Закон ома для участка электрической цепи: Закон Ома — Википедия – Закон Ома для участка цепи

Содержание

Электрический ток. Закон Ома

При помещении изолированного проводника в электрическое поле E→ на свободные заряды q в проводнике будет действовать сила F→=qE→. Это провоцирует возникновение кратковременных перемещений свободных зарядов. Процесс завершается, когда собственное поле электрических зарядов будет компенсировано внешним. Электростатическое поле внутри проводника станет равным нулю.

Определение 1

Существуют определенные условия, при которых возникает непрерывное упорядоченное движение свободных носителей заряда. Оно получило название электрического тока.

За направление электрического тока принято брать направление движения положительных свободных зарядов. При наличии электрического поля произойдет возникновение электрического тока в проводнике.

Определение 2

Силой тока называют скалярную физическую величину I, равняющуюся отношению заряда ∆q, протекающего по сечению проводника за время ∆t:

I=∆q∆t

При неизменяемых силе тока и направлении за промежуток времени ток называют постоянным. Следует обращать внимание на его характеристики.

Электрический ток. Закон Ома

Рисунок 1.8.1. Упорядоченное движение электронов в металлическом проводнике и ток I. S – площадь поперечного сечения проводника, – электрическое поле.

Определение 3

В системе СИI измеряется в амперах (А), а единица измерения 1 А устанавливается по магнитному взаимодействию двух параллельных проводников.

Законы постоянного тока. Формулы

Определение 4

Постоянный электрический ток создается в замкнутой цепи, где свободные носители заряда проходят по замкнутым траекториям.

Разные точки цепи обладают неизменным по времени электрическим полем, исходя из основных законов постоянного тока. То есть в такой цепи оно ассоциируется с замороженным электростатическим полем. Когда электрический заряд перемещается по замкнутой траектории, то работа сил равняется нулю.

Определение 5

Чтобы постоянный ток имел место на существование, нужно наличие такого устройства в цепи, которое будет создавать и поддерживать разности потенциалов разных участков цепи при помощи работы сил неэлектростатического происхождения. Их называют источниками постоянного тока. Такие силы, действующие на свободные носители заряда со стороны источников тока, получили название сторонних сил.

Их природа различна. Гальванические элементы или аккумуляторы обладают сторонними силами, возникающими по причине электрохимических процессов. В генераторах это обстоит по-другому: появление сторонних сил возможно при движении проводников в магнитном поле. Источник тока сравним с насосом, перекачивающим жидкость замкнутой гидравлической системы. Электрические заряды внутри источника под действием сторонних сил

Закон Ома для участка цепи: формулировка и формула, применение

 

От силы тока в цепи зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока. То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток, в свою очередь – это упорядоченное движение частиц под действием электрического поля.

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением. Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току. Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I=U/R,

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи:

U=IR    и    R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Нужна помощь в учебе?



Предыдущая тема: Сопротивление тока: притяжение ядер, проводники и непроводники
Следующая тема:&nbsp&nbsp&nbspРасчёт сопротивления проводников и реостаты: формулы

Все неприличные комментарии будут удаляться.

Закон Ома для участка цепи | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Закон Ома для однородного участка элект­рической цепи кажется до­вольно простым: сила тока в однородном участке цепи прямо пропорциональна на­пряжению на концах этого участка и об­ратно пропорциональна его сопротивлению:

I = U / R,

где I —сила тока в участке цепи; U — на­пряжение на этом участке; R — сопротив­ление участка.

После известных опытов Эрстеда, Ам­пера, Фарадея возник вопрос: как зависит ток от рода и характеристик источника то­ка, от природы и характеристик провод­ника, в котором существует ток. Попытки установить такую зависимость удались лишь в 1826—1827 гг. немецкому физику, учи­телю математики и физики Георгу Симону Ому (1787—1854). Он разработал установку, в которой в значительной степени можно было устранить внешние влияния на ис­точник тока, исследуемые проводники и т. п. Следует также иметь в виду: для многих ве­ществ, которые проводят электрический ток,

закон Ома вообще не выполняется (полу­проводники, электролиты). Металлические же проводники при нагревании увеличи­вают свое сопротивление.

Ом (Ohm) Георг Симон (1787—1854) — немецкий физик, учитель математики и физики, член-корреспондент Берлин­ской АН (1839). С 1833 г. профессор и с 1839 г. ректор Нюрнбергской высшей по­литехнической школы, в 1849—1852 гг.— профессор Мюнхенского университе­та. Открыл законы, названные его име­нем, для однородного участка цепи и для полной цепи, ввел понятие элект­родвижущей силы, падения напряже­ния, электрической проводимости. В 1830 г. произвел первые измерения электродвижущей силы источника тока.

В формулу закона Ома для однородного участка цепи входит напряжение

U, которое измеряется работой, выполняемой при пе­ренесении заряда в одну единицу в данном участке цепи:

U = A / q,

где A — работа в джоулях (Дж), заряд q — в кулонах (Кл), а на­пряжение U — в вольтах (В).

Из формулы для закона Ома можно лег­ко определить значение сопротивления для участка цепи:

R = U / I.

Если напряжение определено в вольтах, а сила тока — в амперах, то значение со­противления получается в омах (Ом):

Ом = В/А.

На практике часто используются меньшие или большие единицы для измерения сопро­тивления: миллиом (1мОм = 10 Ом), килоом (1кОм = 103 Ом), мегаом (1МОм = 106 Ом) и т. п. Материал с сайта http://worldofschool.ru

Закон Ома для однородного участка цепи можно выразить через плотность тока и на­пряженность электрического поля в нем. В самом деле, с одной стороны, I = jS, а с дру­гой — I = (φ1 — φ2) / R = —Δφ / R. Если имеем однородный проводник, то и напряженность элект­рического поля в нем будет одинаковой и равной E = —Δφ / l. Вместо R подставляем его значение ρ • l / S и получаем:

j = —Δφ / ρl = (-1 / ρ) • (Δφ / l) = (1 / ρ) • E = σE.

Учитывая, что плотность тока и напряженность поля величины векторные, имеем закон Ома в наиболее общем виде:

j̅ = σ͞E.

Это — одно из важнейших уравнений электродинамики, оно справедливо в любой точке электрического поля.

На этой странице материал по темам:
  • Закон ома для участка цепи лекция

  • Краткий конспект участка земли закон ома

  • Выберите закон ома для участка цкпи

  • Закон ома для полной цепи краткий конспект

  • Закон ома для динамиков

Вопросы по этому материалу:
  • Какие электрические величины и как объединяет между собой за­кон Ома для однородного участка цепи?

  • Что такое электрическое напряжение?

  • Как определяется сопротивление проводников?

  • Как формулируется закон Ома для каждой точки проводника с током, который объединяет такие электрические величины: плотность тока, удельные сопротивление или электропроводимость вещества проводника и напряженность электрического поля в данной точке проводника?

Электрическое сопротивление. Закон Ома для участка электрической цепи. Физика, 8 класс: уроки, тесты, задания.

1. Электрическое сопротивление

Сложность: лёгкое

3
2. Электричество

Сложность: лёгкое

1
3. Физические величины

Сложность: лёгкое

2
4. Формулы

Сложность: лёгкое

1
5. Включение амперметра и вольтметра в сеть

Сложность: среднее

1
6. Сила тока

Сложность: среднее

3
7. Электрическое напряжение

Сложность: среднее

3
8. Электрическое сопротивление

Сложность: среднее

4
9. Измерительные приборы

Сложность: среднее

2
10. Применение закона Ома

Сложность: среднее

3
11. Вычисление сопротивления нити накала

Сложность: среднее

2
12. Вычисление силы тока

Сложность: среднее

2
13. Вычисление напряжения

Сложность: среднее

2
14. Вычисление напряжения на концах проводника

Сложность: сложное

3
15. Вычисление сопротивления лампочки

Сложность: сложное

3
16. Вычисление силы тока в резисторе

Сложность: сложное

3

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *