Световое излучение (поражающий фактор) — Википедия
Материал из Википедии — свободной энциклопедии

Световое излучение — один из поражающих факторов при взрыве ядерного боеприпаса, представляющий собой тепловое излучение от светящейся области взрыва. В зависимости от мощности боеприпаса, время действия колеблется от долей секунды до нескольких десятков секунд. Вызывает у людей и животных ожоги различной степени и ослепление; оплавление, обугливание и возгорание различных материалов.
Световое излучение представляет собой тепловое излучение, испускаемое нагретыми до высокой температуры (~107 К) продуктами ядерного взрыва. Вследствие большой плотности вещества поглощательная способность огненного шара оказывается близка к 1, поэтому спектр светового излучения ядерного взрыва достаточно близок к спектру абсолютно чёрного тела. В спектре преобладают ультрафиолетовое и рентгеновское излучения.
Особую опасность световое излучение представляет по той причине, что действует непосредственно во время взрыва и времени на укрытие в убежищах у людей нет.
От светового излучения могут защитить любые непрозрачные объекты — стены домов, автомобильная и прочая техника, крутые склоны оврагов и холмов. Защитить может даже плотная одежда — но в этом случае возможно её возгорание.
В случае начала ядерного взрыва следует незамедлительно укрыться в любой тени от вспышки или, если укрыться негде, лечь спиной вверх, ногами к взрыву и закрыть лицо руками — это поможет в какой-то степени уменьшить ожоги и травмы. Нельзя смотреть на вспышку ядерного взрыва и даже поворачивать к ней голову, так как это может привести к тяжёлым поражениям органов зрения, вплоть до полной слепоты.
Бомбардировщики, предназначенные для нанесения ядерных ударов (тактические Су-24, стратегические Ту-160), для защиты от светового излучения частично или полностью покрывают белой краской, отражающей значительную часть излучения. Бронетехника предоставляет полную защиту экипажа от светового излучения.
Одним из наиболее пугающих свидетельств поражающего эффекта светового излучения являются так называемые тени Хиросимы (чаще всего упоминается применительно к людям) — тень от человека или другого препятствия на выгоревшем от излучения фоне. Люди после этого быстро (обычно в течение одного дня) погибали от ожогов, травм и лучевого поражения, многие сгорели в пожарах и огненном шторме, разразившемся после взрыва.
Защита от действия светового излучения.
Для защиты людей любой предмет, дающий тень является защитой. При небольших импульсах в некоторой степени может служить защитой светлая или плотная одежда.
Защита технических изделий и зданий из сгораемых материалов может проводиться по следующим направлениям:
применение теплоизолирующих покрытий;
использование защитных обмазок и вспучивающихся красок;
покраска изделий в светлые тона;
удаление легковоспламеняющихся элементов и т.д.
Таблица 5.3. Характеристики воздействия светового импульса на различные материалы
Материалы | Световой импульс , кДж/м.кв | |
Устойчивое горение | ||
Бумага газетная Сухие сено, стружка Ткань х/б темная светлая Брезент палаточный Доски сухие Доски, окрашенные в белый цвет темный цвет Толь, рубероид | — 340 — 500 250 — 420 500 — 750 420 — 500 500 — 670 700 — 1900 250 — 420 590 — 840 | 130 — 170 710 — 840 590 — 670 840 — 1500 630 — 840 1700 — 2100 4200 — 6300 840 — 1200 1000 — 1700 |
Рекомендуемые контрольные вопросы
Общие сведения о пожарах: физико-химические основы пожаров, виды горения при пожарах, параметры и классификация пожаров.
Внутренние пожары: общая характеристика внутренних пожаров, стадии пожара в помещении, критическое время эвакуации.
Открытые пожары: определение, особенности пожаров нефтепродуктов.
Классификация зданий и сооружений по подверженности пожарам.
Классификация производственных объектов по взрыво- и пожароопасности.
Тушение пожаров: принципы прекращения горения, периоды тушения пожаров.
Огнетушащие вещества: классификация, свойства и особенности основных огнетушащих веществ.
Ядерный взрыв и его световое излучение как источник пожаров: светящаяся область, световой импульс, воздействие светового излучения взрыва на людей и объекты.
Литература
Федеральный закон РФ “О пожарной безопасности”, 1994г.
“Аварии и катастрофы. Предупреждение и ликвидация последствий”, М., АСВ, 1995г.
Правила пожарной безопасности в РФ, М., 1994г.
Левин А.В., Рафа П.И., Смирнов И.В. “Пожарно-профилактическая работа на промышленных предприятиях”, М., Стройиздат,1990г.
Абдурагимов И.М. Физико-химические основы развития и тушения пожаров, М.1980
Позик Я.С. Пожарная тактика, М. Стройиздат,1991г.
Факультет
военного обучния
Защита от действия светового излучения.
Для защиты людей любой предмет, дающий тень является защитой. В некоторой степени может служить защитой светлая или плотная одежда (только при небольших импульсах).
Защита технических изделий и зданий из сгораемых материалов может проводиться по следующим направлениям:
применение теплоизолирующих покрытий;
использование защитных обмазок и вспучивающихся красок;
покраска изделий в светлые тона;
удаление легковоспламеняющихся элементов и т.д.
Рекомендуемые контрольные вопросы
Общие сведения о пожарах: физико-химические основы пожаров, виды горения при пожарах, параметры и классификация пожаров.
Внутренние пожары: общая характеристика внутренних пожаров, стадии пожара в помещении, критическое время эвакуации.
Открытые пожары: определение, особенности пожаров нефтепродуктов.
Классификация зданий и сооружений по подверженности пожарам.
Классификация производственных объектов по взрыво- и пожароопасности.
Тушение пожаров: принципы прекращения горения, периоды тушения пожаров.
Огнетушащие вещества: классификация, свойства и особенности основных огнетушащих веществ.
Ядерный взрыв и его световое излучение как источник пожаров: светящаяся область, световой импульс, воздействие светового излучения взрыва на людей и объекты.
Литература
Федеральный закон РФ “О пожарной безопасности”, 1994г.
“Аварии и катастрофы. Предупреждение и ликвидация последствий”, М., АСВ, 1995г.
Правила пожарной безопасности в РФ,М., 1994г.
Левин А.В., Рафа П.И., Смирнов И.В. “Пожарно-профилактическая работа на промышленных предприятиях”, М., Стройиздат,1990г.
Абдурагимов И.М. Физико-химические основы развития и тушения пожаров, М.1980
Позик Я.С. Пожарная тактика, М. Стройиздат,1991г.
Факультет
военного обучния
2.2. Световое излучение.
Световым импульсом называется отношение количества световой энергии к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. Единица светового импульса – Джоуль на квадратный метр (Дж/м2) или калория на квадратный сантиметр (кал/см2). 1 Дж/м2 = 23,9х10-6кал/см2; 1 кДж/м2= 0,0239 кал/см2; 1 кал/см2 = 40 кДж/м2. Световой импульс зависит от мощности и вида взрыва, расстояния от центра взрыва и ослабления светового излучения в атмосфере, а также от экранирующего действия дыма, пыли, растительности, неровностей местности и т.д.
При наземных и надводных взрывах световой импульс на тех же расстояниях меньше, чем при воздушных взрывах такой же мощности. Это объясняется тем, что световой импульс излучает полусфера, хотя и большего диаметра, чем при воздушном взрыве. Что касается распространения светового излучения, то большое значение имеют другие факторы. Во-первых, часть светового излучения поглощается слоями водяных паров и пыли непосредственно в районе взрыва. Во-вторых, большая часть световых лучей прежде, чем достичь объекта на поверхности земли, должна будет пройти воздушные слои, расположенные близко к земной поверхности. В этих наиболее насыщенных слоях атмосферы происходит значительное поглощение светового излучения молекулами водяных паров и двуокиси углерода; рассеивание в результате наличия в воздухе различных частиц здесь также гораздо большее. Кроме того, большое значение имеет и рельеф местности. Количество световой энергии, достигающей объекта, находящегося на определенном расстоянии от центра наземного взрыва, может составлять для малых расстояний порядка трех четвертей, а для больших – половину импульса при воздушном взрыве такой же мощности.
При подземных или подводных взрывах поглощается почти все световое излучение.
При ядерном взрыве на большой высоте рентгеновские лучи, излучаемые исключительно сильно нагретыми продуктами взрыва, поглощаются большими толщами разреженного воздуха, поэтому температура огненного шара ниже. Для высот порядка 30-100 км на световой импульс расходуется около 25-35% всей энергии взрыва.
Обычно в целях расчета пользуются табличными данными зависимости светового импульса от мощности, вида взрыва и расстояния от центра (эпицентра) взрыва. Эти данные выведены для очень прозрачного воздуха с учетом возможности рассеяния и поглощения атмосферой энергии светового излучения.
При оценке светового импульса учитывается также возможность воздействия отраженных лучей. Если земная поверхность хорошо отражает свет (снежный покров, высохшая трава, бетонное покрытие и др.), то прямое световое излучение, падающее на объект, усиливается отраженным. Суммарный световой импульс при воздушном взрыве может быть больше прямого в 1,5-2 раза. Если взрыв происходит между облаками и землей, то световое излучение, отраженное от облаков, действует на объекты, скрытые от прямого воздействия излучения. Световой импульс, отраженный от облаков, может достигать половины величины прямого импульса.
Воздействие светового излучения на людей и сельскохозяйственных животных. Световое излучение ядерного взрыва при непосредственном воздействии вызывает ожоги открытых участков тела, временное ослепление или ожоги сетчатки глаз человека. Возможны вторичные ожоги, возникающие от пламени горящих зданий, сооружений, растительности, воспламенившейся или тлеющей одежды.
Независимо от причин возникновения, ожоги подразделяют по тяжести поражения организма на четыре степени.
Ожоги I степени характеризуются болезненностью, покраснением и припухлостью кожи в области поражения. Они не представляют серьезной опасности и быстро излечиваются без каких-либо последствий. При ожогах II степени образуются пузыри, заполненные прозрачной серозной жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Пострадавшие с ожогами I и II степеней, достигающими даже 50-60% поверхности кожи, обычно выздоравливают. Ожоги III степени характеризуются омертвением кожи с частичным поражением росткового слоя. Ожоги IV степени: омертвление кожи и более глубоких слоев тканей (подкожной клетчатки, мышц, сухожилий, костей). Поражение ожогами III и IV степени значительной части кожного покрова может привести к смертельному исходу. Одежда людей и шерстяной покров животных защищает кожу от ожогов. Поэтому ожоги чаще бывают у людей на открытых частях тела, а у животных – на участках тела, покрытых коротким и редким волосом.
Степень поражения световым излучением закрытых участков кожи зависит от характера одежды, ее цвета, плотности и толщины. Люди, одетые в свободную одежду светлых тонов, одежду из шерстяных тканей, обычно в меньшей степени поражаются световым излучением, чем люди, одетые в плотно прилегающую одежду темного цвета или прозрачную одежду, особенно из синтетических материалов.
Большую опасность для людей и сельскохозяйственных животных представляют пожары, возникающие на хозяйственных объектах в результате воздействия светового излучения и ударной волны. По данным иностранной печати, в городах Хиросима и Нагасаки примерно 50% всех смертельных случаев было вызвано ожогами; из них 20-30 % – непосредственно световым излучением и 70-80% – ожогами от пожаров.
Поражение органа зрения человека может проявляться в виде временного ослепления – под влиянием яркой световой вспышки. В солнечный день ослепление длится 2-5 минут, а ночью, когда зрачок сильно расширен и через него проходит больше света, – до 30 минут и более. Более тяжелое (необратимое) поражение – ожог глазного дна – возникает в случае, когда человек или животное фиксирует свой взгляд на вспышке взрыва. Такие необратимые поражения возникают в результате концентрированного (фокусируемого хрусталиком глаза) на сетчатку глаза прямо падающего потока световой энергии в количестве, достаточном для ожога тканей. Концентрация энергии, достаточной для ожога сетчатой оболочки, может возникнуть и на таких расстояниях от места взрыва, на которых интенсивность светового излучения мала и не вызывает ожогов кожи. В США при испытательном взрыве мощностью около 20 кт отметили случаи ожога сетчатки глаз на расстоянии 16 км от эпицентра взрыва, то есть на расстоянии, где прямой световой импульс составлял примерно 6 кДж/м2 (0,15 кал/см2). При закрытых глазах временное ослепление и ожоги глазного дна исключаются.
Защита от светового излучения более проста, чем от других поражающих факторов. Световое излучение распространяется прямолинейно. Любая непрозрачная преграда, любой объект, создающий тень, могут служить защитой от него. Используя для укрытия ямы, канавы, бугры, насыпи, простенки между окнами, различные виды техники, кроны деревьев и т.п., можно значительно ослабить или вовсе избежать ожогов от светового излучения. Полную защиту обеспечивают убежища и противорадиационные укрытия.
Тепловое воздействие на материалы. Световой импульс, падая на поверхность предмета, частично отражается, поглощается им и (или) проходит через него, если предмет прозрачный. Поэтому характер (степень) поражения элементов объекта зависит как от светового импульса и времени его действия, так и от плотности, теплоемкости, теплопроводности, толщины, цвета, характера обработки материалов, положения поверхности к падающему световому потоку, всего, что будет определять степень поглощения световой энергии ядерного взрыва.
Световой импульс и время свечения зависят от мощности ядерного взрыва. При продолжительном действии светового излучения происходит значительный отток тепла от освещенной поверхности вглубь материала, следовательно, для нагрева ее до той же температуры, что и при кратковременном освещении, требуется большее количество световой энергии. Поэтому, чем выше тротиловый эквивалент ядерного боеприпаса, тем больший световой импульс требуется для воспламенения материала. И, наоборот, равные световые импульсы могут вызвать большие поражения при меньших мощностях взрывов, так как время их свечения меньше (наблюдаются на меньших расстояниях), чем при взрывах большой мощности.
Тепловое воздействие проявляется тем сильнее в поверхностных слоях материала, чем они тоньше, менее прозрачны, менее теплопроводны, чем меньше их сечение и меньше удельный вес. Однако, если световая поверхность материала быстро темнеет в начальный период действия светового излучения, то остальную часть световой энергии она поглощает в большем количестве, как и материал темного цвета. Если же под действием излучения на поверхности материала образуется большое количество дыма, то его экранирующее действие ослабляет общее воздействие излучения.
К материалам и предметам, способным легко воспламеняться от светового излучения, относятся: горючие газы, бумага, сухая трава, солома, сухие листья, стружка, резина и резиновые изделия, пиломатериалы, деревянные постройки.
Пожары на объектах и в населенных пунктах возникают от светового излучения и вторичных факторов, вызванных воздействием ударной волны. Наименьшее избыточное давление, при котором могут возникнуть пожары от вторичных причин, составляет 10 кПа (0,1 кгс/см2). Возгорание материалов может наблюдаться при световых импульсах в 125 кДж (3 кал/см2) и более. Эти импульсы светового излучения в ясный солнечный день наблюдаются на значительно больших расстояниях, чем избыточное давление во фронте ударной волны, равное 10 кПа.
Так, при воздушном ядерном взрыве мощностью 1 Мт в ясную солнечную погоду деревянные строения могут воспламеняться на расстоянии до 20 км от центра взрыва, автотранспорт – до 18 км, сухая трава, сухие листья и гнилая древесина в лесу – до 17 км. При этом действие избыточного давления в 10 кПа для данного взрыва отмечается на расстоянии 11 км. Большое влияние на возникновение пожаров оказывает наличие горючих материалов на территории объекта и внутри зданий и сооружений. Световые лучи на близких расстояниях от центра взрыва падают под большим углом к поверхности земли; на больших расстояниях – практически параллельно поверхности земли. В этом случае световое излучение проникает через застекленные проемы в помещения и может воспламенять горючие материалы, изделия и оборудование в цехах предприятий. Большинство сортов технических тканей, резины и резиновых изделий загорается при световом импульсе 250-420 кДж/м2 (6-10 кал/см2).
Распространение пожаров на объектах экономики зависит от огнестойкости материалов, из которых возведены здания и сооружения, изготовлено оборудование и другие элементы объекта; степени пожарной опасности технологических процессов, сырья и готовой продукции; плотности и характера застройки.
С точки зрения производства спасательных работ пожары классифицируются по трем зонам: зона отдельных пожаров, зона сплошных пожаров и зона горения и тления в завалах. Зона пожаров представляет территорию, в пределах которой в результате воздействия оружия массового поражения и других средств нападения противника или стихийного бедствия возникли пожары.
Зоны отдельных пожаров представляют собой районы, участки застройки, на территории которых пожары возникают в отдельных зданиях, сооружениях. Маневр формирований между отдельными пожарами возможен без средств тепловой защиты.
Зона сплошных пожаров – территория, на которой горит большинство сохранившихся зданий. Через эту территорию невозможен проход или нахождение на ней формирований без средств защиты от теплового излучения или проведение специальных противопожарных мероприятий по локализации или тушению пожара.
Зона горения и тления в завалах представляет собой территорию, на которой горят разрушенные здания и сооружения I, II и III степени огнестойкости. Она характеризуется сильным задымлением: выделением окиси углерода и других токсичных газов и продолжительным (до нескольких суток) горением в завалах.
Сплошные пожары могут сливаться в огневой шторм, представляющий собой особую форму пожара. Огневой шторм характеризуется мощными восходящими вверх потоками продуктов горения и нагретого воздуха, создающими условия для ураганного ветра, дующего со всех сторон к центру горящего района со скоростью 50-60 км/ч и более. Образование огненных штормов возможно на участках с плотностью застройки зданиями и сооружениями III, IV и V степени огнестойкости не менее 20%. Последствием воспламеняющего действия светового излучения могут быть обширные лесные пожары. Возникновение и развитие пожаров в лесу зависит от времени года, метеорологических условий и рельефа местности. Сухая погода, сильный ветер и ровная местность способствуют распространению пожара. Лиственный лес летом, когда деревья имеют зеленые листья, загорается не так быстро и горит с меньшей интенсивностью, чем хвойный. Осенью световое излучение ослабляется кронами меньше, а наличие сухих опавших листьев и сухой травы способствует возникновению и распространению низовых пожаров. В зимних условиях возможность возникновения пожаров уменьшается в связи с наличием снежного покрова.
Средства защиты глаз от светового излучения
В вооружённых силах капиталистических государств, и в первую очередь членов агрессивного блока НАТО, большое внимание уделяется подготовке к ведению боевых действий в условиях применения оружия массового поражения. Важной частью этой подготовки являются научно-исследовательские и опытно-конструкторские работы в области создания средств индивидуальной зашиты личного состава, в том числе средств зашиты глаз членов экипажей самолётов и вертолётов военной авиации от светового излучения ядерных взрывов. Наибольший размах эти работы получили в США, где они проводятся с середины 50-х годов.По данным зарубежной печати, к настоящему времени американские специалисты выработали основные требования к средствам защиты глаз, определили наиболее перспективные научно-технические направления в данной области, создали значительное количество экспериментальных защитных устройств, провели обширные медицинские исследования, выявившие опасность поражения органов зрения в зависимости от вида и мощности взрыва, прозрачности атмосферы, времени суток и т. д.
По мнению иностранных специалистов, световое излучение ядерного взрыва представляет большую опасность для экипажей самолётов и вертолётов. Радиус действия этого поражающего фактора намного превышает радиус действия ударной волны и проникающей радиации. Световое излучение может вызвать временное ослепление, ожоги век, глазного яблока, глазного дна и открытых участков кожи.
Временное ослепление, представляющее собой функциональную форму расстройства органов зрения, считается наиболее лёгким, но очень опасным поражением, вызываемым световым излучением.
Американские специалисты считают, что человек, временно ослеплённый световым излучением, в лечении не нуждается, так как органы зрения самопроизвольно приходят в норму без остаточных патологических изменений.
Ожоги век и переднего отдела глазного яблока возникают вследствие направленного воздействия видимого и инфракрасного спектров излучении ядерного взрыва. При этом поражение глаз может сопровождаться ожогами лица и других открытых участков кожи. Такое комбинированное поражение выводит личный состав из строя на длительное время и требует лечения.
Ожоги глазного дна (хориоретинальные ожоги) могут возникнуть, когда световое излучение огненного шара ядерного взрыва сфокусируется преломляющими средствами глаза на его дно. Такой ожог, как правило, не приводит к ухудшению зрения. Однако если свет, излучаемый огненным шаром, полностью или частично сфокусируется на жёлтое пятно и диск зрительного нерва, то соответственно может наступить полная, неизлечимая слепота или существенное, непроходящее ослабление зрения. В отличие от других видов поражения глаз появление хориоретинальных ожогов может происходить на значительных удалениях от эпицентра ядерного взрыва, при которых разрешающей способности глаза ещё достаточно, чтобы воспринять огненный шар как светящуюся точку. Эти расстояния зависят от светопоглощающих и светорассеивающих свойств атмосферы. Предельные значения расстояний от эпицентра ядерного взрыва мощностью 20 кт, при которых могут наблюдаться ожоги глазного дна, приводятся в табл. 1.
Таблица 1. Предельные расстояния от эпицентра взрыва мощностью 20 кт, на которых возникают ожоги глазного дна
При термоядерных взрывах большой мощности такие расстояния исчисляются сотнями километров. Например, при взрыве американского термоядерного боеприпаса с тротиловым эквивалентом 1 Mт на высоте 80 км, произведённом ночью над Тихим океаном, хориоретинальные ожоги наблюдались у подопытных кроликов, находящихся более чем в 500 км от эпицентра взрыва.
Ультрафиолетовая часть спектра светового излучения, которая особенно значительна при высотных ядерных взрывах, может вызвать специфическое поражение глаз с симптомами рези, светобоязни и слезотечения, а также острые конъюнктивиты и другие болезненные явления. При низких воздушных взрывах на сравнительно небольших удалениях от их эпицентров указанные симптомы в большинстве случаев оказываются незамеченными на фоне других видов поражении, вызванных действием видимого и инфракрасного спектров излучений. При высотных взрывах ультрафиолетовое излучение может вызвать самостоятельный поражающий эффект. При этом экипажи самолётов и вертолётов, находящихся в воздухе, окажутся в менее выгодных условиях по сравнению с личным составом, расположенным на земле (море), так как они будут лететь над приземным слоем атмосферы, загрязнённым пылью и насыщенным влагой, в котором ультрафиолетовое излучение в значительной степени ослабляется. По данным зарубежной печати, поражения, вызванные действием ультрафиолетового излучения, при правильном лечении проходят в течение нескольких дней.
Рассматривая приведённые выше данные, иностранные специалисты считают, что световое излучение ядерного взрыва может вывести из строя на сравнительно продолжительный срок личный состав любых родов войск, но с различными последствиями. Поражение лётчиков, например, может привести к катастрофам самолётов и вертолётов. По мнению американских специалистов, предельно допустимое время ослепления лётчика современного самолёта, выполняющего вираж, составляет всего 5 с. Это время принято за норматив при обосновании требований к средствам защиты глаз членов экипажей самолётов ВВС США.
При создании первых средств защиты глаз использовались светофильтры постоянной плотности. В результате проведённых исследовании иностранные специалисты пришли к выводу, что эффективная защита возможна при оптической плотности светофильтров, обеспечивающих ослабление светового потока на 3-4 порядка. Однако очками с такими плотными светофильтрами в обычных условиях пользоваться невозможно. Поэтому для обеспечения достаточной видимости хотя бы в дневное время первоначально были созданы табельные полётные очки из прозрачной пластмассы с золотым покрытием, имеющие оптическую плотность 2 (светопропускание 1%), а впоследствии с оптической плотностью 1,3 (светопропускание около 2%). Однако, по мнению американских специалистов, очки со светофильтрами постоянной плотности ненадёжны, так как их защитное действие ограничивается лишь снижением продолжительности временного ослепления (в среднем на 1/3).
Кроме того, эффективность таких очков зависит от времени упреждения их применения по отношению к моменту ядерного взрыва (то есть от интервала времени между их надеванием и взрывом). Это связано с различной скоростью реакции зрачка на свет и темноту. Обычно при смене темноты на яркий свет процесс сокращения зрачка завершается за 3-5 с, расширение же его при смене яркого света на темноту происходит в течение более длительного времени.
Другим табельным средством защиты глаз от светового излучения ядерного взрыва, имеющимся в ВВС США и некоторых других капиталистических странах, является монокулярная экранирующая заслонка (рис. 1). Она представляет собой зачернённый с внутренней стороны металлический выпуклый лепесток с Т-образным кронштейном, горизонтальная часть которого покрыта клейким веществом, позволяющим прикреплять заслонку к надбровной дуге и закрывать ею один глаз. В этом случае, если лётчик попадёт под воздействие светового излучения, то ослеплению подвергнется только один незащищённый глаз. Сняв заслонку с защищённого глаза, он сможет при соответствующей натренированности продолжать выполнение боевой задачи. Монокулярная заслонка относится к числу простейших и наиболее дешёвых средств, которые в отличие от тёмных очков можно применять не только в дневное, но и в ночное время. К явным её недостаткам относится потеря бинокулярного стереоскопического зрении и вероятность получения ожога незащищённого глаза.
Рис. 1. Монокулярная экранирующая заслонка
К простейшим средствам защиты глаз, испытывавшимся в ВВС США, относятся щелевые очки. Их защитное действие основано на значительном ограничении поля зрения, что снижает вероятность ожога глаз и значительно сокращает продолжительность временного ослепления. Однако эти очки заметно увеличивают напряжение человека, сковывают его действия и в конечном счёте оказывают отрицательное влияние на его боеспособность. Американские специалисты признали их полностью непригодными для практического использования лётными экипажами.
Примерно по такому же принципу действуют и защитные экраны, выполненные в виде козырьков, боковых щитков и шторок. Они испытывались в ВВС США на истребителях-бомбардировщиках F-111. Как сообщает иностранная печать, испытания показали, что такие шторки и щитки могут лишь частично защитить глаза членов экипажа и оборудование кабины.
По мнению иностранных специалистов, светофильтры постоянной плотности, монокулярные заслонки и другие средства предварительного экранирования органов зрения не могут надёжно защитить их от поражения световым излучением ядерного взрыва. Выполнив определённые исследования, американские специалисты пришли к выводу, что гарантированную защиту глаз от светового излучения в состоянии обеспечить только защитные устройства принципиально другого типа, получившие название динамических. Они представляют собой очки со специальными светофильтрами — автоматическими затворами, прерывающими световой поток в начальной стадии излучения. В США разработаны основные требования к таким средствам защиты (табл. 2).
Таблица 2. Основные требования и динамическим защитным устройствам
Как сообщает зарубежная печать, в США проводились исследования двух разновидностей динамических защитных устройств: прямого и косвенного действия.
В устройствах прямого действия в качестве рабочего элемента использовались светофильтры, оптическая плотность которых резко увеличивается в результате непосредственного воздействия светового излучения. Например, фотохромные (фототропные) светофильтры обладают способностью под воздействием коротковолновой составляющей светового излучения приобретать голубую окраску, исчезающую в темноте или под воздействием длинноволновой составляющей. Для создания защитных очков в США было синтезировано большое количество фотохромных химических соединений, быстро реагирующих на коротковолновую составляющую светового излучения. Американские специалисты считали, что, располагая такими веществами и вводя их в различных концентрациях в бесцветные стекла или плёнки, можно создать светофильтры, которые при условии почти одновременного перехода всех фотохромных молекул в окрашенную форму достигнут любой заданной оптической плотности в течение нескольких десятков микросекунд. Для этого необходимо было выполнить лишь одно условие: одновременно воздействовать коротковолновым излучением на все молекулы фотохромного вещества, находящегося в массе светофильтра.
Однако было установлено, что это условие естественным путём на практике не реализуется по двум основным причинам. Первая из них заключается в том, что световое излучение ядерного взрыва имеет смешанный, меняющийся во времени спектральный состав, ощутимую долю которого составляет длинноволновый свет, тормозящий переход фотохромных веществ в окрашенную форму. Другая причина обусловлена экранирующим действием поверхностного слоя светофильтра, который, окрашиваясь раньше остальной его массы, препятствует облучению распределённых в глубине светофильтра фотохромных веществ. В связи с этим, как отмечается в зарубежной печати, динамические защитные средства прямого действия в ВВС США не используются.
В защитных устройствах косвенного действия световая энергия, воздействуя на светочувствительный элемент, преобразуется в электрический сигнал, поступающий в дискриминатор импульсов, который задерживает и гасит ложные сигналы, возбуждённые другими источниками света, а пропускает сигналы, возбуждённые начальной фазой светового излучения ядерного взрыва. Этот сигнал усиливается и приводит в действие защитный затвор.
В 1957 году американские специалисты приступили к созданию первых защитных устройств косвенного действия. Это были электромеханические растровые защитные очки, состоящие из неподвижных пластинок с чередующимися вертикальными прозрачными и непрозрачными полосами. Ширина прозрачных полос была несколько меньше, а непрозрачных несколько больше 1,5 мм. Точно такие же полосы имелись на подвижных пластинках, вплотную прилегающих к неподвижным и передвигающихся в горизонтальном направлении.
При открытом затворе непрозрачные и прозрачные полосы подвижных и неподвижных пластин совмещались и к глазам поступало 30- 40% падающего на них света. При срабатывании затвора от воздействия светового излучения подвижные пластины смещались относительно неподвижных на 1,5 мм, и прозрачные полосы обеих пластин взаимно перекрывались непрозрачными полосами. Светопропускание очков в закрытом состоянии составляло 0,01% (оптическая плотность 4), однако скорость срабатывания лежала в пределах 250-560 мкс, то есть была недостаточной для гарантированной защиты глаз.
Учитывая большие трудности создания затворов механического действия с необходимыми скоростными характеристиками и ряд выявившихся существенных эксплуатационных недостатков электромеханических очков (они, в частности, плохо совмещались с полётными шлемами), американские специалисты приступили к разработке защитных затворов на основе других научно-технических решений. По данным зарубежной печати, наиболее удачными оказались электрооптические, инжекционные и фотохромные затворы.
Действие электрооптических затворов основано на принципах, используемых в ряде физических приборов и заключающихся в особых свойствах поляризованного света. Их оптическая система состоит из двух поляризационных светофильтров — поляризатора и анализатора, между которыми расположен промежуточный элемент, обладающий свойством мгновенно поворачивать плоскость линейно-поляризованного света на заданный угол, под воздействием определённых искусственно создаваемых условий. Параметры промежуточного элемента подбираются таким образом, чтобы указанный угол был равен 90°, что обусловливает практически полное гашение светового потока анализатором. Промежуточный элемент проявляет необходимые оптические свойства под воздействием одного из следующих факторов: электрического поля, магнитного поля и механического сжатия, которые могут быть вызваны электрическим импульсом.
Один из таких затворов в качестве промежуточного элемента имеет кювету из оптического стекла, наполненную раствором нитробензола, обладающего большим дипольным моментом. В обычных условиях молекулы нитробензола находятся в хаотическом состоянии и не оказывают влияния на поляризованный свет, в результате чего он почти беспрепятственно проходит через оптическую систему. При подаче электрического напряжения на электроды, между которыми находится кювета, молекулы нитробензола выстраиваются вдоль силовых линий возникшего электрического поля, раствор приобретает свойства двоякопреломляющей среды, поворачивающей плоскость поляризации света, и световой поток прерывается.
После воздействия светового излучения на светочувствительный элемент защитного устройства через 1-2 мкс оптическая плотность затвора достигает величины, равной 6 (светопропускание 0,0001%), но затем плотность начинает быстро уменьшаться, через 100 мкс её значение снижается до 3 (светопропускание 0,1%), а через 1 мс — до 1 (светопропускание 10%), что соответствует почти открытому состоянию данного затвора. Эффективное использование этого затвора возможно только в таких защитных устройствах, которые имеют дополнительный затвор, обладающий сравнительно небольшой скоростью срабатывания, но продолжительным временем защитного действия.
В другом варианте электрооптического затвора в качестве промежуточного элемента используется пластинка из специального стекла, зажатая между двумя горизонтальными вольфрамо-карбидными брусками, концы которых соединены вертикальными столбиками из пьезоэлектрической керамики (рис. 2). При прохождении через столбики электрического тока они сокращаются и сдавливают пластинку. В результате она приобретает свойства двоякопреломляющего светофильтра. В открытом состоянии затвор пропускает 20% падающего света. Время срабатывания такого затвора около 100 мкс, максимальная оптическая плотность 3 (светопропускание 0,1%). Переход затвора в открытое состояние происходит мгновенно, сразу же после снятия напряжения с пьезоэлектрических столбиков.
Рис. 2. Схема электрооптического затвора: 1 — поляризатор; 2 — пьезоэлектрические наборные столбики; 3 — нижний брусок; 4 — верхний брусок; 5 — анализатор; 6 — стеклянная пластинка
Американские специалисты отмечают, что электрооптические затворы можно использовать в основном для совмещения с другими оптическими приборами, а изготовление защитных очков на их основе перспективы не имеет, так как они существенно ограничивают поле зрения.
При создании средств защиты глаз от светового излучения ядерного взрыва американские специалисты уделяют значительное внимание разработке инжекционных затворов. Один из таких затворов выполнен в виде щитка, устанавливаемого вместо очков перед глазами пилота. Он состоит из двух прозрачных изогнутых пластин с герметизированным воздушным промежутком между ними. По периферии воздушного промежутка вмонтированы электродетонаторы, которые срабатывают от электрического импульса и распыляют графитовую коллоидную суспензию, покрывающую внутренние поверхности пластин, увеличивая оптическую плотность щитка до 3 единиц и более, прерывая тем самым прохождение светового потока к глазам лётчика. В открытом состоянии такой щиток пропускал 80-90% падающего света, а в закрытом — 0,1% и менее. Аналогичными характеристиками обладает и другой вариант созданного в США защитного инжекционного щитка, в котором полость заполняется непроницаемой для света жидкостью (нитрил олеиновой кислоты).
Лабораторные и лётные испытания инжекционных защитных устройств, проведённые американскими специалистами, в целом показали положительные результаты. Вместе с тем была отмечена необходимость увеличения скорости их срабатывания и повышения надёжности, а также сокращения времени, на которое лётчик отвлекался от управления самолётом при замене сработавших щитков.
Одновременно с инжекционными щитками разрабатывались фотохромные защитные очки косвенного действия. Один из их опытных вариантов показан на рис. 3. Основу каждой половины очков составляет защитный затвор, состоящий из двух кварцевых клиньев, между которыми диагонально расположена щель шириной 0,25 мм, заполненная толуоловым раствором фотохромного вещества. Снизу и сверху кварцевых клиньев вмонтированы ультрафиолетовые излучатели (ксеноновые лампы-вспышки). Очки оснащены несколькими вспомогательными светофильтрами различного назначения (с постоянной оптической плотностью). Работоспособность затвора составляет 150 циклов «потемнение — восстановление прозрачности», после чего постепенно начинает ощущаться возрастающее явление усталости фотохромного компонента. Электрическая схема устройства включает батарею конденсаторов, которая за 1,5 с заряжается до напряжения 3500 В от бортового источника электропитания. Срабатывание затвора происходит следующим образом: световое излучение воздействует на чувствительный элемент, который подаёт электрический сигнал на пусковое устройство, включающее конденсаторные батареи на разряд через ксеноновые лампы (примерно 190 мкс после начала воздействия светового излучения взрыва). Оптическая плотность этих очков достигает 3-3,3. Восстановление прозрачности сработавшего затвора (после прекращения светового излучения) происходит через 3,2 с. Во время лабораторных и лётных испытаний на самолёте В-52, кроме защитных свойств очков, оценивались их эксплуатационные характеристики, проверялось их влияние на восприятие дальних и ближних предметов, на аккомодацию, конвергенцию, стереоскопичность и цветовую чувствительность органов зрения. Иностранная печать отмечает, что по всем указанным критериям очки показали удовлетворительные результаты.
Рис. 3. Устройство фотохромных очков косвенного действия: 1 — щель, заполненная раствором фотохромного вещества; 2 — кварцевые клинья; 3 — светофильтры; 4 — ультрафиолетовые светофильтры; 5 — ксеноновые лампы вспышки; 6 — отражатели
Как сообщала зарубежная печать, специалисты США и других капиталистических стран при создании средств защиты глаз членов экипажей самолётов и вертолётов военной авиации используют новейшие достижения науки и техники. В частности, исследуются возможности применения для этих целей новых материалов, электронных устройств и т. д. Военные ведомства этих стран, и прежде всего стран — участниц агрессивного блока НАТО, несмотря па переживаемые капиталистическим миром экономические трудности, затрачивают большие суммы на проведение исследований и опытно-конструкторских работ по созданию таких средств.
Приведённые выше краткие сведения касаются лишь основных, наиболее важных направлений работ в области создания средств защиты глаз членов лётных экипажей от светового излучения ядерного взрыва, проводимых по программам ВВС США. Иностранные военные специалисты отмечают, что разработанные защитные устройства относятся к опытным образцам и требуют улучшения. Однако сам характер работ ещё раз убедительно показывает, что агрессивные империалистические силы продолжают вести активную подготовку к развязыванию войны с применением ядерного оружия.
Средства защиты глаз от светового излучения (1976) — 1970 — 1990 гг — Материалы посвящены — Top secret
Полковник-инженер Ю Иванов
В вооружённых силах капиталистических государств, и в первую очередь членов агрессивного блока НАТО, большое внимание уделяется подготовке к ведению боевых действий в условиях применения оружия массового поражения. Важной частью этой подготовки являются научно-исследовательские и опытно-конструкторские работы в области создания средств индивидуальной зашиты личного состава, в том числе средств зашиты глаз членов экипажей самолетов и вертолетов военной авиации от светового излучения ядерных взрывов. Наибольший размах эти работы получили в США, где они проводятся с середины 50-х годов.
По данным зарубежной печати, к настоящему времени американские специалисты выработали основные требования к средствам защиты глаз, определили наиболее перспективные научно-технические направления в данной области, создали значительное количество экспериментальных защитных устройств, провели обширные медицинские исследования, выявившие опасность поражения органов зрения в зависимости от вида и мощности взрыва, прозрачности атмосферы, времени суток и т. д.
По мнению иностранных специалистов, световое излучение ядерного взрыва представляет большую опасность для экипажей самолетов и вертолетов. Радиус действия этого поражающего фактора намного превышает радиус действия ударной волны и проникающей радиации. Световое излучение может вызвать временное ослепление, ожоги век, глазного яблока, глазного дна и открытых участков кожи.
Временное ослепление, представляющее собой функциональную форму расстройства органов зрения, считается наиболее легким, но очень опасным поражением, вызываемым световым излучением.
Американские специалисты считают, что человек, временно ослепленный световым излучением, в лечении не нуждается, так как органы зрения самопроизвольно приходят в норму без остаточных патологических изменении.
Ожоги век и переднего отдела глазного яблока возникают вследствие направленного воздействия видимого и инфракрасного спектров излучении ядерного взрыва. При этом поражение глаз может сопровождаться ожогами лица и других открытых участков кожи. Такое комбинированное поражение выводит личный состав из строя на длительное время и требует лечения.
Ожоги глазного дна (хориоретинальные ожоги) могут возникнуть, когда световое излучение огненного шара ядерного взрыва сфокусируется преломляющими средствами глаза на его дно. Такой ожог, как правило, не приводит к ухудшению зрения. Однако если свет, излучаемый огненным шаром, полностью или частично сфокусируется на желтое пятно и диск зрительного нерва, то соответственно может наступить полная, неизлечимая слепота или существенное, непроходящее ослабление зрения. В отличие от других видов поражения глаз появление хориоретинальных ожогов может происходить на значительных удалениях от эпицентра ядерного взрыва, при которых разрешающей способности глаза еще достаточно, чтобы воспринять огненный шар как светящуюся точку. Эти расстояния зависят от светопоглощающих и светорассеивающих свойств атмосферы. Предельные значения расстояний от эпицентра ядерного взрыва мощностью 20 кт, при которых могут наблюдаться ожоги глазного дна, приводятся в табл. 1.
Таблица 1 Предельные расстояния от эпицентра взрыва мощностью 20 кт, на которых возникают ожоги глазного дна | |||
Видимость, км | предельное расстояние км | ||
в сол-нечный день | в сумерки | ночью | |
40 | 37 | 49,6 | 64 |
19 | 17,4 | 24,7 | 32 |
9,5 | 9,5 | 12,8 | 16 |
3,3 | 3,3 | 4,8 | 6,5 |
При термоядерных взрывах большой мощности такие расстояния исчисляются сотнями километров. Например, при взрыве американского термоядерного боеприпаса с тротиловым эквивалентом I Mт на высоте 80 км, произведенном ночью над Тихим океаном, хориоретинальные ожоги наблюдались у подопытных кроликов, находящихся более чем в 500 км от эпицентра взрыва.
Ультрафиолетовая часть спектра светового излучения, которая особенно значительна при высотных ядерных взрывах, может вызвать специфическое поражение глаз с симптомами рези, светобоязни и слезотечения, а также острые конъюнктивиты и другие болезненные явления. При низких воздушных взрывах на сравнительно небольших удалениях от их эпицентров указанные симптомы в большинстве случаев оказываются незамеченными на фоне других видов поражении, вызванных действием видимого и инфракрасного спектров излучений. При высотных взрывах ультрафиолетовое излучение может вызвать самостоятельный поражающий эффект. При этом экипажи самолетов и вертолетов, находящихся в воздухе, окажутся в менее выгодных условиях по сравнению с личным составом, расположенным на земле (море), так как они будут лететь над приземным слоем атмосферы, загрязненным пылью и насыщенным влагой, в котором ультрафиолетовое излучение в значительной степени ослабляется. По данным зарубежной печати, поражения, вызванные действием ультрафиолетового излучения, при правильном лечении проходят в течение нескольких дней.
Рассматривая приведенные выше данные, иностранные специалисты считают, что световое излучение ядерного взрыва может вывести из строя на сравнительно продолжительный срок личный состав любых родов войск, но с различными последствиями. Поражение летчиков, например, может привести к катастрофам самолетов и вертолетов. По мнению американских специалистов, предельно допустимое время ослепления летчика современного самолета, выполняющего вираж, составляет всего 5 с. Это время принято за норматив при обосновании требований к средствам защиты глаз членов экипажей самолетов ВВС США.
При создании первых средств защиты глаз использовались светофильтры постоянной плотности. В результате проведенных исследовании иностранные специалисты пришли к выводу, что эффективная защита возможна при оптической плотности светофильтров, обеспечивающих ослабление светового потока на 3-4 порядка1. Однако очками с такими плотными светофильтрами в обычных условиях пользоваться невозможно. Поэтому для обеспечения достаточной видимости хотя бы в дневное время первоначально были созданы табельные полетные очки из прозрачной пластмассы с золотым покрытием, имеющие оптическую плотность 2 (светопропускание 1%), а впоследствии с оптической плотностью 1,3 (светопропускание около 2%). Однако, по мнению американских специалистов, очки со светофильтрами постоянной плотности не-надежны, так как их защитное действие ограничивается лишь снижением продолжительности временного ослепления (в среднем на 1/3).
Кроме того, эффективность таких очков зависит от времени упреждения их применения по отношению к моменту ядерного взрыва (то есть от интервала времени между их надеванием и взрывом). Это связано с различной скоростью реакции зрачка на свет и темноту. Обычно при смене темноты на яркий свет процесс сокращения зрачка завершается за 3-5 с, расширение же его при смене яркого света на темноту происходит в течение более длительного времени.
Другим табельным средством защиты глаз от светового излучения ядерного взрыва, имеющимся в ВВС США и некоторых других капиталистических странах, является монокулярная экранирующая заслонка. Она представляет собой зачерненный с внутренней стороны металлический выпуклый лепесток с Т-образпым кронштейном, горизонтальная часть которого покрыта клейким веществом, позволяющим прикреплять заслонку к надбровной дуге и закрывать ею один глаз. В этом случае, если летчик попадет под воздействие светового излучения, то ослеплению подвергнется только один незащищенный глаз. Сняв заслонку с защищенного глаза, он сможет при соответствующей натренированности продолжать выполнение боевой задачи. Монокулярная заслонка относится к числу простейших и наиболее дешевых средств, которые в отличие от темных очков можно применять не только в дневное, но и в ночное время. К явным ее недостаткам относится потеря бинокулярного стереоскопического зрении и вероятность получения ожога незащищенного глаза.
К простейшим средствам защиты глаз, испытывавшимся в ВВС США, относятся щелевые очки. Их защитное действие основано на значительном ограничении поля зрения, что снижает вероятность ожога глаз и значительно сокращает продолжительность временного ослепления. Однако эти очки заметно увеличивают напряжение человека, сковывают его действия и в конечном счете оказывают отрицательное влияние на его боеспособность. Американские специалисты признали их полностью непригодными для практического использования летными экипажами.
Примерно по такому же принципу действуют и защитные экраны, выполненные в виде козырьков, боковых щитков и шторок. Они испытывались в ВВС США на истребителях-бомбардировщиках F-111. Как сообщает иностранная печать, испытания показали, что такие шторки и щитки могут лишь частично защитить глаза членов экипажа и оборудование кабины.
По мнению иностранных специалистов, светофильтры постоянной плотности, монокулярные заслонки и другие средства предварительного экранирования органов зрения не могут надежно защитить их от поражения световым излучением ядерного взрыва. Выполнив определенные исследования, американские специалисты пришли к выводу, что гарантированную защиту глаз от светового излучения в состоянии обеспечить только защитные устройства принципиально другого типа, получившие название динамических. Они представляют собой очки со специальными светофильтрами — автоматическими затворами, прерывающими световой поток в начальной стадии излучения. В США разработаны основные требования к таким средствам защиты (табл. 2).
Как сообщает зарубежная печать, в США проводились исследования двух разновидностей динамических защитных устройств: прямого и косвенного действия.
Таблиц, 2 Основные требования и динамическим защитным устройствам | |
Время срабатывания, мкс | 50-75 |
Доля падающего светового нал учения, проходящего через затвор, проц.: | |
при открытом затворе | 40-80 (0,4-0,1) |
при закрытом затворе | 0,01 (4) |
Время перехода в исходное состояние, с | 1-5 |
Примечание. В скобках указана оптическая плотность. |
В устройствах прямого действия в качестве рабочего элемента использовались светофильтры, оптическая плотность которых резко увеличивается в результате непосредственного воздействия светового излучения. Например, фотохромные (фототропные) светофильтры обладают способностью под воздействием коротковолновой составляющей светового излучения приобретать голубую окраску, исчезающую в темноте или под воздействием длинноволновой составляющей. Для создания защитных очков в США было синтезировано большое количество фотохромных химических соединений, быстро реагирующих на коротковолновую составляющую светового излучения. Американские специалисты считали, что, располагая такими веществами и вводя их в различных концентрациях в бесцветные стекла или пленки, можно создать светофильтры, которые при условии почти одновременного перехода всех фотохромных молекул в окрашенную форму достигнут любой заданной оптической плотности в течение нескольких десятков микросекунд. Для этого необходимо было выполнить лишь одно условие: одновременно воздействовать коротковолновым излучением на все молекулы фотохромного вещества, находящегося в массе светофильтра.
Однако было установлено, что это условие естественным путем на практике не реализуется по двум основным причинам. Первая из них заключается в том, что световое излучение ядерного взрыва имеет смешанный, меняющийся во времени спектральный состав, ощутимую долю которого составляет длинноволновый свет, тормозящий переход фотохромных веществ в окрашенную форму. Другая причина обусловлена экранирующим действием поверхностного слоя светофильтра, который, окрашиваясь раньше остальной его массы, препятствует облучению распределенных в глубине светофильтра фотохромных веществ. В связи с этим, как отмечается в зарубежной печати, динамические защитные средства прямого действия в ВВС СШЛ не используются.
В защитных устройствах косвенного действия световая энергия, воздействуя на светочувствительный элемент, преобразуется в электрический сигнал, поступающий в дискриминатор импульсов, который задерживает и гасит ложные сигналы, возбужденные другими источниками света, а пропускает сигналы, возбужденные начальной фазой светового излучения ядерного взрыва. Этот сигнал усиливается и приводит в действие защитный затвор.
Рис. 1. Монокулярная экранирующая заслонка |
Рис. 2. Схема электрооптического затворе: 1 — поляризатор; 2 — пьезоэлектрические наборные столб и им; 3 — нижний брусок; 4 — верхний брусок; 5 — анализатор; б — стеклянная пластинка |
В 1957 году американские специалисты приступили к созданию первых защитных устройств косвенного действия. Это были электромеханические растровые защитные очки, состоящие из неподвижных пластинок с чередующимися вертикальными прозрачными и непрозрачными полосами. Ширина прозрачных полос была несколько меньше, а непрозрачных несколько больше 1,5 мм. Точно такие же полосы имелись на подвижных пластинках, вплотную прилегающих к неподвижным и передвигающихся в горизонтальном направлении.
При открытом затворе непрозрачные и прозрачные полосы подвижных и неподвижных пластин совмещались и к глазам поступало 30- 40%. падающего на них света. При срабатывании затвора от воздействия светового излучения подвижные пластины смещались относительно неподвижных на 1,5 мм, и прозрачные полосы обеих пластин взаимно перекрывались непрозрачными полосами. Светопропускание очков в закрытом состоянии составляло 0,01% (оптическая плотность 4),однако скорость срабатывания лежала в пределах 250-560 мкс, то есть была недостаточной для гарантированной защиты глаз.
Учитывая большие трудности создания затворов механического действия с необходимыми скоростными характеристиками и ряд выявившихся существенных эксплуатационных недостатков электромеханических очков (они. в частности, плохо совмещались с полетными шлемами), американские специалисты приступили к разработке защитных затворов на основе других научно-технических решений. По данным зарубежной печати, наиболее удачными оказались электрооптические, инжекционные и фотохромные затворы.
Действие электрооптических затворов основано на принципах, используемых в ряде физических приборов и заключающихся в особых свойствах поляризованного света. Их оптическая система состоит из двух поляризационных светофильтров — поляризатора и анализатора, между которыми расположен промежуточный элемент, обладающий свойством мгновенно поворачивать плоскость линейно-поляризованного света на заданный угол, под воздействием определенных искусственно создаваемых условий. Параметры промежуточного элемента подбираются таким образом, чтобы указанный угол был равен 90°, что обусловливает практически полное гашение светового потока анализатором. Промежуточный элемент проявляет необходимые оптические свойства под воздействием одного из следующих факторов: электрического поля, магнитного поля и механического сжатия, которые могут быть вызваны электрическим импульсом.
Один из таких затворов в качестве промежуточного элемента имеет кювету из оптического стекла, наполненную раствором нитробензола, обладающего большим дипольным моментом. В обычных условиях молекулы нитробензола находятся в хаотическом состоянии и не оказывают влияния на поляризованный свет, в результате чего он почти беспрепятственно проходит через оптическую систему. При подаче электрического напряжения на электроды, между которыми находится кювета, молекулы нитробензола выстраиваются вдоль силовых линий возникшего электрического поля, раствор приобретает свойства двоякопреломляющей среды, поворачивающей плоскость поляризации света, и световой поток прерывается.
После воздействия светового излучения на светочувствительный элемент защитного устройства через 1-2 мкс оптическая плотность затвора достигает величины, равной 6 (светопропускание 0.0001%), но затем плотность начинает быстро уменьшаться, через 100 мкс ее значение снижается до 3 (светопропускание 0,1%), а через 1 мс-до 1 (светопропускание 10%), что соответствует почти открытому состоянию данного затвора. Эффективное использование этого затвора возможно только в таких защитных устройствах, которые имеют дополнительный затвор, обладающий сравнительно небольшой скоростью срабатывания, но продолжительным временем защитного действия.
В другом варианте электрооптического затвора в качестве промежуточного элемента используется пластинка из специального стекла, зажатая между двумя горизонтальными вольфрамо-карбидными брусками, концы которых соединены вертикальными столбиками из пьезоэлектрической керамики (рис. 2). При прохождении через столбики электрического тока они сокращаются и сдавливают пластинку. В результате она приобретает свойства двоякопреломляющего светофильтра. В открытом состоянии затвор пропускает 20% падающего света. Время срабатывания такого затвора около 100 мкс, максимальная оптическая плотность 3 (светопропускание 0,1%). Переход затвора в открытое состояние происходит мгновенно, сразу же после снятия напряжения с пьезоэлектрических столбиков.
Рис. 3. Устройство фотохромных очков косвенного действия: 1 — щель, заполненная раствором фотохром ног о веществ л; 2 — кварцевые клинья; 1 — светофильтры; 4 — ультрафиолетовые светофильтры; 5 — ксеноновые лампы вспышки; б — отражатели |
Американские специалисты отмечают, что электрооптические затворы можно использовать в основном для совмещения с другими оптическими приборами, а изготовление защитных очков на их основе перспективы не имеет, так как они существенно ограничивают поле зрения.
При создании средств защиты глаз от светового излучения ядерного взрыва американские специалисты уделяют значительное внимание разработке инжекционных затворов. Один из таких затворов выполнен в виде щитка, устанавливаемого вместо очков перед глазами пилота. Он состоит из двух прозрачных изогнутых пластин с герметизированным воздушным промежутком между ними. По периферии воздушного промежутка вмонтированы электродетонаторы, которые срабатывают от электрического импульса и распыляют графитовую коллоидную суспензию, покрывающую внутренние поверхности пластин, увеличивая оптическую плотность щитка до 3 единиц и более, прерывая тем самым прохождение светового потока к глазам летчика. В открытом состоянии такой щиток пропускал 80-90%. падающего света, а в закрытом — 0,1% и менее. Аналогичными характеристиками обладает и другой вариант созданного в США защитного инжекционного щитка, в котором полость заполняется непроницаемой для света жидкостью (нитрил олеиновой кислоты).
Лабораторные и летные испытания инжекционных защитных устройств, проведенные американскими специалистами, в целом показали положительные результаты. Вместе с тем была отмечена необходимость увеличения скорости их срабатывания и повышения надежности, а также сокращения времени, на которое летчик отвлекался от управления самолетом при замене сработавших щитков.
Одновременно с инжекционными щитками разрабатывались фотохромные защитные очки косвенного действия. Один из их опытных вариантов показан на рис. 3. Основу каждой половины очков составляет защитный затвор, состоящий из двух кварцевых клиньев, между которыми диагонально расположена щель шириной 0,25 мм, заполненная толуоловым раствором фотохромного вещества. Снизу и сверху кварцевых клиньев вмонтированы ультрафиолетовые излучатели (ксеноновые лампы-вспышки). Очки оснащены несколькими вспомогательными светофильтрами различного назначения (с постоянной оптической плотностью). Работоспособность затвора составляет 150 циклов «потемнение — восстановление прозрачности», после чего постепенно начинает ощущаться возрастающее явление усталости фотохромного компонента. Электрическая схема устройства включает батарею конденсаторов, которая за 1,5 с заряжается до напряжения 3500 В от бортового источника электропитания. Срабатывание затвора происходит следующим образом: световое излучение воздействует на чувствительный элемент, который подает электрический сигнал на пусковое устройство, включающее конденсаторные батареи на разряд через ксеноновые лампы (примерно 190 мкс после начала воздействия светового излучения взрыва). Оптическая плотность этих очков достигает 3-3,3. Восстановление прозрачности сработавшего затвора (после прекращения светового излучения) происходит через 3,2 с. Во время лабораторных и летных испытаний на самолете В-52, кроме защитных свойств очков, оценивались их эксплуатационные характеристики, проверялось их влияние на восприятие дальних и ближних предметов, на аккомодацию, конвергенцию, стереоскопичность и цветовую чувствительность органов зрения. Иностранная печать отмечает, что по всем указанным критериям очки показали удовлетворительные результаты.
Как сообщала зарубежная печать, специалисты США и других капиталистических стран при создании средств защиты глаз членов экипажей самолетов и вертолетов военной авиации используют новейшие достижения науки и техники. В частности, исследуются возможности применения для этих целей новых материалов, электронных устройств и т. д. Военные ведомства этих стран, и прежде всего стран — участниц агрессивного блока НАТО, несмотря па переживаемые капиталистическим миром экономические трудности, затрачивают большие суммы на проведение исследований и опытно-конструкторских работ по созданию таких средств.
Приведенные выше краткие сведения касаются лишь основных, наиболее важных направлений работ в области создания средств защиты глаз членов летных экипажей от светового излучения ядерного взрыва, проводимых по программам ВВС США. Иностранные военные специалисты отмечают, что разработанные защитные устройства относятся к опытным образцам и требуют улучшения. Однако сам характер работ еще раз убедительно показывает, что агрессивные империалистические силы продолжают вести активную подготовку к развязыванию войны с применением ядерного оружия.
1Оптическая плотность равна десятичному логарифму кратности ослаблении падающего светового потоки.
Зарубежное военное обозрение, 1976, №7, с. 55-61
Ядерный взрыв и его световое излучение как источник пожаров.
Светящаяся область.
Под световым излучением ядерного взрыва понимается электромагнитное излучение оптического диапазона в видимой, ультрафиолетовой и инфракрасной областях спектра. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева зависит от многих факторов и может быть такой, что поверхность объекта обуглится, оплавится или воспламенится. Источником светового излучения является светящаяся область взрыва.
Эта область состоит из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах — и испарившегося грунта.
Светящаяся область в своем развитии проходит три фазы — начальную, первую и вторую. Температура светящейся области за время ее существования изменяется от единиц до десятков тыс. град.К. Длительность свечения и размер светящейся области (табл.1) зависят от мощности ядерного взрыва.
Основным параметром, определяющим поражающую способность светового излучения ЯВ, является световой импульс.
Таблица 0.1. Характеристики светящейся области ЯВ к концу второй фазы свечения
Мощность ЯВ | Время свечения, сек | Диаметр, м |
Сверх малая, до 1 Кт Малая , до 10 Кт Средняя , до 100 Кт Крупная , до 1 Мт Сверхкрупная, > 1 Мт | до 1 1-2 2-5 5-10 10-40 | 50-200 200-500 500-1000 1000-2000 2000-5000 |
Световой импульс яв.
Световой импульс ЯВ в некоторой точке пространства — это энергия светового излучения, падающая за все время свечения на единицу площади поверхности, перпендикулярной направлению излучения.
Приближенно величина светового импульса может быть рассчитана по формуле:
(1)
где I -световой импульс, кДж/м.кв,
q -тротиловый эквивалент ЯВ, Кт,
R -расстояние от центра взрыва до данной точки, км ,
r -радиус светящейся области ,км ,
К -средний коэффициент ослабления излучения , км-1 ,
e -основание натуральных логарифмов.
Коэффициент ослабления излучения (табл.2) связан с дальностью видимости Двидсоотношением:
К = 4/ Двид
Таблица 0.2. Значения Двиди К в различных условиях.
Условия видимости | Двид(км) | К |
Очень хорошие Хорошие для условий города Редкий туман Туман | 40 10 4 2 | 0,1 0,4 1,0 2,0 |
Воздействие светового излучения яв на людей и объекты.
Поражение световым излучением заключается во временном или необратимом поражении зрения и ожогах различных степеней.
Поражение глаз световым излучением возможно трех видов: временное ослепление, которое может длиться до 30 мин., ожоги глазного дна, возникающие при прямом взгляде на светящуюся область, и ожоги роговицы и век.
Временное ослепление не требует специальной помощи. Днем оно проходит через 1 -5 минут, а ночью длится до 30 минут.
Ожоги. Различают четыре степени ожогов:
ожог первой степени характеризуется покраснением кожи и поверхностным отеком (2 — 4 кал/см2или 85 -170 кДж/м2),
второй степени — образованием пузырей, (4 -10 кал/см2или 170 -420 кДж/м2),
третьей степени — возникновением язв и поверхностным омертвлением кожи, (10-15 кал/см2или420 -630 кДж/м2),
четвертой степени — обугливанием кожи и мышц, (свыше 15 кал/см2или более 630 кДж/м2),
Воздействие светового излучения на элементы объектов вызывает их нагрев. Степень нагрева зависит от переданного тепла, времени воздействия, конструкции элемента, теплоемкости и теплопроводности материалов. В большинстве случаев нагрев от светового излучения опасен возможными воспламенениями и последующими пожарами (табл.12.3).
Таблица 0.3. Характеристики воздействия светового импульса на различные материалы
Материалы | Световой импульс , кДж/м.кв | |
Воспламенение | Устойчивое горение | |
Бумага газетная Сухие сено,стружка Ткань х/б темная светлая Брезент палаточный Доски сухие Доски,окрашенные в белый цвет темный цвет Толь,рубероид | — 340-500 250-420 500-750 420-500 500-670 700-1900 250-420 590-840 | 130-170 710-840 590-670 840-1500 630-840 1700-2100 4200-6300 840-1200 1000-1700 |