСН-35 не должны применяться.
Проверку селективности между предохранителями и релейной защитой наиболее удобно и наглядно выполнять путем построения карты селективности (рис. 3-11,6). По горизонтальной оси (абсцисс) откладываются первичные фазные токи, отнесенные к напряжению одной из сторон трансформатора, а по вертикальной оси (ординат) — выдержки времени. Токи срабатывания всех защитных устройств должны быть приведены к одному и тому же выбранному напряжению. На карте селективности показывается значение максимального тока к.з. за трансформатором /к3), для которого определяются значения времени срабатывания защит 2> 4, 5 и времени плавления предохранителя 3, а затем вычисляются ступени селективности между ними [2, 3,. 5 и 11]. В данном примере селективность не обеспечивается.
Защитные характеристики предохранителей ПСН-35 приведены на рис. 3-12. Нетрудно убедиться в том, насколько неудобны эти крутопадающие характеристики для обеспечения селективности с релейной защитой линий 10(6) кВ.

Рис. 3-12. Защитные характеристики предохранителей типа ПСН-35
Например, для: трансформатора 35/10 кВ мощностью 1 MB-А при ык = 6,5% значения тока к.з. на шинах 10кВ могут практически находиться в пределах от 250 (5С = °о) до 200 А, отнесенного к напряжению 35 кВ. Из рис. 3-12 видно, что даже при значении тока / = 200 А предохранители с /ном. вс= 40 или 50 А расплавляются за время tan « 0,2 -f- 0,25 с, а предохранители с /ном. вс = 75 А ИМ6ЮТ tun ^ 0, 8 с. Причем 75 А составляют 4,5 /ном тр\ Но и при такой вставке время /пл=0,8 с позволяет принять для защит линий 10 кВ лишь самое минимальное время срабатывания: tc. з ~ 0,4 с, что далеко не всегда возможно. Кроме того, нельзя обеспечить селективность между ПСН-35 и защитой ввода 10 кВ трансформатора, так как для нее придется выбрать время срабатывания не менее 1 с (на ступень селективности больше, чем у защит линий 10 кВ).
С точки зрения селективности лучше было бы принять предохранитель с еще большим значением тока /ном. ВС  100 А.
Однако у этой вставки при токе I = 200 А время ta„ « 20 с, а допустимое для трансформатора время прохождения такого тока, согласно условию (1-1), равно всего лишь 10с. Следовательно, плавкая вставка с /ном. вс = 100 А не может быть принята. Еще труднее обеспечить селективность для защиты трансформатора большей мощности—1,6 MB-А. Плавкая вставка С /ном.вс — = 100 А не может быть принята, так как при прохождении через трансформатор опасных токов к.з., равных 200А (7,5/ ном. тр) и менее, трансформатор может повредиться раньше, чем сработает предохранитель. А применение вставки с /ном. вс = 75 А реально обеспечивает лишь /пл = 0,2 -=- 0,35 с, что, разумеется, не может обеспечить селективность при к.з. на отходящих линиях 10(6) кВ [И, 13, 16]. Поэтому более 10 лет назад в Минэнерго СССР было принято решение не применять ПСН-35 на трансформаторах мощностью более 1,6 MB-А, а на трансформаторах меньшей мощности устанавливать эти предохранители только при обязательном условии обеспечения селективности между предохранителями и релейной защитой питающих и отходящих линий.
Наряду с этим ведутся работы по усовершенствованию предохранителей ПСН таким образом, чтобы предохранитель выполнял только задачу гашения электрической дуги, а выявление аварийного режима производила бы релейная защита. Такие предохранители получили название управляемых (УПСН). В них предусмотрен специальный механизм, разрывающий плавкую вставку по команде релейной защиты.
Предложена также новая конструкция плавкой вставки для ПСН-35 и ПС-35МУ1, которая может расширить область применения этих предохранителей и обеспечить их более высокую надежность, чем при существующих плавких вставках [17].
В некоторых случаях селективность существующих ПСН-35 с релейной защитой отходящих линий 10(6) кВ может быть обеспечено благодаря применению на отходящих линиях селективных или неселективных отсечек с АПВ [5].

Раздел 5. Защита силовых трансформаторов Общие сведения

В процессе эксплуатации в обмотках трансформаторов могут возникать КЗ между фазами, замыкание одной или двух фаз на землю, замыкание между витками одной фазы и замыкания между обмотками разных напряжений. На вводах трансформаторов и автотрансформаторов, ошиновке и в кабелях могут также возникать КЗ между фазами и на землю. В эксплуатации могут происходить нарушения нормальных режимов работы трансформаторов, к которым относятся: прохождение через трансформатор или автотрансформатор сверхтоков при повреждении других связанных с ними элементов, перегрузка, выделение из масла горючих газов, понижение уровня масла, повышение его температуры. В зависимости от опасности повреждения для нарушения нормального режима трансформатора, защита, фиксирующая нарушение, действует на сигнал, разгрузку или отключение трансформатора.

По количеству обмоток трансформаторы делятся на двух и трёхобмоточные. Весьма часто используются трансформаторы с расщеплённой вторичной обмоткой – для уменьшения токов КЗ, вместо одной вторичной обмотки на полную мощность, наматываются 2, или даже 3 обмотки НН меньшей мощности.

Обмотки трёхфазных трансформаторов соединяются в схему звезды (Υ) или треугольника (∆). В схеме звезды кроме фазных выводов обычно выводится нейтраль. Вывод нейтрали либо заземляется наглухо, либо заземляется через разрядник или дугогасящий реактор в сетях с компенсированной нейтралью. Иногда вывод нейтрали остается незаземлённым.

Каждая пара обмоток трансформатора образует группу соединения, основные из них: Υ/Υ-12, Υ/∆-11. Кроме схемы соединения, в названии группы указывается число, показывающее сдвиг напряжения (или тока) по фазе между вторичной и первичной обмотками. Число, показывающее сдвиг по фазе вторичной обмотки соответствует положению часовой стрелки (низшее напряжение) относительно минутной (высшее напряжение) установившейся в положении 12 часов. Наиболее часто используется группа Υ/Υ–12, в этой группе вторичное напряжение совпадает по фазе с первичным – часовая и минутная стрелки на 12 часов, или Υ/∆–11 – часовая стрелка находится в положении 11 часов, а минутная – на 12. Вторичное напряжение опережает первичное на угол 30°.

Трансформаторы могут присоединяться к сети с помощью:

— выключателей;

— плавких предохранителей или открытых плавких вставок;

— автоматических отделителей или выключателей нагрузки, предназначенных для отключения трансформатора в бестоковую паузу.

Присоединение трансформаторов к сети через плавкие предохранители используется в схемах упрощенных подстанций 6-35 кВ при отсутствии аппаратуры на стороне высокого напряжения трансформатора.

Имеются предохранители ПК-10, ПКТ-10, ПКИ-10, ПСН-10., ПСН-35. Ток плавкой вставки зависит от мощности трансформатора, например: см. таблицу 5.1.

Предохранители ПСН-35 применяются для трансформаторов напряжением 35 кВ малой мощности (до 1000 кВА), обычно на передвижных подстанциях. С помощью таких предохранителей практически невозможно обеспечить селективность защиты трансформатора с защитой ввода, поэтому они согласовываются непосредственно с защитой отходящих от шин линий 6-10 кВ. Были также разработаны, но не нашли применения, стреляющие предохранители 110 кВ типа ПС-110У1.

Плавкие предохранители рассчитаны на отключение тока КЗ в трансформаторе, поэтому они проверяются по номинальному отключаемому току КЗ. Номинальный ток отключения для предохранителей 6-10 кВ может быть в пределах 2,5÷40 кА. Кроме того, требуется выбрать номинальное напряжение предохранителя. Одинаково недопустимо устанавливать предохранитель напряжением 6 кВ на трансформатор 10 кВ, и предохранитель 10 кВ на трансформатор напряжением 6 кВ. В первом случае может произойти перекрытие предохранителя по поверхности, а во втором может не погаснуть дуга внутри предохранителя.

Таблица 5.1.

Рекомендуемые значения номинальных токов плавких вставок предохранителей для трёхфазных силовых трансформаторов 6/0,4 и 10/0,4 кВ

Мощность трансформатора, кВА

Номинальный ток, А

трансформатора на стороне

плавкой вставки на стороне

0,4 кВ

6 кВ

10 кВ

0,4 кВ

6 кВ

10 кВ

25

36

2,40

1,44

40

8

5

40

58

3,83

2,30

60

10

8

63

91

6,05

3,64

100

16

10

100

145

9,60

5,80

150

20

16

160

231

15,40

9,25

250

32

20

250

360

24,00

14,40

400

50

40

400

580

38,30

23,10

600

80

50

630

910

60,50

36,40

1000

160

80

Кроме рассмотренных выше предохранителей, которые обеспечивают отключение короткого замыкания, ранее применялись открытые плавкие вставки для трансформаторов напряжением 110 кВ. Трансформатор подключался к линии через тонкие алюминиевые провода, при перегорании которых возникала электрическая дуга. Открытые плавкие вставки не могли отключить ток КЗ, после их перегорания возникало короткое замыкание на стороне ВН, которое должно было отключаться защитой питающей линии.

Рис. 5.1. Схемы присоединения понижающего трансформатора к питающей сети:

с помощью выключателя (а) и отделителя с короткозамыкателем (бив)

При высшем напряжении 35 кВ и более, наиболее распространенным для трансформаторов мощностью более l MBА способом подключения трансформатора отпаечной и тупиковой подстанции к линии является подключение через автоматический отделитель (ОД) с установкой короткозамыкителя (КЗ) (рис. 5.1б,в). Короткозамыкатель устанавливается в 2-х фазах при напряжении 35 кВ, и в одной фазе при напряжении 110 кВ и выше. В этом случае при повреждении в трансформаторе его релейная защита даёт команду на включение КЗ, после чего срабатывает релейная защита питающей линии, и отключается выключатель (В) этой линии. Наступает бестоковая пауза, во время которой автоматика даёт команду на отключениеОД, а линия включается снова от устройства АПВ.

Наиболее предпочтительным является присоединение трансформатора через выключатель (рис. 5.1, а). На рисунке показан выключатель со встроенными в него трансформаторами тока (ТВ).

При наличии у защищаемого трансформатора встроенных трансформаторов тока (TВT) требуется установить более дешевый выключатель без встроенных ТТ, стоимость установки которого может оказаться соизмеримой с установкой короткозамыкателя и отделителя. Большинство строящихся в настоящее время подстанций комплектуются именно выключателями на стороне ВН.

При подключении трансформатора по схемам рис. 5.1, можно полностью реализовать требования к защитам трансформатора, указанным в следующем подразделе.

Дифференциальная защита трансформатора и другие виды защит

Особенности применения и срабатывания разных защит трансформатора

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Основные защиты трансформатора

БлинкерЛюбая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.
Дифф защита

а — нормальная работа, б — при возникновении короткого замыкания между обмотками.

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Окошко трансформатораРеле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и  расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.Транфсорматор

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

формула

Iвс — ток плавкой вставки предохранителя;

Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель — самый простой способ защитить трансформатор от превышения тока.

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.МТЗ защита

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.Схема 2

Защита печных трансформаторов

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

Рекомендации по защите трансформаторов | Проектирование электроснабжения

Для защиты силовых трансформаторов применяют предохранители. При выборе предохранителя необходимо руководствоваться некоторыми рекомендациями, которые я нашел в каталоге КЭАЗ. Уважаю производителей, которые предоставляют подобную информацию для проектировщиков.

Немножко отступлю от темы и расскажу интересный случай.

Лучшие рекомендации

Осенью я был на выставке Energy EXPO 2015. Там присутствовали представители «ИГУР». Если кто не знает, они производят все необходимое для заземления и молниезащиты. Я ничего против их не имею, наоборот даже стараюсь поддерживать белорусского производителя.

Видимо продажи идут плохо и они решили срубить еще «бабосиков» на своем типовом проекте или просто вернуть деньги затраченные на печать и разработку. На выставке мне предложили купить данный типовой проект, разумеется, я отказался, т.к. у меня лишних денег не было, да и чисто из-за принципа я за него не отдал бы и 5  копеек, поскольку считаю, что такие типовые проекты должны даваться проектировщикам совершенно бесплатно. Они же в типовом проекте свое оборудование показывают, а не DKC, Betterman и т.п. Цена типового проекта, насколько я понял: 1000000 (70$). Не такие уж и маленькие деньги.

На этом история не закончилась. Звонят мне недавно представители компании «ИГУР» и опять пытаются впарить  этот типовой проект. Если бы это была информация, без которой невозможно сделать заземление, молниезащиту, то я еще подумал бы… В общем через 3 мин разговора по телефону, мне пообещали выслать данный типовой проект по почте совершенно бесплатно. Я просто начал им угрожать тремя буквами … вы правильно подумали  — это DKC Когда придет типовой проект, сделаю обзор и расскажу, что полезного в нем есть и чем он полезен для проектировщика.

А сейчас продолжим тему.

При выборе предохранителей нужно соблюдать следующие условия:

  1. Предохранитель должен выдержать номинальный ток трансформатора Iнt и возможные перегрузки трансформатора 1,3-1,4 Iнt;
  2. Ток включения обычно 8-12 Iнt не должен расплавить плавкий элемент быстрее 0,1 с;
  3. Ток короткого замыкания должен быть меньше максимального тока отключения и ток короткого замыкания должен быть больше минимального тока отключения предохранителя.

Исходя из этих условий и номинальной мощности трансформатора в таблице приведены рекомендуемые значения номинального тока предохранителя для трансформаторов 6/10кВ:

Рекомендуемый номинальный ток предохранителя для защиты трансформатора


Советую почитать:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *