Запираемый тиристор это тиристор: Современные силовые запираемые тиристоры — Компоненты и технологии

Содержание

6.6.2.      Способы выключения тиристоров | Электротехника

Выключение тиристора путем уменьшения тока в цепи основ­ных электродов до значения, меньшего удерживающего тока, или путем разрыва цепи основных электродов.

Тиристор будет выключен, т.е. переведен из открытого состояния в закрытое, только после рассасывания неравновесных носителей заряда в базовых областях. Если до окончания процесса выключения вновь подать напряжение между основными электродами тирис­тора, то он окажется во включенном состоянии. Таким образом, для выключения тиристора необходимо некоторое время.

При выключении тиристора путем разрыва цепи основных электродов рассасывание неравновесных носителей заряда про­исходит только в результате рекомбинации. Такой способ выклю­чения применяется, когда время выключения тиристора не влияет на работу той или иной схемы.

Выключение тиристора путем изменения полярности анодного напряжения

Для ускорения процесса рассасывания неравновес­ных носителей заряда, накопленных в базовых областях при прохождении прямого тока через открытый тиристор, необходимо понизить потенциальный барьер коллекторного перехода. Однако коллекторный переход при открытом состоянии тиристора уже был смещен в прямом направлении из-за накопленных неравно­весных носителей заряда в базовых областях и, следовательно, имел малое сопротивление.

Поэтому на долю коллекторного перехода при переключении тиристора на обратное напряжение приходится очень малая часть всего внешнего напряжения. Из-за малого сопротивления тиристора, находящегося еще в открытом состоянии, обратный ток на первом этапе процесса выключе­ния ограничен сопротивлением внешней цепи.

Существенное уменьшение времени выключения даже при не­больших обратных напряжениях удается получить для тиристо­ров, проводящих в обратном направлении. У этих тиристоров оба эмиттерные перехода зашунтированы объемными сопротивле­

ниями прилегающих базовых областей. Поэтому даже небольшое обратное напряжение способствует быстрому рассасыванию накопленных в базовых областях неравновесных носителей.

Выключение тиристора с помощью тока управляющего электрода

Для выключения тиристора необходимо отвести не­равновесные основные носители заряда из базы, у которой имеется управляющий электрод. В то же время основной ток, проходящий через еще открытый тиристор, непрерывно воспол­няет количество неравновесных носителей заряда в базовых об­ластях. Таким образом, значение тока управления, необходи­мого для выключения тиристора, зависит от основного тока через тиристор.

Некоторые тиристоры с большой площадью р-n-переходов невозможно выключить с помощью тока управляющего электрода при больших токах между основными электродами. Объясняется это тем, что при движении носителей заряда к управляющему электроду, например, дырок в тиристоре (рис. 6.14) база тиристора под эмиттерным переходом становится неэквипотенциальной и дальние от управляющего электрода части эмиттерного перехода остаются смещен­ными в прямом направлении. Инжекция электронов из этих частей эмиттерного перехода поддерживает соответствующую часть тиристорной структуры в открытом состоянии.

Таким образом, существуют тиристоры, запираемые и незапираемые по управляющему электроду.

Запираемый (двухоперационный) тиристор – это тиристор, который может переключаться из закрытого состояния в открытое и, наоборот, при подаче на управляющий электрод сигналов соответствующей полярности.

Но и для за­пираемого тиристора существует максимально допустимый по­стоянный запираемый ток () – наибольшее значение основ­ного тока, до которого допускается запирание тиристора по управляющему электроду. При использовании в мощных устрой­ствах запираемые тиристоры обладают преимуществами перед транзисторами, поскольку тиристоры способны выдерживать значительно большие напряжения в закрытом состоянии.

Запираемые тиристоры — Студопедия

Тиристор, способный не только открываться, но и закрываться под воздействием сигнала на управляющем электроде, называется запираемый тиристор. Условное графическое обозначение и схема замещения запираемого тиристора представлены на рис. 16.1.

а) б)

Рис. 16.1. Запираемый тиристор:

а – условное графическое обозначение; б – схема замещения

Рассмотрим принцип работы запираемого тиристора, воспользовавшись схемой замещения. Согласно выражению (14.3) ток во внешней цепи зависит от коэффициентов передачи тока эмиттера транзисторов VT1 и VT2. Ток управления

IУ, поступая на базу транзистора VT2, увеличивает для него ток базы и коэффициент передачи тока a2. Тиристор открывается, когда 1 – (a1+a2) = 0. Более конкретно это описывается выражением

. (16.1)

Если теперь ток управления уменьшить до нуля (IУ = 0), тиристор останется открытым, при условии, что ток анода будет больше тока удержания.

Для закрывания тиристора на управляющий электрод необходимо подать напряжение отрицательной полярности. Тогда ток коллектора VT1 будет протекать по цепи управляющего электрода, а ток базы транзистора VT2 уменьшится, что приведёт к снижению коэффициентов передачи тока a

1 и a2 и прекращению регенеративного процесса. Транзистор VT2 можно вывести из насыщения при условии


, (16.2)

где IЗ – ток запирания тиристора по управляющему электроду.

Способность тиристора к запиранию по управляющему электроду характеризуется коэффициентом запирания

. (16.3)

Из выражения (16.3) следует, что коэффициент запирания зависит от коэффициентов передачи тока a1 и a2 и будет тем больше, чем больше a2. Это означает, что чем меньше степень насыщения перехода П2 тиристора, тем легче его закрыть по сигналу управляющего электрода. Степень насыщения перехода П2 зависит от тока через тиристор в открытом состоянии, поэтому коэффициент запирания также будет зависеть от тока анода тиристора (рис. 16.2)

Рис. 16.2. Зависимость коэффициента запирания от тока анода

Схема управления запираемым тиристором должна формировать импульсы положительной (для открывания) и отрицательной (для закрывания) полярности относительно катода. Наиболее просто это можно сделать, если в цепь управляющего электрода включить конденсатор (рис. 16.3).

Рис. 16.3. Простейшая схема управления запираемым тиристором

При разомкнутом ключе К конденсатор С заряжается через резистор R1, и на управляющий электрод тиристора поступает импульс положительной полярности. Когда процесс заряда конденсатора закончится, ток управляющего электрода станет равным нулю. Если теперь замкнуть ключ К, начнётся разряд конденсатора С через резистор R2, и на управляющий электрод тиристора поступит импульс отрицательной полярности. Чтобы произошло закрывание тиристора, необходимо выполнить условие


; , (16.4)

где UЗ – напряжение на управляющем электроде, необходимое для запирания тиристора;

IЗ – ток управляющего электрода, необходимый для запирания тиристора;

tЗ – длительность запирающего импульса.

Существуют более сложные схемы управления, в которых для запирания тиристора применяется отдельный источник питания, а также специальные драйверы управления, как, например, в мощных запираемых тиристорах, сведения о которых можно прочитать в литературе [6, 11, 17].

16.2. Симметричные тиристоры – симисторы

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC – triode for alternating current) – полупроводниковый прибор, являющийся разновидностью тиристоров и используемый в цепях переменного тока. Увеличив число полупроводниковых слоев тиристора с четырех до пяти получили прибор, способный пропускать электрический ток как в прямом, так и в обратном направлениях. Условное графическое обозначение и структура симистора представлены на рис. 16.4.

Рис. 16.4. Симметричный тиристор – симистор

а – условное графическое обозначение; б – структура; в – вольтамперная характеристика


В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 (В1) или условным катодом, нижний — выводом 2 (В2) или условным анодом, вывод слева вверху – управляющим электродом УЭ. В открытом состоянии симистора, когда на В2 плюс, а на В1 минус, ток проходит по слоям p

2-n3-p4-n5, при противоположной полярности – по слоям p4-n3-p2-n1. Поскольку управляющее напряжение подают на слой n, полярность импульсов должна быть отрицательной относительно вывода В1.

Вольтамперная характеристика симистора представлена на рис. 16.4, в.

Характеристика очень похожа на характеристику тиристора, но симметрична относительно начала координат. Для симисторов, как и для тиристоров, специально выбирают режим внешней цепи ЕА < Uвкл, чтобы симистор был надёжно закрыт, когда на него не поданы импульсы управления. Для перевода симистора в открытое состояние подают управляющий импульс, длительность которого выбирается больше длительности переходного процесса, а величина тока больше или равна току спрямления. После открывания симистора управляющий электрод теряет свои управляющие свойства, поэтому закрыть симистор сигналом управляющего электрода нельзя. Закрывается симистор лишь тогда, когда мгновенное значение переменного напряжения во внешней цепи становится равным нулю (переход синусоиды через ноль).

Тиристор — это… Что такое Тиристор?

Обозначение на схемах

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором[1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как их ВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.
  • В точке 1 происходит включение тиристора.
  • Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.
  • Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).
  • В точке 2 через прибор протекает минимальный удерживающий ток Ih.
  • Участок между 0 и 4 описывает режим обратного запирания прибора.
  • Участок между 4 и 5 — режим обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0—3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Режимы работы триодного тиристора

Режим обратного запирания

Рис. 3. Режим обратного запирания тиристора

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

  1. Лавинный пробой.
  2. Прокол обеднённой области.

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель

Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера IE, коллектора IC и базы IB и статическим коэффициентом усиления по току α1 p-n-p транзистора также приведена на рис. 4, где IСо— обратный ток насыщения перехода коллектор-база.

Рис. 4. Двухтранзисторная модель триодного тиристора, соединение транзисторов и соотношение токов в p-n-p транзисторе.

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток Ig втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.

Ток базы p-n-p транзистора равен IB1 = (1 — α1)IA — ICo1. Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α2 равен IC2 = α2IK + ICo2.

Приравняв IB1 и IC2, получим (1 — α1)IA — ICo1 = α2IK + ICo2. Так как IK = IA + Ig, то

Рис. 5. Энергетическая зонная диаграмма в режиме прямого смещения: состояние равновесия, режим прямого запирания и режим прямой проводимости.

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α1 + α2 < 1, ток IA мал. (Коэффициенты α1 и α2 сами зависят от IA и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным.

Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: VAK = V1 + V2 + V3. По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения VAK = (V1 — |V2| + V3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе.

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диоду…

Классификация тиристоров

[2][3][4]
  • тиристор диодный (доп. название «динистор») — тиристор, имеющий два вывода
    • тиристор диодный, не проводящий в обратном направлении
    • тиристор диодный, проводящий в обратном направлении
    • тиристор диодный симметричный (доп. название «диак»)
  • тиристор триодный (доп. название «тринистор») — тиристор, имеющий три вывода
    • тиристор триодный, не проводящий в обратном направлении (доп. название «тиристор»)
    • тиристор триодный, проводящий в обратном направлении (доп. название «тиристор-диод»)
    • тиристор триодный симметричный (доп. название «триак», неоф. название «симистор»)
    • тиристор триодный асимметричный
    • запираемый тиристор (доп. название «тиристор триодный выключаемый»)

Отличие динистора от тринистора

Принципиальных различий между динистором и тринистором нет, однако если открытие динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение открытия может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.

Отличие тиристора триодного от запираемого тиристора

Переключение в закрытое состояние обычных тиристоров производят либо снижением тока через тиристор до значения Ih, либо изменением полярности напряжения между катодом и анодом.

Запираемые тиристоры, в отличие от обычных тиристоров, под воздействием тока управляющего электрода могут переходить из закрытого состояния в открытое состояние, и наоборот. Чтобы закрыть запираемый тиристор, необходимо через управляющий электрод пропустить ток противоположной полярности, чем полярность, которая вызывала его открытие.

Симистор

Симистор (симметричный тиристор) представляет собой полупроводниковый прибор, по своей структуре является аналогом встречно-параллельного включения двух тиристоров. Способен пропускать электрический ток в обоих направлениях.

Характеристики тиристоров

Современные тиристоры изготовляют на токи от 1 мА до 10 кА; на напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 109 А/с, напряжения — 109 В/с, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; КПД достигает 99 %.

Применение

См. также

Примечания

Литература

  • ГОСТ 15133-77.
  • Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Ссылки

Запираемые тиристоры GTO от ABB Semiconductors

Запираемый тиристор (GTO) — это ключ, который может быть выключен или включен посредством управляющего электрода. Для его работы требуется источник тока, а потребляемая им мощность выше, чем у ключей IGBT и IGCT.

Запираемый тиристор (GTO) – высокомощный полупроводниковый ключ, созданный для применения в промышленных целях, в цепях с высокими напряжениями и большими токами. GTO относится к транзисторной электронике, поэтому представляет собой четырехслойную структуру и с тремя переходами (n+pnp+). Они отличаются от обычных тиристоров тем, что приложении отрицательного напряжения к затвору они выключаются, что приводит к протеканию обратного току в цепи управления. Благодаря этому, нет необходимости реверсировать анодное напряжение для эффективного отключения и в результате отпадает необходимость в дорогостоящих коммутационных цепях, применяемых обычно в инверторах на тиристорах и время выключения значительно меньше.

С другой стороны, в проводящем состоянии, GTO работает как обычный тиристор, при этом эмиттера катода инжектирует электроны n+ а эмиттер анода инжектирует дырки p+ в базовую область. Получающаяся в результате платность плазмы очень высока и вследствие чего низкое падение напряжения на GTO по сравнению с диодом. Для улучшения отключающей способности p-n переход между управляющим электродом и катодом должен иметь решетчатую структуру.

Запираемые тиристоры разработаны для низких потерь в проводящем состоянии. Стандартная частота переключения — 200-500 Гц. Время переключения от одного состояния к другому и обратно колеблется от 10 до 30 мкс, поэтому они считаются сравнительно медленными. При выключении всем ключам GTO требуется защита от скорости увеличения прямого напряжения, а при включении — защитная цепь, которая ограничит скорость нарастания прямого тока.

Все запираемые тиристоры (GTO) производятся в таблеточных корпусах. Такая конструкция позволяет им надежно прижиматься к охладителям, которые обеспечивают электрический и тепловой контакт к выводам тиристора.

Standard

Обозначение VDRM VDC VRRM ITGQM at CS ITAVM ITSM VT VT0 rT TVJM RthJC RthCH Fm Корпус
Tc =85°C

8.3 мс TVJM

10 ms
TVJM

ITGQM
TVJM

TVJM

В

В

В

A

мкФ

A

кA кA

В

В

мОм °C K/кВт K/кВт кН
                 
5SGA 15F2502 2500 1400

17

1500 3 570 10.6

10

2.8 1.45 0.90 125

27

8

15

F

5SGA 20h3501 2500 1400

17

2000 4 830 17.0

16

2.8 1.66 0.57 125

17

5

20

H

5SGA 25h3501 2500 1400

17

2500 6 830 17.0

16

3.1 1.66 0.57 125

17

5

20

H

5SGA 30J2501 2500 1400

17

3000 5 1300 31.0

30

2.5 1.50 0.33 125

12

3

40

J

                 
5SGA 06D4502 4500 2800

17

600 1 195 3.1

3

4.0 1.90 3.50 125

50

8

10

D

5SGA 20h5502 4500 2800

17

2000 4 710 14.0

13

3.5 1.80 0.85 125

17

5

20

H

5SGA 30J4502 4500 2800

17

3000 6 930 25.0

24

4.0 2.20 0.60 125

12

3

40

J

5SGA 40L4501 4500 2800

17

4000 6 1000 26.0

25

4.4 2.10 0.58 125

11

3

40

L

Buffer Layer

-низкие потери при включении и коммутациях

Обозначение VDRM VDC VRRM ITGQM при CS ITAVM ITSM VT VT0 rT TVJM RthJC RthCH Fm Корпус
Tc =85°C

8.3 мс
TVJM

10 ms
TVJM

ITGQM
TVJM

TVJM

В

В

В

A

мкФ

A

кA кA

В

В

мОм °C K/кВт K/кВт кН
                 
Fine Pattern Type               
5SGF 30J4502 4500 3000

17

3000 3 960 25 24 3.90 1.80 0.70 125

12

3

33

J

5SGF 40L4502 4500 2800

17

4000 6 1180 26 25 3.80 1.20 0.65 125

11

3

40

L

Тиристор — принцип работы, виды и характеристики

Тиристор это полупроводниковый прибор, предназначенный для работы в качестве ключа. Он имеет три электрода и структуру p-n-p-n из четырёх слоёв полупроводника. Электроды именуются как анод, катод и управляющий электрод. Структура p-n-p-n функционально аналогична нелинейному резистору, который способен принимать два состояния:

  • с очень большим сопротивлением, выключенное;
  • с очень малым сопротивлением, включенное.

Виды

На включенном тиристоре сохраняется напряжение около одного или нескольких Вольт, которое незначительно увеличивается с возрастанием силы тока, протекающего через него. В зависимости от вида тока и напряжения, приложенного к электрической цепи с тиристором, в ней используется одна из трёх современных разновидностей этих полупроводниковых приборов. На постоянном токе работают:

  • включаемые тринисторы;
  • три разновидности запираемых тиристоров, именуемых как

На переменном и постоянном токе работают симисторы. Все эти тиристоры содержат управляющий электрод и два других электрода, через которые тёчёт ток нагрузки. Для тринисторов и запираемых тиристоров это анод и катод, для симисторов наименование этих электродов обусловлено правильностью определения свойств управляющего сигнала, подаваемого на управляющий электрод.

Наличие в тиристоре структуры p-n-p-n позволяет разделить её условно на две области, каждая из которых является биполярным транзистором соответствующей проводимости. Таким образом, эти взаимосвязанные транзисторы являются эквивалентом тиристора, что имеет вид схемы на изображении слева. Первыми на рынке появились тринисторы.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается. Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора.

Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно. По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Сравнение различных тиристоров приведено в таблице ниже.

Разновидность тиристораПреимуществаНедостаткиГде используется
ТринисторМинимальное напряжение во включенном состоянии при максимально больших токах и перегрузках. Наиболее надёжен из всех. Хорошая масштабируемость схем путём совместной работы нескольких тринисторв соединяемых либо параллельно, либо последовательноОтсутствует возможность произвольного управляемого отключения только управляющим электродом. Наиболее низкие рабочие частоты.Электроприводы, источники электропитания питания большой мощности; сварочные инверторы; управление мощными нагревателями; статические компенсаторы; коммутаторы в цепях с переменным током
GTOВозможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Способность надёжно работать при последовательном соединении. Рабочая частота до 300 Гц, напряжение до 4000 В.Значительно напряжение во включенном состоянии при максимально больших токах и перегрузках и соответствующие им потери, в том числе и в системах управления. Сложная схемотехника построения системы в целом. Большие динамические потер.Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели
IGCTВозможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Относительно малое напряжение во включенном состоянии при максимально больших токах и перегрузках. Рабочая частота — до 2000 Гц. Простое управление. Способность надёжно работать при последовательном соединении.Наиболее дорогие из всех тиристоровЭлектроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели

 

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже:

  

В наши дни тиристор является главным полупроводниковым прибором силовой электроники. Он обеспечивает наиболее эффективное преобразование электрической энергии.

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

что это такое, принцип работы, ВАХ, разновидности и маркировка

Тиристор – это отдельный тип переключающих полупроводниковых радиодеталей. Ток в этом случае пропускается только в одну сторону. Они нашли свое широкое использование в различных устройствах, основанных на полупроводниковом эффекте, а также в самых разнообразных токовых преобразователях. Тиристоры используются в регуляторах, частотных преобразователях тока, управляющих схемах синхронных двигателях и других приборах.

Главная задача тиристора – подача силовой при соответствующем сигнале управления. В данной статье будет подробно рассмотрены все особенности строения, какие материалы используются, а также из чего состоят тиристоры. Дополнением служат два видеоролика, а также одна научная статья.

Устройство и назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n -переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

  • Тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;
  • Тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.
  • Управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока.

Тиристор – это переключающий полупроводниковый прибор, пропускающий ток в одном направлении.

Принцип работы тиристора и его устройство.

Устройство и основные виды

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n , содержащий три последовательно соединённых p-n -перехода J1, J2, J3. Контакт к внешнему p -слою называется анодом, к внешнему n -слою – катодом.

В общем случае p-n-p-n -прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным иристором или динистором.

Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно).

В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов , часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Таблица основных характеристик тиристоров.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Условное обозначение тиристора на схеме

Вольтамперная характеристика

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора – прямое запирание (нижняя ветвь).
  • В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).
  • Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).
  • Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0-3 симметрично относительно начала координат. По типу нелинейности ВАХ тиристор относят к S-приборам.

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

  1. Падение напряжения при максимальном токе анода (VT или Uос).
  2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
  3. Обратное напряжение (VR(PM) или Uобр).
  4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
  5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
  6. Обратный ток (IR) — ток при определенном обратном напряжении.
  7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
  8. Постоянное отпирающее напряжение управления (VGT или UУ).
  9. Ток управления (IGT).
  10. Максимальный ток управления электрода IGM.
  11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Интересно по теме: Как проверить стабилитрон.

Назначение устройства

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п -переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный.

По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый. “Ключевой” характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле.

Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью – сотни и тысячи раз в секунду, а если нужно – еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

Как проверить тиристор тестером

Классификация

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные.

В диодных тиристорах различают:

  • тиристоры, запираемые в обратном направлении;
  • проводящие в обратном направлении;
  • симметричные.

Триодные тиристоры подразделяют:

  • на запираемые в обратном направлении с управлением по аноду или катоду;
  • проводящие в обратном направлении с управлением по аноду или катоду;
  • симметричные (двунаправленные).

Наиболее распространены динисторы – тиристоры с двумя выводами и тринисторы – приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Тиристорный модуль.

Принцип действия

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора. Другой способ – это подать кратковременный импульс на управляющий электрод.

Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии. После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение.

То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше. Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно. После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор.

После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах. Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается.

Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора. Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно.

По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Интересно почитать: инструкция как прозвонить транзистор.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже. Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

Запираемый тиристор.

С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено». Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора.

Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр) , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.  В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • если уменьшить напряжение между анодом и катодом до U = 0 ;
  • если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно о тиристорах рассказано в статье Все о тиристорах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:

www.elenergi.ru

www.elektrovesti.net

www.my-multi.ru

www.geekmatic.in.ua

www.radioprog.ru

Предыдущая

ПолупроводникиЧто такое симистор (триак)

Следующая

ПолупроводникиВиды и устройство оптронов (оптопар)

ШАЙБА ЗАПОРНАЯ (РАЗЪЕМНАЯ) 1 / 4-20 SCR

Выберите CountryAfghanistanAland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua И BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamas TheBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и TerritoryBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral Африканских RepublicChadChileChinaChristmas IslandCocos IslandsColombiaComorosCongoCongo Демократическая Республика HerzegovinaBotswanaBouvet IslandBrazilBritish в Индийском океане (Килинг) Из TheCook IslandsCosta RicaCote д’Ивуар (Берег Слоновой Кости) Хорватия (Hrvatska) CubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFiji IslandsFinlandFranceFrench ГвианаФранцузская ПолинезияФранцузские Южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаГернси и ОлдерниГвинеяГвинея-БисауГайанаГайтиХерд и Мак Острова Дональда, Гондурас, Гонконг, S.ARHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea NorthKorea SouthKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacau SARMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMan (остров) Маршалл IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlands AntillesNetherlands TheNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinian Территория OccupiedPanamaPapua нового GuineaParaguayPeruPhilippinesPitcairn IslandPolandPortugalPuerto RicoQatarReunionRomaniaRussiaRwandaSaint HelenaSaint Киттс И NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSaint-BarthelemySaint-Мартин (французская часть) SamoaSan MarinoSao Том и PrincipeSaudi АравияСенегалСербияСейшельские островаСьерра-ЛеонеСингапурСловакияСловенияСоломоновы островаСомали Южная AfricaSouth GeorgiaSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян Майен IslandsSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelauTongaTrinidad И TobagoTunisiaTurkeyTurkmenistanTurks И Кайкос IslandsTuvaluUgandaUkraineUnited Арабские EmiratesUnited KingdomUnited StatesUnited Штаты Экваторияльная IslandsUruguayUzbekistanVanuatuVatican City State (Святой Престол) VenezuelaVietnamVirgin острова (Британские) Виргинские острова (США) Уоллис и Футуна IslandsWestern SaharaYemenZambiaZimbabwe

Тиристор

— Все производители — eTesters.com

Отображение недавних результатов 1 — 15 из 22 найденных продуктов.

  • Тиристорные регуляторы

    КИТАЙ

    Маленькие и легкие тиристорные регуляторы для однофазных нагрузок отличаются высокой плотностью монтажа на панели.

  • Тиристорные переключатели

    SC серии — Entes Elektronik

    Тиристорные переключатели серии

    SC используются в системах, содержащих индуктивные нагрузки с быстрым переключением.Конденсаторы, которые будут использоваться для подачи емкостной энергии в систему, могут включаться и выключаться с временем переключения менее 20 мс (1 период) с помощью статических контакторов серии SC, что обеспечивает более эффективную компенсацию быстрого переключения. такие грузы, как аппараты для прихваточной сварки, краны и дуговые печи.

  • Источник питания с тиристорным регулированием

    HYN — FuG Elektronik GmbH

    Простая конструкция Чрезвычайно прочная Высокая эффективность Защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания Регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулировочная ручка может быть заблокирована Трехзначный цифровой вольтметр для напряжения и тока Ограничение пускового тока при включении Подходит для индуктивных и емкостных нагрузок Контур блокировки для контроля внешней нагрузки и внутреннего контура в качестве стандартного счетчика прошедшего времени в стандартной комплектации

  • Источник питания с тиристорным регулированием

    MYN — FuG Elektronik GmbH

    Простая конструкция Чрезвычайно прочная Высокая эффективность Защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания Регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулировочная ручка может быть заблокирована Трехзначный цифровой вольтметр для напряжения и тока Ограничение пускового тока при включении Подходит для индуктивных и емкостных нагрузок Контур блокировки для контроля внешней нагрузки и внутреннего контура в качестве стандартного счетчика прошедшего времени в стандартной комплектации

  • Системы ИБП постоянного тока с тиристорной технологией

    JOVYATLAS

    JOVYATLAS разработал новое цифровое управление тиристорным выпрямителем, отвечающее современным требованиям к современным и безопасным источникам питания.Выпрямители с тиристорной зарядкой — это наиболее часто используемая серия для высоких выходных мощностей и надежных приложений. В этих устройствах обычно используются выпрямительные мосты в схемах B6C. Для специальных применений также доступны выпрямительные устройства с полностью управляемыми 12-импульсными выпрямительными мостами. Устройства можно адаптировать к соответствующему приложению с помощью различных опций. Значения производительности варьируются в зависимости от требований заказчика. За счет адаптации батарей можно добиться более короткого или более длительного времени автономной работы.Входной трансформатор адаптирован к соответствующему сетевому напряжению,

  • Анализатор тиристоров и симисторов Atlas SCR

    SCR100 — Peak Electronic Design Ltd.

    Тиристорам и симисторам

    требуются особые условия тестирования для эффективного анализа — вот тут-то и появляется новый SCR Atlas. SCR100 может применять испытательные токи затвора от 100 мкА до 90 мА (с токами тестовой нагрузки до 100 мА), поэтому он не ограничивается чувствительными частями. .Он автоматически определяет тип детали (тиристор или симистор), идентифицирует все три вывода, а также классифицирует чувствительность затвора. Эта новая версия использует стандартную щелочную батарею AAA.

  • 6-ти импульсный / 12-ти импульсный тиристорный выпрямитель

    JOVYATLAS

    Тиристорные выпрямители типа JOVYREC THYRIDIN — это оптимальное решение для питания потребителей постоянным током с высокими характеристиками.Встроенное цифровое управление тиристорным выпрямителем отвечает самым высоким требованиям к современному и безопасному источнику питания. Устройства можно адаптировать к соответствующему приложению с помощью различных опций. Значения производительности могут быть разработаны в соответствии с требованиями заказчика. Параллельно можно использовать максимум три устройства для повышения производительности.

  • Линейно-регулируемый источник питания с тиристорным предварительным регулированием

    NTN — FuG Elektronik GmbH

    Высокоэффективная защита от короткого замыкания и неограниченная работа с полным током в условиях короткого замыкания, регулировка напряжения и тока с автоматическим и резким переходом; режим управления индицируется светодиодами. Настройка напряжения и тока с помощью 10-оборотных потенциометров с точной шкалой; регулирующую ручку можно заблокировать. 4-значный цифровой мультиметр для напряжения и тока (для настольных моделей) Сенсорные клеммы для компенсации падения напряжения на линиях нагрузки.Номинальное напряжение всегда относится к выходным клеммам Возможно параллельное и последовательное соединение Подходит для индуктивных и емкостных нагрузок с номинальной мощностью 700 Вт и выше, ограничение пускового тока при включении петли блокировки для контроля внешней нагрузки и внутренней петли в стандартной комплектации для трех фазовые блоки Счетчик отработанного времени в стандартной комплектации для трехфазных блоков

  • Линейно-регулируемый источник питания с предварительным регулированием тиристоров / активным отключением питания

    NTS — FuG Elektronik GmbH

    Высокая эффективность Защита от короткого замыкания и неограниченная работа при полном токе в условиях короткого замыкания Клеммы датчика для компенсации падения напряжения в линиях электропередач.Путем предварительной настройки напряжения может быть сгенерировано линейное нарастание тока. Напряжение включения и выключения может быть предварительно установлено с помощью одного потенциометра. Работа с постоянным напряжением для линейного управления повышением и понижением. Линейное отключение питания с допустимым обратным напряжением до номинального значения. выходного напряжения (2-квадрантный режим)

  • Тест SOA

    FTI 5000 — Focused Test, Inc.

    FTI 5000 выполняет тесты безопасной рабочей зоны (SOA) на силовых устройствах, таких как MOSFET, биполярный транзистор (BJT), тиристор и IGBT. Тест SOA определяется как условия напряжения и тока, при которых устройство должно работать без повреждений.

  • Управляемый программируемый источник постоянного тока с нагрузкой

    LAB / SL — ET System Electronic GmbH

    * Линейный лабораторный источник питания * Встроенная электронная нагрузка * Линейно регулируемый лабораторный источник питания постоянного тока * Без предварительной регулировки тиристора, очень небольшая пульсация * Различные интерфейсы · Встроенная электронная нагрузка * Защита от короткого замыкания, перегрузки и перегрева * Постоянный ток и постоянство напряжение * Быстрое время регулирования прибл.250 мкСм

Выпрямители с кремниевым управлением (SCR) [Analog Devices Wiki]

Цель:

Целью этой лабораторной работы является изучение структуры и работы кремниевого контроллера. Выпрямитель или SCR. SCR в основном используются в устройствах, где управление высокой мощностью, возможно, на высокой напряжение, необходимо. Возможность включения и выключения больших токов делает SCR пригодным для использования в приложения для управления питанием переменного тока от среднего до высокого напряжения, такие как регулировка яркости ламп, регуляторы и двигатель контроль.Кроме того, непреднамеренные SCR могут образовываться в интегральных схемах, и когда эти SCR становятся сработавшая неисправность цепи или даже проблемы с надежностью и повреждение.

Фон:

Кремниевый управляемый выпрямитель (SCR) представляет собой четырехслойное твердотельное устройство управления током с 3 терминалы. У них есть анодные и катодные выводы, как у обычного диода, и третий вывод управления, именуется воротами. SCR — это однонаправленные устройства, т.е. они проводят ток только в одном направление как диод или выпрямитель.SCR срабатывают только токами, идущими в затвор. SCR сочетает в себе выпрямительные свойства диодов и функции управления включением-выключением транзисторов.

SCR обычно используются в приложениях переключения мощности. В обычном выключенном состоянии устройство ограничивает текущий поток к току утечки. Когда ток между затвором и катодом превышает определенный порог, устройство включается и проводит ток. SCR останется во включенном состоянии даже после того, как ток затвора будет удаляется до тех пор, пока ток через устройство превышает ток удержания.Как только ток падает ниже удерживающего тока в течение определенного периода времени, устройство выключится. Если вентиль импульсный и ток через устройство ниже тока фиксации, устройство останется в выключенном состоянии.

Глядя на рисунок 1 (a), четырехуровневую структуру SCR, мы видим три вывода, один из внешний слой p-типа, называемый анодом A, второй из внешнего слоя n-типа, называемый катодом K, и третий от базы нижней части NPN-транзистора и называется затвором G.

Рисунок 1 Эквивалентная схема SCR

SCR, как показано на рисунке 1 (b), можно представить как разделенный на два транзистора. Эквивалент Схема SCR состоит из транзистора PNP и транзистора NPN, соединенных между собой, как показано на рисунок 1c. Мы видим, что коллектор каждого транзистора соединен с базой другого, образуя петля положительной обратной связи.

SCR имеет два стабильных состояния. Первое — это непроводящее состояние ВЫКЛ.С открытым терминалом ворот Давайте сначала предположим, что ток не течет на клемму базы NPN-транзистора Q 2 . При нулевом базовом токе ток коллектора Q 2 также будет равен нулю. Учитывая нулевой коллектор для Q 2 мы делаем вывод, что из базы PNP-транзистора должен течь нулевой ток. Вопрос 1 . Учитывая нулевой базовый ток в Q 1 , мы делаем вывод, что коллектор должен быть нулевым. ток в квартале 1 . Это согласуется с нашим исходным предположением о нулевом токе в основании Вопрос 2 .С нулевым током коллектора (и нулевым током базы) как в Q 1 , так и в Q 2 , мы можем сделать вывод, что в любом из транзисторов также не должно быть эмиттерного тока. Этот Состояние ВЫКЛ с нулевым током стабильно до тех пор, пока любой ток утечки через Q 1 или Q 2 от эмиттера до коллектора очень мало.

Второе стабильное состояние — это проводящее состояние ВКЛ. Мы можем переключить или переключить SCR из ВЫКЛ. в состояние ВКЛ. путем подачи небольшого тока на клемму затвора.Пройдя через то же самое процедуры вокруг цикла, который мы только что сделали для выключенного состояния, мы можем видеть, что как только базовый ток подаваемый на Q 2 , больший ток коллектора (ß NPN раз больше тока базы) будет начать течь. Этот ток коллектора Q 2 становится базовым током для Q 1 . Эта база ток в Q 1 снова производит больший ток коллектора (ß PNP раз больше базового ток) в Q 1 . Коллекторный ток Q 1 возвращается в базу Q 2 еще больше увеличивает базовый ток.Как только этот контур обратной связи по току установлен начальный ток затвора может быть удален, и тиристор будет оставаться в проводящем состоянии включения до тех пор, пока поскольку внешняя цепь вокруг SCR подает ток через SCR. Единственный способ выключить SCR предназначен для падения тока ниже критического уровня «удерживающего» тока.

Следует отметить, что этот контур положительной обратной связи будет удерживать SCR включенным и оставаться в нем. это зафиксированное состояние, если верно следующее:

ß PNP * ß NPN ⇒ 1

Падение напряжения на SCR от клеммы A до K , когда SCR проводит ток, складывается из Q 1VBE и Q 2VCESAT параллельно с суммой Q 2VBE и Вопрос 1VCESAT .Мы знаем, что ß устройств BJT падает при перемещении коллекторного базового перехода вперед. смещен в область насыщения, т.е. В CE меньше В BE . Модель V CE два транзистора будут опускаться до тех пор, пока не будет удовлетворено указанное выше уравнение усиления положительной обратной связи и ß PNP * ß NPN равно 1.

Также важно отметить, что ß транзисторов BJT очень низок для очень малых значений ток коллектора и из приведенного выше уравнения, тиристор будет оставаться в выключенном состоянии, пока ток утечки настолько мал, что ß PNP * ß NPN меньше 1 при такой низкой утечке текущий уровень.

В комплект аналоговых деталей ADALP2000 не входит SCR, но мы можем эмулировать его, построив эквивалентную схему. показано на рисунке 1 © от дискретных транзисторов PNP и NPN.

Материалы:

Модуль активного обучения ADALM2000
Макетная плата без пайки
2 — Резисторы 1 кОм
2 — Резисторы 100 кОм
1 — Конденсатор 0,1 мкФ (с маркировкой 104)
1 — малосигнальный транзистор NPN (2N3904)
1 — транзистор PNP с малым сигналом (2N3906 )

Направления:

Постройте модель эквивалентной схемы SCR, как показано на рисунке 2, на своей беспаечной макетной плате.

Рисунок 2 Схема для эмуляции SCR

Два резистора 100 кОм, R 1 , R 2 , помещаются поперек соответствующих В BE каждого транзистора, чтобы гарантировать, что любые небольшие токи утечки не вызывают самопроизвольного срабатывания моделируемого тиристора. Резистор R 3 преобразует импульс напряжения от AWG2 в ток срабатывания.

Настройка оборудования:

AWG1 должен быть настроен как синусоида с амплитудой 10 В от пика до пика, смещением нуля и частотой 100 Гц.AWG2 должен быть сконфигурирован как прямоугольный сигнал с амплитудой 800 мВ от пика до пика, смещение 400 мВ , частота 100 Гц. Убедитесь, что два канала AWG запущены синхронно.

Рисунок 3 Соединения макетной платы схемы для имитации SCR

Процедура:

Запустите осциллограф на канале 1. Наблюдая за входной синусоидальной волной на канале 1 осциллографа и напряжением. через R L на канале 2 осциллографа отрегулируйте фазу AWG2 с шагом от 180 ° до 360 °.В зависимости от на настройке фазы AWG2 вы должны увидеть что-то похожее на рисунки ниже. Ты заметишь что напряжение на R L равно нулю, тиристор в выключенном состоянии, до тех пор, пока триггерный импульс от AWG2 происходит, и SCR остается во включенном состоянии до тех пор, пока входное синусоидальное напряжение не пересечет ноль.

Рисунок 4 Пример сигналов

Рисунок 5 Пример осциллограмм Scopy

Измерьте и сообщите о падении напряжения на тиристоре, когда он находится во включенном состоянии и проводит ток.Как это напряжение сравнивается с обычным диодом с PN переходом?

Найдите минимальное импульсное напряжение (амплитуду) над землей, которое запустит SCR, регулируя AWG2. Оцените минимальный ток срабатывания на основе этого напряжения, R 3 и V BE Q 2 . Объясни свой результат.

Попробуйте использовать большие (1 МОм) и меньшие (10 кОм) значения для R 1 и R 2 . Как это изменит минимальное напряжение срабатывания?

Заменить резистор R 3 на 0.Конденсатор 1 мкФ. Этот конденсатор связи действует как дифференциатор превращая прямоугольный импульс на выходе AWG в узкие положительные и отрицательные всплески тока на нарастающие и спадающие фронты прямоугольной волны. Как это влияет, когда и как срабатывает SCR?

Вопросы:

  1. Чем тиристор отличается от обычного выпрямительного диода?

  2. Изобразите характеристики V, -I SCR. Что вы можете сделать из них?
  3. Почему SCR всегда включается током в затвор?

  4. Почему нельзя использовать тиристор как двунаправленный переключатель тока?

  5. Как SCR регулирует мощность, подаваемую на нагрузку?

  6. Почему тиристоры в основном используются в цепях переменного тока?

Если доступен источник меньших (слаботочных) тиристоров, вы можете повторить эксперимент с реальным устройство, а не эмуляцию нашей эквивалентной схемы.

Непреднамеренные паразитные тринисторы в интегральных схемах

Мы исследовали приложения для SCR, которые намеренно используют его характеристики. К сожалению, непреднамеренные SCR могут образовываться в интегральных схемах, и если эти паразитные SCR сработавшая неисправность цепи может привести или даже к проблемам с надежностью и повреждению встроенного схема.

ЗАДВИЖКА

Блокировка — это потенциально деструктивная ситуация, при которой срабатывает паразитный SCR, замыкая положительные и отрицательные поставки вместе.Если ток не ограничен, электрическое перенапряжение будет происходить. Классический случай фиксации происходит в устройствах вывода CMOS, в которых транзисторы драйвера и ямы образуют четырехслойную структуру PNPN SCR, когда один из двух паразитных переходов база-эмиттер кратковременное смещение вперед во время сбоя из-за перенапряжения. SCR включается и по существу вызывает короткое замыкание между источником питания V DD и массой.

Поскольку все эти МОП-устройства расположены близко друг к другу на монолитном кристалле, с соответствующими внешними При возбуждении могут включиться паразитные устройства SCR, что характерно для плохо спроектированных схем КМОП.На рис. 4 в упрощенном виде показано поперечное сечение двух транзисторов, одного PMOS и одного NMOS; эти могут быть соединены вместе как логические вентили или как аналоговый усилитель или переключатель. Паразитарный биполярный транзисторы, отвечающие за поведение фиксации, Q 1 (вертикальный PNP) и Q 2 (боковой NPN), как указано.

Рисунок 6 Поперечное сечение устройств PMOS и NMOS с паразитными транзисторами Q 1 и Q 2

Надлежащие методы проектирования для уменьшения возможности образования SCR включают увеличение расстояния между Устройства NMOS и PMOS и вставка высоколегированных областей между Нвеллом и Пуэллсом.Оба эти виды подходов к компоновке пытаются снизить ß либо вертикального PNP, либо бокового NPN. паразитных биполярных транзисторов меньше 1. Некоторые из этих методов также имеют тенденцию снижать сопротивление R PWELL и R NWELL , которые увеличивают минимальный ток срабатывания, необходимый для включения SCR.

Для дальнейшего чтения:

http://en.wikipedia.org/wiki/Silicon-controlled_rectifier

Электрические повреждения стандартных линейных интегральных схем

Победа в битве против фиксации аналоговых переключателей CMOS

Вернуться к содержанию лабораторных занятий.

SCR Control Goes Digital

SCR Цепи управления и продукты существуют уже несколько десятилетий. Стандартный промышленный контроллер SCR обычно состоит из цепи включения SCR, цепи фазовой автоподстройки частоты (PLL) или цепи синхронизации линии и средства управления углом включения устройства SCR, обычно аналогового входа 0-5 В или 4-20 мА. Хотя в настоящее время доступно несколько промышленных стандартных устройств управления SCR, которые обеспечивают эти базовые функции аналогового управления, OZSCR1000 от Oztek описывается как плата управления и срабатывания SCR с цифровым управлением.Так что же может принести на вечеринку «цифровой» продукт управления SCR?

Цифровое управление означает разные вещи для разных людей. OZSCR1000 обеспечивает несколько аспектов цифрового управления SCR, включая синхронизацию цифровой линии, реализацию закона управления и настройку продукта. По сути, SCR-контроллер должен обеспечивать надежную синхронизацию с входным линейным напряжением. В OZSCR1000 входы линейного напряжения проходят фильтрацию нижних частот и сразу же преобразуются в цифровые сигналы аналого-цифровыми преобразователями.С этого момента фазовый детектор и алгоритм ФАПЧ реализуются в цифровом виде с использованием комбинации микропроцессора и высокоскоростных логических ресурсов. Такой подход обеспечивает надежную работу без джиттера по сравнению с аналогичными методами аналоговой схемы.

Реализация закона цифрового управления подразумевает, что алгоритмы управления с обратной связью также реализованы в микроконтроллере, в отличие от аналоговых схем, таких как операционные усилители и т. Д. Функции управления SCR OZSCR1000 реализованы как пропорциональные плюс интегральные (PI) алгоритмы с встроенная защита от заводов.Цифровая природа контроллеров по своей сути исключает влияние температуры, допусков компонентов и больших аналоговых сигналов. Однако, поскольку они настраиваются пользователем через последовательный интерфейс, они также упрощают и ускоряют первоначальное проектирование системы. При разработке и тестировании своего контроллера инженеру больше не нужно использовать паяльник для изменения компенсации контура управления, он просто перенастраивает усиление цифрового контура.

В то время как OZSCR1000 может быть настроен на прием стандартного аналогового напряжения или токовых командных входов 4-20 мА, добавление последовательного порта на основе Mod-bus позволяет реализовать полностью цифровой подход к управлению.При правильной настройке последовательный интерфейс может использоваться для отправки либо команд фазы разомкнутого контура, либо команд напряжения или тока замкнутого контура.

Цифровая конфигурация продукта может сэкономить производителю системы значительное время и деньги. OZSCR1000 на 100% настраивается программно через стандартный последовательный порт. Например, контроллер может быть сконфигурирован для управления без обратной связи или управления с обратной связью; напряжение, ток или команда последовательного интерфейса; Контроль фазового угла или пересечения нуля простым нажатием кнопки.Больше нет необходимости менять компоненты для «настройки» или конфигурации схемы, больше нет необходимости хранить несколько вариантов одной и той же платы для обработки различных конфигураций конечного продукта, и больше нет необходимости смешивать и сопоставлять разные платы для реализации ваша конфигурация управления. Все схемы предусмотрены на OZSCR1000, для этого просто требуется однократный шаг настройки с использованием поставляемого Oztek инструмента настройки.

тиристор% 20scr% 201200a техническое описание и примечания по применению

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2025 © Все права защищены.
2002 — Симистор к 220

Аннотация: Тиристорный симистор 400 В 16 А TRIAC 25 А 600 В симистор 600 В 25 А симистор 400 В 25 А Симистор 3 А 600 В симистор 10 А Тиристор 400 В 3 А 600 В Тиристор to 220
Текст: нет текста в файле


Оригинал
PDF ET013 ET015 ET020 SLA0201 STA203A STA221A TF321M TF321M-A TF321S TF341M Симистор to220 Тиристор симистор 400в 16а TRIAC 25a 600v симистор 600в 25а симистор 400в 25а Симистор 3а 600в симистор 10а 400в тиристор 3а 600в Тиристор к220
2008 — тиристор анодный затвор

Реферат: 3-фазная схема запуска тиристора схемы управления затвором быстрого тиристора 200A 3-фазный тиристорный привод постоянного тока pgh25016am 600A тиристорный scr демпфер ДЛЯ 3-фазного МОСТОВОГО выпрямителя схема запуска тиристора 200A схема управления тиристорным затвором 6 схема драйвера тиристора
Текст: нет текста в файле


Оригинал
PDF 108мм ПГх408 тиристор с анодным затвором Трехфазная схема включения тиристора быстрые тиристорные схемы управления затвором 200А 3-х фазный тиристорный привод постоянного тока pgh25016am 600А тиристорный scr демпфер ДЛЯ 3-ФАЗНОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ схема включения тиристора Схема управления тиристорным затвором на 200 А 6 тиристорная схема драйвера
2011 — анодный затвор тиристор

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 5×1014 1×107 DEAR0000112) тиристор с анодным затвором
1999 — Тиристор 470 А

Реферат: тиристорный эквивалент 1 кОм 4-контактный резисторный массив Тиристор Т 25 тиристорный направляющий тиристорный конденсатор 23 мкФ MITSUBISHI GATE ARRAY PULSE тиристор SA04
Текст: нет текста в файле


Оригинал
PDF ASA100) Тиристор 470 А тиристорный эквивалент 1 кОм 4-контактный массив резисторов Тиристор Т 25 направляющая тиристора тиристор конденсатор 23 мкф MITSUBISHI GATE ARRAY ИМПУЛЬСНЫЙ тиристор SA04
Тиристор ГТО

Реферат: Тиристор GTO 40A, тиристорный драйвер GTO, принципиальная схема тиристорного инвертора THYRISTOR GTO, тиристор GTO Примечания по применению Схема привода затвора gto vvvf управление скоростью 3-фазного асинхронного двигателя Блок привода затвора GTO Теория, конструкция и применение демпфирующих схем
Текст: нет текста в файле


Оригинал
PDF
1998 — тиристор лтт

Реферат: SIEMENS THYRISTOR Тиристоры Siemens EUPEC Тиристор LTT постоянного тока в переменный, преобразователь тиристором BREAK OVER DIODE плата управления тиристорная защита тиристора абстрактный срок службы тиристора преобразователь переменного тока в постоянный тиристором
Текст: нет текста в файле


Оригинал
PDF D-91362 тиристор лтт SIEMENS THYRISTOR Тиристоры Сименс EUPEC Тиристор LTT преобразователь постоянного тока в переменный с помощью тиристора ПЕРЕРЫВ НАД ДИОДОМ плата управления тиристором Аннотация тиристорной защиты срок службы тиристора преобразователь переменного тока в постоянный с помощью тиристора
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
2015 — Тиристор с МОП-управлением

Реферат: срок службы тиристора
Текст: нет текста в файле


Оригинал
PDF
2001 — ТР250-180У

Реферат: TS600-170 «Power over LAN» TR250-145 REBD TS250-130-RA TSL250-080
Текст: нет текста в файле


Оригинал
PDF
2002 — микросхема драйвера scr выпрямителя 3 фазы

Аннотация: OPTOCOUPLER микросхема драйвера тиристорного затвора SCR TRIGGER PULSE Схема OPTOCOUPLER для тиристорного затвора однофазный полумост, управляемый выпрямитель scr Оптопара с тиристором SCR Phase Control IC SCR TRIGGER PULSE scr драйвер ic для выпрямителя 3 фазы 6 выхода
Текст: нет текста в файле


Оригинал
PDF
тиристор тт 500 н 16

Реферат: тиристорный выпрямитель с фазовым регулированием тиристор t 500 n 1800 однофазный тиристорный выпрямитель тиристор tt 121 трехфазный мост полностью управляемый выпрямитель тиристор t 500 n 18 диод ECONOPACK w3 диод b6
Текст: нет текста в файле


Оригинал
PDF
2004 — драйвер затвора scr ic

Аннотация: микросхема драйвера scr для выпрямителя микросхема трехфазного драйвера для тиристора OPTOCOUPLER для тиристорного затвора микросхема управления трехфазным мостом SCR SCR TRIGGER PULSE схема OPTOCOUPLER триггер тиристор scr OPTOCOUPLER тиристор схема управления тиристором схема контактов тиристора
Текст: нет текста в файле


Оригинал
PDF
1998 — Трехфазный мостовой полностью управляемый выпрямитель

Реферат: tt 60 n 16 kof press-pack igbt однофазный полностью управляемый выпрямитель с тиристорным управлением с датчиком тока от постоянного к постоянному току с помощью тиристора 3-фазный выпрямитель тиристорный мост спецификация тиристора с обратным проводом асимметричный тиристорный тиристор tt 121
Текст: нет текста в файле


Оригинал
PDF
2003 — EUPEC tt 162 n 16

Реферат: тиристорный тиристорный модуль tt 162 n bsm 25 gp 120 igbt модуль bsm 100 gb 60 dl ДИСКОВЫЙ ТИРИСТОРНЫЙ диод EUPEC tt 105 N 16 мощный тиристорный модуль scr IGBT FZ
Текст: нет текста в файле


Оригинал
PDF кука-2003-инхальт EUPEC tt 162 n 16 тиристор тт 162 н тиристор большой мощности модуль bsm 25 gp 120 igbt модуль bsm 100 гб 60 дл ДИСК ТИРИСТОР диод EUPEC tt 105 N 16 тиристор большой мощности scr Модуль IGBT FZ
2001 — ТИРИСТОР

Реферат: применение тиристора Тиристор 10А Указания по применению тиристора Указания по применению тиристор ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Тиристор с фазовым управлением тиристор высокой мощности тиристор с фазовым управлением
Текст: нет текста в файле


Оригинал
PDF 119мм 05ITSM ТИРИСТОР применение тиристора тиристор 10А указания по применению тиристоров заметки по применению ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ на тиристор фазовый контроль тиристор большой мощности тиристор с фазовым регулированием eupec
тиристор тт 162 н

Реферат: быстрый тиристор 1000 В тиристор tt 162 n 16 IGBT модуль FZ 400 тиристор td 162 n тиристор TT 162 тиристор КОНФИГУРАЦИЯ КОНФИГУРАЦИИ тиристора tt 500 n 16 THYRISTOR H 1500 тиристор 162
Текст: нет текста в файле


Оригинал
PDF
метод испытания тиристоров eupec

Реферат: SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC для ИМПУЛЬСНОГО тиристора 500 кВ автомобильный тиристор hvdc тиристор LTT тиристорный преобразователь проектирование схемы зажигания Схемы применения тиристоров
Текст: нет текста в файле


Оригинал
PDF D-81541 D-59581 D-

метод испытания тиристоров eupec SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC на 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор лтт схема зажигания тиристорного преобразователя Схемы применения тиристоров

2001 — ТР250-180У

Реферат: Тиристор SiBar TSL250-080 TSV250-130 «Power over LAN» TR600-150-RA TR600-150 TR250-145 TR250-120 GR-974
Текст: нет текста в файле


Оригинал
PDF
Тиристор с обратной проводимостью

Реферат: CRD5CM Тиристор to220 тиристорный регулятор CRD5C обратнопроводящий тиристор Gate Turn-off Thyristor to220
Текст: нет текста в файле


Оригинал
PDF 2010 — Ренесас О-220 Тиристор с обратной проводимостью CRD5CM Тиристор к220 тиристорный регулятор CRD5C обратнопроводящий тиристор Тиристор выключения затвора to220
2002 — тиристор EUPEC

Реферат: EUPEC Тиристор LTT тиристор ltt все типы тиристоров и схема Infineon процесс диффузии мощности Тиристор LTT срок службы тиристора с использованием системы питания 6-дюймовый тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
Текст: нет текста в файле


Оригинал
PDF D-59581 D-81541 EUPEC Тиристор EUPEC Тиристор LTT тиристор лтт все типы тиристоров и схемы Процесс распространения энергии Infineon LTT тиристор срок службы тиристора тиристорное использование энергосистемы 6 «тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
тиристор тт 162 н 12

Реферат: тиристор tt 162 n тиристор TT 46 N тиристор TT 162 асимметричный тиристор тиристор tt 25 тиристор TD 25 N dd 55 n 14 тиристор powerblock tt 105 n 16 powerblock tt 162
Текст: нет текста в файле


Оригинал
PDF кука-2006-де-инхальт тиристор тт 162 н 12 тиристор тт 162 н тиристор ТТ 46 Н тиристор ТТ 162 асимметричный тиристор тиристор тт 25 тиристор ТД 25 Н dd 55 n 14 powerblock тиристор тт 105 н 16 powerblock tt 162
Тиристор Westcode

Аннотация: WESTCODE TB 1KHZ тиристор R216Ch22FJO тиристор T 95 F 700 SM12CXC190 тиристор 910 тиристор h 250 tb 16 диодов westcode S антипараллельный тиристор
Текст: нет текста в файле


Сканирование OCR
PDF 151JL Тиристор Westcode WESTCODE TB Тиристор 1 кГц R216Ch22FJO тиристор Т 95 Ф 700 SM12CXC190 тиристор 910 тиристор h 250 тб 16 диоды westcode S Антипараллельный тиристор
OPTOCOUPLER тиристор

Реферат: тиристорный контактор, тиристор, использующий схему перехода через нуль, автомобильный тиристор, все типы тиристоров и приложения Оптопара с тиристором, модуль тиристоров перехода через нуль код тиристора BR6000T br6000
Текст: нет текста в файле


Оригинал
PDF IEC60439-1 / 2/3: D-81617 105 / V3 OPTOCOUPLER тиристор тиристорный контактор тиристор с использованием схемы перехода через нуль автомобильный тиристор все типы тиристоров и приложений Оптопара с тиристором Модуль тиристоров переключения с нулевым переходом код тиристора BR6000T br6000
однофазный мостовой полностью управляемый выпрямитель

Аннотация: EUPEC DD 105 N 16 L однофазный полностью управляемый выпрямитель 3-фазный тиристорный выпрямительный контур EUPEC DD 151 N 14 k EUPEC tt 105 N 16 тиристор TT 18 N eupec FZ 800 R 16 EUPEC Тиристор B / B0615 DIODE
Текст: нет текста в файле


Оригинал
PDF