Зарядное устройство li ion – Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Мощное зарядное устройство для LI-ION аккумуляторов


Приветствую, Самоделкины!
Литий-ионные аккумуляторы типоразмера 18650, наверное, самый популярный стандарт на сегодня. Их применяют в ноутбуках, фонариках, пауэрбанках и даже в электрокарах.

Энтузиасты, которые решили собрать свой первый электробайк, как правило, используют в качестве аккумуляторов именно банки формата 18650, да и не только энтузиасты, почти во всех электровелосипедах использованы батареи из этих аккумуляторов.


Из-за отсутствия достаточных средств на покупку новых аккумуляторов часто приходится покупать бывшие в употреблении аккумуляторы (б.у.), например, от ноутбуков. Также приходится их разбирать, замерять емкости и сортировать с целью сборки батареи.


Как заряжать банку 18650, думаю, знает каждый. В наше время можно найти специализированное зарядное устройство.


Либо купить вот такую платку, которая питается от обычного usb-порта и способна заряжать 1 аккумулятор током до 1А.


Но как быть, если аккумуляторов много? Правильно, купить больше зарядок. А что, если аккумуляторов ну уж очень много?

В этом случае покупать умное зарядное устройство уже крайне невыгодно. Так что же делать? Взяться за паяльник, естественно и найти (купить/переделать/сделать) блок питания с напряжением 5В и как можно с большим выходным током.

В задумке нет ничего хитроумного и показанное здесь не является новинкой. Автор (AKA KASYAN), просто решил сделать себе зарядку, которая может одновременно заряжать ни много ни мало 20 аккумуляторов стандарта 18650. За зарядку каждой банки отвечает старая добрая плата на базе микросхемы TP4056.

Такие платы бывают с защитой и без.


Нам нужны те, которые без защиты. Для данного проекта, как легко догадаться, нам понадобится 20 таких плат, а еще 20 холдеров для установки аккумуляторов.


Некоторые платы заряда у автора с защитой, но он припаял аккумулятор непосредственно к выходу микросхемы TP4056, минуя схему защиты.

Дело в том, что по наблюдениям автора, при стандартном включении аккумуляторы слегка недозаряжается, поэтому если брать такие платы для зарядного устройства, то берите те, что без платы защиты.

Собранная система естественно нагревается, так как используемые в данной самоделке микросхемы TP4056 работают в линейном режиме, а с учетом того, что их количество составляет аж 20 штук, нагрев получается внушительным. Греется и сам источник питания. Еще бы, ведь он работает на максимальной мощности.

Теперь пару слов о том, в чем же собственно особенность такой зарядки. Дело в том, что в продаже вы вряд ли найдете схожий агрегат. Автор естественно попытался найти что-то подобное, но в интернет магазинах нашел зарядку максимум для 8-ми литий-ионных аккумуляторов типоразмера 18650.


Из описания товара становится ясно, что максимальное значение тока заряда, в случае одновременной зарядки всех 8-ми аккумуляторов, не превышает 500 мА. Это естественно мало. Тщательно профильтровав все предложения и сравнивав цены на предлагаемые товары, автор вернулся к начальному плану — сделать зарядку своими руками.

Для безопасной работы конструкцию дополним вентилятором.


Вентилятор самый обычный, от самого обычного компьютерного блока питания. Он питается от 8-ми вольт, которые получаются с помощью повышающего dc-dc преобразователя МТ3608, который в свою очередь запитан от основного источника питания с напряжением 5В.


Количество заряжаемых аккумуляторов может быть от 1 до 20, так как платы не связанны друг с другом и каждая заряжает свой аккумулятор. Холдеры самые обычные. У китайцев в продаже имеются 2 варианта таких холдеров, автор советует использовать второй вариант, стоит чуть дороже, но такая конструкция гораздо надежнее и прослужит намного дольше.


Ну а теперь приступаем к сборке.

Более подробно с процессом сборки можете ознакомиться, посмотрев видеоролик автора:


Проверка и испытания:



Как видите, все прекрасно работает. О процессе зарядки сигнализирует красный светодиод.
На этом все. Благодарю за внимание. До новых встреч!
Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Зерядка для литиевых аккумуляторов — как правильно и сколько заряжать Li-ion АКБ

Литиевые аккумуляторы представляют гальваническую пару, в которой катодом служат соли лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Изделия могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них общий, отвечающий особенностям электрохимической реакции. Как зарядить Li-ion АКБ?

ЗУ для Li-ion АКБ

Как правильно заряжать литиевые аккумуляторы

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная  зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.

Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.

Зарядка шуруповерта

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.

Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

График зарядки li-ion АКБ

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.

Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.

Защита-18650

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
  • MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

pcb-защита батареи

Как зарядить литиевый аккумулятор 12 вольт

Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.

Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок.

На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В.  На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.

Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.

Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:

  • Зарядное устройство приобретаемое в комплекте с прибором.
  • Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
  • От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
  • Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.

Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.

Зарядка через USB порт

Как заряжать литиевые аккумуляторы шуруповерта

Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактором 18650. Схема зарядки применяется из двух этапов CC/CV.

Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50 % емкости – одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.

Глубина разряда, % Количество циклов заряда
100 500
50 1500
25 2500
10 4 700

Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60 % и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10 %. Лучшая температура для заряда +15-25 0 С. При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.

Как заряжать литиевый аккумулятор шуруповерта зарядным устройством, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, вплоть до окончания процесса.

Последовательное соединение Ли-ион аккумуляторов

Сколько заряжать литиевый аккумулятор

Время зарядки аккумуляторов определяется процессом восстановления емкости. Различают полный и частичный заряд.

Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80 %. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.

Для полного цикла зарядки батарей из нескольких элементов, соединенных последовательно, используют 2 этапа – CC/CV. Этап СС длится, пока на клеммах не появится напряжение , равное рабочему,  в вольтах. Второй этап: при стабильном напряжении подается в банку ток, но с увеличением емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.

Можно ли заряжать литиевый аккумулятор обычной зарядкой

Две разных системы аккумуляторов – литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько требовательны к параметрам зарядки, как литиевые. Да и критерии заряда другие.

Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение. Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита – BMS – она справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.

В зарядном устройстве для свинцовых АКБ главный показатель – стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.

Универсальное зарядное устройство Кулон

Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».

Зарядное устройство для Li-ion аккумуляторов. — Зарядные устройства — Источники питания

Сергей Никитин

Простое зарядное устройство, рассматриваемое в этой статье, позволяет заряжать Li-ion аккумуляторы, в конструкции которых отсутствует контроллер заряда.
Это зарядное устройство не позволяет их перезарядить или заряжать током — превышающим допустимый для этих аккумуляторов, что намного продлевает срок их службы.

Всё начиналось как всегда.
Дело в том, что когда в батарее ноутбука выходит из строя хотя бы один аккумулятор, то контроллер её блокирует, и замена неисправного аккумулятора на новый — обычно не приводит к восстановлению работоспособности батареи. Батарею нужно разблокировать, но это не так просто. Нужно что-то типа программатора и программа, которая стоит не малых денег. Да и нет полной гарантии, что заменив один аккумулятор в батарее, через месяц-другой не выйдет из строя ещё какой нибудь, а они новые тоже стоят не малых денег.

И так, в следствии вышесказанного — появились в хозяйстве аккумуляторы от батарей ноутбуков  разных ёмкостей и годов выпуска, и эти аккумуляторы стали перекочёвывать в фонарики и в другие устройства.
Ёмкость этих аккумуляторов в среднем 3 А/Ч,  и во время их зарядки приходилось каждый раз контролировать процесс заряда, что порядком надоело.  Лень подвигла к творчеству, и в связи с этим была разработана вот такая схема.

ЗУ это планировалось запитывать в основном от USB-разъёма компьютера или ноутбука, и в связи с этим на входе ЗУ был установлен разъём мини-USB и обычный разъём USB, для универсальности.

Потом два ЗУ были собраны в одном корпусе для одновременной зарядки двух Li-ion аккумуляторов, но как оказалось — одновременно заряжать два аккумулятора, позволяют себе не все устройства с USB выходом.
На этот случай в ЗУ был установлен ещё и обычный разъём, для подключения блока питания (зарядки от телефона) с  выходным напряжением 5 Вольт и допустимым током 3А.

Как сказал выше, два ЗУ собрал в одном корпусе для заряда сразу двух аккумуляторов. В качестве выходного транзистора VT1 поставил МОСФЕТ с материнской платы.
Здесь можно применить любой подходящий МОСФЕТ, только с Р-каналом. На материнских платах очень много мощных МОСФЕТ-ов, но в основном они  там с N-каналом, но на некоторых «материнках» попадаются один-два транзистора и с Р-каналом. У них у всех маленькое рабочее напряжение до 20 вольт обычно, но очень большие токи, за 20 ампер и это в SMD исполнении.

Теперь как это всё работает;
При подаче на ЗУ входного напряжения 5 Вольт — загорается зелёный светодиод, и при установки в ЗУ аккумулятора — начинается заряд, об этом говорит уже красный светодиод.
Открывается VT2, а он открывает VT1, (у МОСФЕТА очень маленькое сопротивление в открытом состоянии, сотые или тысячные доли Ом).

По достижении на аккумуляторе напряжения 4,1Вольта — открывается VD3, который закрывает VT2, а он в свою очередь позволяет закрыться VT1 (если быть совсем точным, то полностью всё не закрывается, происходит подпитка маленьким током и удержание 4,1В на аккумуляторе, это нормальный режим для литиевых аккумуляторов).
По окончании заряда аккумулятора, красный светодиод гаснет.

При указанных номиналах элементов R10 и R8 — оконечное напряжение заряда составляет 4,1 Вольт, что немного не соответствует полному заряду Li-ion аккумуляторов (4,2 Вольт), но значительно продлевает срок их службы.

Вместо TL431 можно поставить КА431, или любой другой 431-й так называемый «интегральный регулируемый стабилизатор напряжения» (они применяются практически в любом импульсном блоке питания).
Плата была сделана на два канала в SMD  исполнении, хотя и не все установленные детали здесь SMD.
Вот так это выглядит уже в рабочем варианте.

 

Плата защиты Li-ion вместо зарядного устройства?

На форумах частенько советуют использовать плату защиты от какого-либо литиевого аккумулятора (или, как ее еще называют, PCB-модуль) в качестве ограничителя заряда. То есть сделать зарядное устройство для литий-ионного аккумулятора из платы защиты.

Логика такова: по мере заряда напряжение на Li-ion аккумуляторе возрастает и как только оно достигнет определенного уровня, плата защиты сработает и прекратит зарядку.

Этот принцип, например, применен в схеме зарядки для фонарика, которая то и дело всплывает в интернетах:

На первый взгляд данное решение выглядит вполне логично, не так ли? Но если копнуть немного глубже, то оказывается минусов гораздо больше, чем плюсов.

Мы не будем заострять внимание на том, что в качестве источника зачем-то выбран 8-вольтовый блок питания. Уверен, это сделано для того, чтобы на R1 рассеивалось целых 10 Вт мощности. Резистор будет греть вашу квартиру долгими зимними вечерами.

Вместо этого присмотримся к значению порогового напряжения, при котором срабатывает защита от перезаряда. Элементом, задающим этот порог, является специализированная микросхема.

Первый минус

В платах защиты применяют микросхемы разных типов (подробнее об этом читайте в этой статье), наиболее распространенные из них представлены в таблице:

Микросхема DW01-P 628-8241ABPM-G,
628-8242BACT,
628-8254AAJ-G
628-8244AAA-G AAT8660A,
AAT8660F
FS326E
Порог срабатывания
защиты от перезаряда, В
4.250±0.05 4.350 4.45 4.325±0.050 4.30±0.04
Микросхема AAT8660B,
AAT8660G,
SA57608Y,
SA57608D
AAT8660C,
AAT8660H,
AAT8660I
AAT8660D,
AAT8660E,
AAT8660J
FS326A,
FS326C
FS326B,
R5421N112C,
R5421N152F
Порог срабатывания
защиты от перезаряда, В
4.350±0.050 4.300±0.050 4.280±0.050 4.325±0.025 4.350±0.025
Микросхема FS326D LV51140T,
R5421N111C,
R5421N151F
SA57608B,
SA57608G
SA57608C SA57608E
Порог срабатывания
защиты от перезаряда, В
4.300±0.025 4.250±0.025 4.280±0.025 4.295±0.025 4.275±0.025

Нормальным значением, до которого заряжают литий-ионный аккумулятор является 4.2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.

Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких ситуаций при нормальной эксплуатации батарей вообще быть не должно.

Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда. Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущего к неизбежному замыканию электродов и выходу аккумулятора из строя?

Уже одного этого обстоятельства достаточно чтобы отказаться от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.

Второй минус

Второй момент, на который обычно мало кто обращает внимание — это кривая заряда Li-ion аккумуляторов. Давайте освежим ее в памяти. На графике ниже показан классический профиль заряда CC/CV, что расшифровывается как Constant Current / Constant Voltage (постоянный ток/постоянное напряжение). Такой способ заряда уже стал стандартом и большинство нормальных зарядных устройств старается его обеспечивать.

Если внимательно посмотреть на график, то можно заметить, что при напряжении на аккумуляторе в 4.2В, он еще не набрал свою полную емкость.

В нашем примере, максимальная емкость аккумулятора равна 2.1А/ч. В тот момент, когда напряжение на нем станет равным 4.2 Вольта, он оказывается заряжен всего лишь до 1.82 А/ч, что составляет 87% от своей макс. емкости.

И именно в этот момент плата защиты сработает и прекратит зарядку.

Даже если ваша плата сработывает при 4.35V (предположим, она собрана на микросхеме 628-8242BACT), это не изменит ситуацию коренным образом. Из-за того, что ближе к окончанию зарядки напряжение на аккумуляторе начинает возрастать очень быстро, разница в набранной емкости при 4.2В и 4.35В едва ли составит более нескольких процентов. А при использовании такой платы вы еще и сокращаете срок службы аккумулятора.

Выводы

Итак, резюмируя все вышесказанное, можно смело утверждать, что применять платы защиты (PCM-модули) вместо зарядки для литиевых аккумуляторов крайне нежелательно.

Во-первых, это приводит к постоянному превышению пределельно допустимого напряжения на аккумуляторе и, соответственно, снижению срока его службы.

Во-вторых, из-за особенностей процесса зарядки li-ion, применение платы защиты в качестве контроллера заряда не позволит использовать полную емкость литий-ионного аккумулятора. Заплатив за аккумуляторы емкостью 3400 мА/ч, вы сможете использовать не более 2950 мА/ч.

Для полноценной и безопасной зарядки литиевых аккумуляторов лучше всего применять специализированные микросхемы. Наиболее популярной на сегодняшний день является TP4056. Но с этой микросхемой нужно быть осторожным, она не имеет защиты от дурака переполюсовки.

Схема зарядного устройства на микросхеме TP4056, а также другие проверенные схемы зарядников для Li-ion аккумуляторов мы рассматривали в этой статье.

Пользуйтесь литиевыми аккумуляторами правильно, не нарушайте рекомендованные производителем режимы заряда и они выдержат не менее 800 циклов заряд/разряд.

Помните, что даже при самой идеальной эксплуатации, литий-ионные аккумуляторы подвержены деградации (необратимой потери емкости). Также они имеют довольно большой саморазряд, равный примерно 10% в месяц.

Отправить ответ

avatar
  Подписаться  
Уведомление о