Закон кулона закон сохранения электрического заряда: Закон сохранения электрического заряда. Закон Кулона – 1. Закон Кулона. Закон сохранения электрического заряда.

Содержание

Закон сохранения электрического заряда. Закон Кулона

Закон сохранения электрического заряда. Закон Кулона

Электродинамика — наука о свойствах электромагнитного поля.

Электромагнитное поле — определяется движением и взаимодействием заряженных частиц.

Проявление эл/магнитного поля — это действие эл/магнитных сил:
1) силы трения и силы упругости в макромире;
2) действие эл/магнитных сил в микромире (строение атома, сцепление атомов в молекулы, превращение элементарных частиц)

Открытие эл/магнитного поля — Дж. Максвелл.


ЭЛЕКТРОСТАТИКА

— раздел электродинамики, изучает покоящиеся электрически заряженные тела.

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
— взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Электрический заряд — физическая величина, определяет интенсивность электромагнитных взаимодействий.

Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными — притягиваются.
Протон имеет положительный заряд, электрон — отрицательный, нейтрон — электрически нейтрален.

Элементарный заряд — минимальный заряд, разделить который невозможно.
Чем объяснить наличие электромагнитных сил в природе? — в состав всех тел входят заряженные частицы.
В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.

Тело заряжено, если имеет избыток зарядов какого-либо знака:
отрицательно заряжено — если избыток электронов;
положительно заряжено — если недостаток электронов.

Электризация тел — это один из способов получения заряженных тел, например, соприкосновением).

При этом оба тела заряжаются , причем заряды противоположны по знаку, но равны по модулю.


Закон сохранения электрического заряда

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.
( … но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).


Замкнутая система— система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Закон Кулона — основной закон электростатики.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

Когда тела считаются точечными? — если расстояние между ними во много раз больше размеров тел.
Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.

Единица электрического заряда: 1 Кл — это заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А.
1 Кл — очень большой заряд.
Элементарный заряд:

Коэффициент пропорциональности

Принято записывать коэффициент пропорциональности в законе Кулона в вакууме в виде

где электрическая постоянная

Закон Кулона для величины силы взаимодействия зарядов в произвольной среде (в СИ):

Диэлектрическая проницаемость среды характеризует электрические свойства среды. В вакууме

Таким образом, сила Кулона зависит от свойств среды между заряженными телами.



Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда — Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля — Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков

— Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов — Электроемкость. Конденсаторы. Энергия заряженного конденсатора — Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление — Работа и мощность тока

1. Закон Кулона. Закон сохранения электрического заряда.

1. Закон Кулона. Закон сохранения электрического заряда.

2. Электрическое поле и его напряженность. Потенциал электростатического поля. Принцип суперпозиции

3. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме.

4.Применение теоремы Гаусса

5.Потенциал электростатического поля

6.Работа по перемещению зарядов в электрическом поле.Разность потенциалов

7 Напряжённость электростатического поля как градиент потенциала.Эквипотенциальные поверхности

8.Диполь в электрическом поле. Электрический момент диполя

9, 10.Типы диэлектриков. Поляризация диэлектриков.

11. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость среды. Электрическое смещение.

12. Сегнетоэлектрики. Особенности. Пьезоэффект

13. Проводники в электрическом поле.

14.Электроёмкость проводников. Конденсаторы. Соединения конденсаторов

15. Энергия заряженного проводника в конденсаторе. Объемная плотность энергии эл. поля

Энергия заряженного конденсатора

16.Сила и плотность тока. ЭДС. Напряжение

17. Закон Ома для однородного участка цепи, для неоднородного участка цепи, для полной цепи.

18.Дифференциальная форма закона Ома

19. Закон Джоуля-Ленца в интегральной и дифференциальной формах

20. Нелинейные элементы. Методы расчёта цепей с нелинейными элементами. Правило Кирхгофа

21. Ток в вакууме. Эмиссионные явления.

22.Ток в Газах. Проводимость газов.

26. Магнитное поле. Магнитная индукция. Магнитное взаимодействие токов.

27. Закон Ампера. Магнитный момент кругового тока.

28. Закон Био-Савара-Лапласа

31. Магнитный поток. Теорема Гаусса для потока вектора магнитной индукции.

33. Сила Лоренца. Движение заряженных частиц в магнитном поле. Ускорители заряженных частиц.

34,35. Явление электромагнитной индукции. Правило Ленца. Закон Фарадея.

36. ЭДС индукции в движущемся проводнике

37. Самоиндукция. Индуктивность

38. Взаимная индукция

39. Энергия магнитного поля. Объёмная плотность энергии.

40. Магнитное поле в веществе. Макро и микро токи. Магнитные моменты атомов. Намагниченность.

43. Магнитная восприимчивость вещ-ва. Магнитная проницаемость среды.

44. Типы магнетиков. Диа- и парамагнетики

44. Ферромагнетики. Домены. Гистерезис. Точка Кюри. Спиновая природа ферромагнетизма.

45. Энерегетический колебательный контру. Свободные незатухающие электромагнитные колебания.

Электрич. Заряд (q=N*e) характеризует способность тел или частиц электрически взаимодействовать (Кл). 1Кл -это такой эл.заряд, который протекает в проводнике через поперечное сечение при силе тока в 1А за 1с. 1Кл=1А*1с. Носителем элементарного электрич. отрицательного заряда является электрон е=1,6*10^-19 Кл. Свойства электрич. заряда: 1)существует в 2-х видах: положит. и отрицат.(одноименные отталкиваются, разноименные притягив-ся).2)инвариантен(не зависит от системы отсчета).3)дискретен.4)аддитивен(заряд любой системы тел равен сумме зарядов тел, входящих в систему).5)подчиняется закону сохранения заряда. Закон сохранения заряда— алгебраическая сумма эл.зарядов любой замкнутой системы остается постоянной. Замкнутой называется система если она не обменивается зарядами с внешними телами. Закон Кулона: Сила взаимодействия между 2-мя неподвижными точечными зарядами находящимися в вакууме пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними.

.

электрическая постоянная 8,85*10^-12 Ф/м, =k – коэффициент пропорциональности =9*10^9 м/Ф. Точечный заряд – это заряд сосредоточенный в теле, линейные размеры которого пренебрежительно малы по сравнению с расстоянием до др. заряженных тел с которыми они взаимодействуют. Если заряд находится в диэлектрической среде, то в формулу силы взаимодействия добавляется в знаменатель — диэлектрическая проницаемость среды(безразмерная величина показывающая во сколько раз сила взаимодействия в этой среде меньше чем в вакууме).

2. Электрическое поле и его напряженность. Потенциал электростатического поля. Принцип суперпозиции

Электростатическое поле(ЭП) – это поле созданное неподвижным электрич. зарядом.

Напряженность ЭП – физическая величина(векторная) которая определяется силой действующей на единичный положительный пробный заряд помещенный в это поле.

[Н/Кл=В/м] – напряженность такого поля которое на точечный заряд действует с силой в 1Н.

Пробный заряд – заряд который не искажает поле в которое он вносится(значительно меньше заряда создающего поле).

. Напряженность – силовая характеристика поля.

Потенциал ЭП – энергетическая характеристика поля. Физическая величина равная работе по перемещению заряда из данной точки поля в бесконечность. Для определения потенциала рассмотрим работу по перемещению в поле зарядаQ. .

Разность потенциалов – работа по перемещению заряда из одной точки в другую. Принцип суперпозиции для напряженности ЭП: Напряженность поля системы зарядов = геометрической сумме напряженностей полей создаваемых каждым зарядом в отдельности. Принцип суперпозиции для потенциала: Потенциал поля системы зарядов равен алгебраической сумме потенциалов полей создаваемых каждым зарядом в отдельности.

3. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме.

Линии Е (силовые линии)-это линии касательные к которым в каждой точке совпадают с вектором Е. Для однородного поля (когда Е в любой точке постоянна по модулю и направлению) линии направлены параллельно вектору напряженности. Чтобы с помощью линий напряженности можно было характеризовать не только направление но и значение напр. Э.П. их проводят с определенной густотой. При этом число линий напряженности пронизывающих единицу площади поверхности расположеных перпендикулярно линиям напряженности д.б. равно в данной точке. Тогда число линий напряженности пронизывающих элементарную площадку dS=E*dS*cosα, т.е. скалярн.произв. E*dS – поток линий вект.напряженности через площадку dS. E*dS=dФ. Поток вектора напряженности сквозь произвольную замкнутую поверхность: Ф=. Теорема Острогр.Гаусса. Поток вектора Е сквозь произвольную замкнутую поверхность S равен алгебр.сумме зарядов охватыв. этой поверхностью.

Напряженность поля равномерно бесконечно заряженной поверхности с поверхностной плотностью

3.1. Электрический заряд. Дискретность заряда. Закон сохранения электрического заряда Закон Кулона.

ЭЛЕКТРОСТАТИКА

В этом разделе изучается одна из сторон единого электромагнитного поля — электростатическое поле неподвижных зарядов. В основе такого рассмотрения лежит установленный экспериментально закон Кулона, идея близкодействия и принцип суперпозиции электростатических полей.

Электростатика — раздел электродинамики, в котором изучается взаимодействие неподвижных электрических зарядов. Такое взаимодействие осуществляется посредством электростатического поля. C 17го века исследователи проводили многочисленные опыты с наэлектризованными телами. Были построены первые электростатические машины, основанные на электризации трением. С изобретением первого конденсатора (лейденская банка 1745 г.) появилась возможность накапливать большие электрические заряды. Это позволило в 1750 г. Б. Франклину установить закон сохранения электрического заряда.

В 1785 г. был экспериментально открыт закон взаимодействия неподвижных электрических зарядов — закон Кулона. С этого времени началось количественное изучение электрических явлений с помощью изобретенных в то время приборов (электроскопов и электрометров).

В отличие от гравитационного, в электростатическое взаимодействие вступают не все тела и частицы. Тем из них, которые участвуют в таких взаимодействиях, приписывается новое свойство — электрический заряд.

По современным представлениям, электрический заряд является скалярной физической величиной, которая характеризует способность тел вступать в электромагнитные взаимодействия и его величина определяет интенсивность этих взаимодействий.

Что же представляет собой электрический заряд? Для того, чтобы составить себе представление об этом понятии, можно перечислить свойства, которыми обладают электрические заряды.

1) Существует два типа зарядов — положительные или отрицательные, им соответствуют два типа взаимодействия: одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются.

2) Электрический заряд величина релятивистски инвариантная, т.е. он не изменяется при движении с любыми скоростями и не зависит от выбора системы отсчета.

3) Заряд обладает свойством аддитивности, т.е. заряд любой системы равняется алгебраической сумме зарядов частиц, составляющих эту систему.

4) Электрический заряд – дискретен, т.е. заряды всех тел и частиц, вступающих в электрические взаимодействия, состоят из целого числа элементарных зарядов. В природе в свободном состоянии существуют частицы, имеющие минимальный по модулю заряд, равный . Поэтому

, (1.1)

где N целое число. В этом заключается дискретность электрического заряда. Заряд электрона равен , т.е. является отрицательным и численно равным элементарному заряду, а заряд протона является положительным по знаку и численно равным элементарному заряду.

5) М. Фарадеем был сформулирован закон сохранения заряда: в любой электроизолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной

Замкнутая система: const. (1.2)

В 1785 году Ш Кулоном с помощью изобретенных им крутильных весов экспериментально был установлен закон взаимодействия неподвижных точечных зарядов. «Точечным» называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстояниями до других заряженных тел, с которыми он взаимодействует. Закон Кулона: силы, с которыми взаимодействуют два неподвижных точечных заряда в вакууме, прямо пропорциональны произведению этих зарядов и обратно пропорциональны квадрату расстояния между ними; силы направлены вдоль прямой, соединяющей эти заряды:

, (1.3)

где — сила, с которой первый заряд действует на второй заряд, а — радиус – вектор, проведенный от первого заряда ко второму заряду.

Входящая в формулу (1.3) величина Ф/м называется электрической постоянной, она возникает при записи формулы закона в международной системе единиц СИ, а коэффициент k пропорциональности, зависящий от выбора системы единиц в системе СИ равен

.

Если взаимодействующие заряды находятся в однородной и изотропной диэлектрической среде, то в знаменателе формулы (1.3) появляется безразмерная величина

— диэлектрическая проницаемость среды, которая показывает во сколько раз сила взаимодействия зарядов в данной среде меньше, чем их сила взаимодействия в вакууме.

Рис. 1.1

Для вакуума ε = 1, для всех сред ε>1, но с достаточной степенью точности при проведении многих расчетов можно принять для газов ( и для воздуха).

Закон сохранения электрического заряда.

При электризации тел выполняется закон сохранения электрического заряда. Этот закон справедлив для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной. Если заряды частиц обозначить через q1, q2 и т.д., то

q1 + q2 + q3 + … + qn = const.

Основной закон электростатики – закон кулона

Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В таком случае эти тела можно рассматривать как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.

, где

|q1| и |q2| — модули зарядов тел,

r – расстояние между ними,

k – коэффициент пропорциональности.

Fсила взаимодействия

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Единица электрического заряда

Единица силы тока – ампер.

Один кулон (1 Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А

g [Кулон=Кл]

е=1,610-19 Кл

-электрическая постоянная

БЛИЗКОДЕЙСТВИЕ И ДЕЙСТВИЕ НА РАССТОЯНИИ

Предположение о том, что взаимодействие между удаленными друг от друга телами всегда осуществляется с помощью промежуточных звеньев (или среды), передающих взаимодействие от точки к точке, составляет

сущность теории близкодействия.Распр. с конечной скоростью.

Теория прямого действия на расстоянии непосредственно через пустоту. Согласно этой теории действие передается мгновенно на сколь угодно большие расстояния.

Обе теории являются взаимно противоположными друг другу. Согласно теории действия на расстоянии одно тело действует на другое непосредственно через пустоту и это действие передается мгновенно.

Теория близкодействия утверждает, что любое взаимодействие осуществляется с помощью промежуточных агентов и распространяется с конечной скоростью.

Существования определенного процесса в пространстве между взаимодействующими телами, который длится конечное время, — вот главное, что отличает теорию

близкодействия от теории действия на расстоянии.

Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.

Электромагнитные взаимодействия должны распространятся в пространстве с конечной скоростью.

Электрическое поле существует реально, его свойства можно исследовать опытным путем, но мы не можем сказать из чего это поле состоит.

О природе электрического поля можно сказать, что поле материально; оно сущ. независимо от нас, от наших знаний о нем;

Поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире;

Главное свойство электрического поля – действие его на электрические заряды с некоторой силой;

Электрическое поле неподвижных зарядов называют электростатическим. Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ним связано.

Напряженность электрического поля.

Отношение силы, действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.

Напряженность поля точечного заряда.

.

Модуль напряженности поля точечного заряда qo на расстоянии r от него равен:

.

Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛ.

НАПРЯЖЕННОСТЬ ПОЛЯ ЗАРЯЖЕННОГО ШАРА

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.

Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше.

-напряженность поля точечного заряда.

Внутри проводящего шара (r > R) напряженность поля равна нулю.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.

В проводниках имеются заряженные частицы, способные перемещаться внутри проводника под влиянием электрического поля. Заряды этих частиц называют свободными зарядами.

Электростатического поля внутри проводника нет. Весь статический заряд проводника сосредоточен на его поверхности. Заряды в проводнике могут располагаться только на его поверхности.

1. Закон Кулона. Закон сохранения электрического заряда.

1. Закон Кулона. Закон сохранения электрического заряда

2. Электрическое поле и его напряженность. Потенциал электростатического поля. Принцип суперпозиции

3. Напряженность как градиент потенциала электростатического поля.

4. Поток вектора напряженности. Теорема Остроградского- Гаусса для электростатического поля в вакууме.

5. Электрическое поле в веществе. Поляризованность. Типы диэлектриков

6. Диэлектрическая восприимчивость вещества. Диэлектрическая проницаемость среды. Электрическое смещение.

7. Электроемкость уединенного проводника. Конденсаторы. Последовательное и параллельное соединения конденсаторов

8. Энергия электростатического поля. Объемная плотность энергии

9. Постоянный электрический ток и условия его существования. Сила и плотность тока

10. Закон Ома в дифференциальной и интегральной формах

11. Разности потенциалов, ЭДС, напряжение

12. Закон Джоуля — Ленца

13. Закон Видемана – Франца

14. Магнитное поле. Магнитная индукция. Принцип суперпозиции

15. Сила Ампера

16. Закон Био – Савара- Лапласа

17. Магнитное поле прямолинейного проводника с током и кругового тока. Магнитный момент витка с током

18. Действие магнитного поля на движущийся заряд. Сила Лоренца

19. Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора магнитной индукции)

20. Магнитный поток. Теорема Остроградского – Гаусса

21. Работа перемещения проводника и контура с током в магнитном поле

22. Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции

23. Явление самоиндукции. Индуктивность

24. Энергия магнитного поля. Объемная плотность энергии

25. Магнитное поле в веществе. Макро- и микротоки. Магнитные моменты атомов. Намагниченность

26. Закон полного тока в веществе. Магнитная восприимчивость вещества. Магнитная проницаемость среды. Напряженность магнитного поля.

27. Типы магнетиков. Диа- и парамагнетики

28. Ферромагнетики. Домены. Гистерезис. Точка Кюри. Спиновая природа ферромагнетизма.

29. Ток смещения

30. Уравнение электродинамики Максвелла в интегральной форме

31. Энергия электромагнитных волн. Вектор Умова – Пойтинга

32. Электрический колебательный контур. Свободные незатухающие электромагнитные колебания

33. Свободные затухающие электромагнитные колебания

34. Вынужденные электромагнитные колебания. Резонанс

Электрич.заряд характеризует способность тел или частиц электрически взаимодействовать (Кл). 1Кл -это такой эл.заряд, который протекает в проводнике через поперечное сечение при силе тока в 1А за 1с. 1Кл=1А*1с. Носителем элементарного электрич. отрицательного заряда является электрон е=1,6*10^-19 Кл. Свойства электрич. заряда: 1)существует в 2-х видах: положит. и отрицат.(одноименные отталкиваются, разноименные притягив-ся).2)инвариантен(не зависит от системы отсчета).3)дискретен.4)аддитивен(заряд любой системы тел равен сумме зарядов тел, входящих в систему).5)подчиняется закону сохранения заряда. Закон сохранения заряда- алгебраическая сумма эл.зарядов любой замкнутой системы остается постоянной. Замкнутой называется система если она не обменивается зарядами с внешними телами. Закон Кулона: Сила взаимодействия между 2-мя неподвижными точечными зарядами находящимися в вакууме пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними..

электрическая постоянная 8,85*10^-12 Ф/м, =k – коэффициент пропорциональности =9*10^9 м/Ф. Точечный заряд – это заряд сосредоточенный в теле, линейные размеры которого пренебрежительно малы по сравнению с расстоянием до др. заряженных тел с которыми они взаимодействуют. Если заряд находится в диэлектрической среде, то в формулу силы взаимодействия добавляется в знаменатель — диэлектрическая проницаемость среды (безразмерная величина показывающая во сколько раз сила взаимодействия в этой среде меньше чем в вакууме).

2. Электрическое поле и его напряженность. Потенциал электростатического поля. Принцип суперпозиции

Электростатическое поле(ЭП) – это поле созданное неподвижным электрич. зарядом.

Напряженность ЭП – физическая величина(векторная) которая определяется силой действующей на единичный положительный пробный заряд помещенный в это поле.

Н/Кл=В/м – напряженность такого поля которое на точечный заряд действует с силой в 1Н.

Пробный заряд – заряд который не искажает поле в которое он вносится(значительно меньше заряда создающего поле). . Напряженность – силовая характеристика поля.

Потенциал ЭП – энергетическая характеристика поля. Физическая величина равная работе по перемещению заряда из данной точки поля в бесконечность. Для определения потенциала рассмотрим работу по перемещению в поле заряда Q. .

Разность потенциалов – работа по перемещению заряда из одной точки в другую. Принцип суперпозиции для напряженности ЭП: Напряженность поля системы зарядов = геометрической сумме напряженностей полей создаваемых каждым зарядом в отдельности. Принцип суперпозиции для потенциала: Потенциал поля системы зарядов равен алгебраической сумме потенциалов полей создаваемых каждым зарядом в отдельности.

3.Напряженность как градиент потенциала электростатического поля.

Работа по перемещению единичного положит. Точечного заряда их Х1 в Х2 определ. след. образом. , , ; «-» говорит о том, что вектор Е всегда направл. в сторону уменьшения потенциала. Эквипотенциальн. поверхность –это пов-ть во всех точках которой φ имеет одно и то же значение (сфера). Вектор Е ┴ эквипот.поверности.

1.Взаимодействие заряженных тел. Закон сохранения электрического заряда. Закон кулона.

Закон Кулона. Модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними.

В центре атома между заряженными частицами называется электромагнитным

Протон – это носитель отрицательного заряда

Эл.заряд не создается и не исчезает, а только переходят от одного тела к другому – это закон сохранения эл.заряда

Электри́ческий заря́д— это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.

2.Электрическое поле. Напряженность электрического поля. Силовые линии. Однородное электрическое поле.

Электрическое поле— одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах).

Напряжённость электри́ческого по́ля— векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Силовая линия— это кривая, касательные к которой в любой точке совпадают по направлению с вектором напряженности поля. Она направлена от положительного к отрицательному заряду.

Электрическое поле —одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах).

Однородное поле– это электрическое поле, в котором напряженность одинакова по модулю и направлению во всех точках пространства

3. Работа сил электрического поля (с выводом). Потенциал. Разность потенциала. Связь напряженности и напряжения.

Работа сил электрического поля– при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда. Работа сил эл.поля при перемещении заряда равна 0

Разность потенциалов – между точками 1 и 2 равна отношению работы поля при перемещении заряда из точки 1 в точку 2 к значению этого заряда

Потенциал – электростатического поля в данной точке называют физическую величину, равную отношению потенциальной энергии заряда помещенного в данную точку поля, к значению этого заряда

Силовые поля называют потенциальными или консервативными.

Напряжение между двумя точками в однородном электрическом поле, расположенным по одной линии напряжённости равно произведению модуля вектора напряжённости поля на расстояние между этими точками

4. Проводники и диэлектрики в электрическом поле. Электрическая индукция проводников и поляризация диэлектриков.

Заряженные частицы, которые могут перемещаться по всему образцу, называют свободными зарядами, а вещества содержащие свободные заряды, называют проводниками.

Неполярные диэлектрики – молекулы которых центры распределения положительных и отрицательных зарядов совпадают.

Основная особенность проводников наличие свободных зарядов

В проводнике, внесенном в электрическое поле происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают некомпенсированные положительные и отрицательные заряды – это процесс электрической индукции

Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля – это поляризация диэлектрика.

34. Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

Ни механика, ни МКТ не в состоянии объяснить природу сил, связывающих атомы. Законы взаимодействия атомов и молекул можно объяснить на основе представления об электрических зарядах. <Опыт с натиранием ручки и притяжением бумажки> Взаимодействие тел, обнаруживаемое в этом опыте называется электромагнитным, и обуславливается электрическими зарядами. Способность зарядов притягиваться и отталкиваться объясняется предположением о существовании двух видов зарядов – положительному и отрицательному. Тела, заряженные одинаковым зарядом, отталкиваются, разным – притягиваются. Единицей заряда является кулон – заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер. В замкнутой системе, в которую не входят извне электрические заряды и из которого не выходят электрические заряды при любых взаимодействиях алгебраическая сумма зарядов всех тел постоянна. Основной закон электростатики, он же закон Кулона, гласит, что модуль силы взаимодействия между двумя зарядами прямо пропорционален произведению модулей зарядов и обратно пропорционален квадрату расстояния между ними . Сила направлена вдоль прямой, соединяющей заряженные тела. Является силой отталкивания или притяжение, в зависимости от знака зарядов. Постоянная k в выражении закона Кулона равна . Вместо этого коэффициента используют т.н. электрическую постоянную, связанную с коэффициентом k выражением , откуда . Взаимодействие неподвижных электрических зарядов называется электростатическим.

35. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.

Вокруг каждого заряда на основании теории близкодействия существует электрическое поле. Электрическое поле – материальный объект, постоянно существует в пространстве и способно действовать на другие заряды. Электрическое поле распространяется в пространстве со скоростью света. Физическая величина, равная отношению силы, с которой электрическое поле действует на пробный заряд (точечный положительный малый заряд, не влияющий на конфигурацию поля), к значению этого заряда, называется напряженностью электрического поля. Используя закон Кулона возможно получить формулу для напряженности поля, создаваемого зарядом q на расстоянии r от заряда . Напряженность поля не зависит от заряда, на который оно действует. Если на заряд q действуют одновременно электрические поля нескольких зарядов, то результирующая сила оказывается равной геометрической сумме сил, действующих со стороны каждого поля в отдельности. Это называется принципом суперпозиции электрических полей . Линией напряженности электрического поля называется линия, касательная к которой в каждой точке совпадает с вектором напряженности. Линии напряженности начинаются на положительных зарядах и оканчиваются на отрицательных, или же уходят в бесконечность. Электрическое поле, напряженность которого одинакова по всем в любой точке пространства, называется однородным электрическим полем. Приблизительно однородным можно считать поле между двумя параллельными разноименно заряженными металлическими пластинками. При равномерном распределении заряда q по поверхности площади S поверхностная плотность заряда равна . Для бесконечной плоскости с поверхностной плотностью заряда  напряженность поля одинакова во всех точках пространства и равная .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *