Закон кирхгофа определение – Первый закон Кирхгофа: определение, формулы, физический смысл

Первый закон Кирхгофа: определение, формулы, физический смысл

Первый закон Киргоффа

Первый закон Кирхгофа основан на принципе непрерывности и применим к узлу электроцепи.

Первый закон Кирхгофа определяет взаимосвязь между суммой токов, сходящихся в одном узле, и формулируется следующим образом:

Алгебраическая сумма величин токов Ik, сходящихся в любой точке (узле) электроцепи, равна нулю в любой момент времени

∑ Ik = 0,

при этом k — количество ветвей, сходящихся в узле цепи;

Ik – мгновенная величина тока для k-й ветви.

Первый закон Кирхгофа: определение и формула

Физически Первый закона Кирхгофа означает: движение электрических зарядов осуществляется таким образом, что ни в одном из участков цепи он не имеет тенденцию к накоплению.

Отсюда, вытекает еще одна формулировка закона: в любом узле электроцепи сумма токов направленных к узлу оказывается равной сумме токов, направленных от этого узла, или:

∑ Ik = ∑ Im,

при этом k — количество ветвей, втекающих в узел;

m- — количество ветвей, вытекающих из узла.

Узлом электрической цепи принято называть точку подключения 3-х и более ветвей. ток принимается со знаком «+», если он втекает в узел, и со знаком «-», если вытекает.

К примеру, рассмотрим баланс токов на примере схемы:

I1 + I2 + I3 – I4 – I5 = 0, либо

I1 + I2 + I3 = I4 + I5.

Очевидным фактом, является то, что формулировка формы записи может иметь различный характер. Существенным является лишь принимаемая договоренность о знаке токов: нельзя использовать разнонаправленное направление в пределах одной электрической цепи для одного или нескольких узлов.

Направление тока для каждой цепи определяют произвольно.

При этом нет необходимости стремиться, чтобы для всех узлов использовались токи различных направлений. Также может иметь место ситуация, что в каком-то узле все токи будут направлены от узла или к нему, что тем самым нарушает принцип непрерывности. Но в такой ситуации в процессе определения значений токов один или несколько будут отрицательными, что будет служить признаком об их протекании в противоположном направлении от принятого.

При расчете разветвленных электроцепей используются второй закон Кирхгофа. Они были сформулированы в 1945г. великим физиком 19 в. Густавом Робертом Кирхгофом.

1 и 2 законы кирхгофа

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

В этом случае законы формулируются следующим образом.

[править]Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит  узлов, то она описывается  уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

[править]Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений

 

для переменных напряжений

 

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит 

ветвей, из которых содержат источники тока ветви в количестве , то она описывается  уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Пример

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

Формулы законов Кирхгофа

Законы Кирхгофа применяют для составления систем уравнений из которых находят силы тока, которые текут в элементах рассматриваемой цепи.

Любую точку цепи, в которой сошлись три или более проводников с токами называют узлом.

Формула первого закона Кирхгофа (правило узлов)

   

Выражение (1) означает, что алгебраическая сумма токов в любом узле цепи (при учете знаков токов) равна нулю. Знаки токов выбирают произвольно, но при этом следует считать, например, все токи, входящие в узлы положительными, тогда все токи, исходящие из узлов отрицательными. При решении одной задачи важно не путать знаки. Для того, чтобы не допускать ошибок со знаками при составлении суммы токов, часто на схемах силы токов изображают стрелками с направлениями от узла или к узлу.

Первый закон Кирхгофа — следствие закона сохранения заряда. Так как при постоянном токе никакая точка проводника (или участок цепи) не могут накапливать заряд. В противном случае токи не были бы постоянными.

Формула второго закона Кирхгофа (правило контуров)

   

Формула (2) означает, что произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура.

Направление положительного обхода выбирают для всех контуров одинаковым в одной задаче. При составлении уравнений, используя правила Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Втрое правило Кирхгофа является следствием обобщенного закона Ома.

Примеры решения задач по теме «Законы Кирхгофа»

Понравился сайт? Расскажи друзьям!

Законы Кирхгофа | энергетик

Вернутся в раздел  ТОЭ            

   Законы Кирхгофа

              Основная цель расчета электрической цепи заключается в определении токов в её ветвях. Зная токи, нетрудно найти напряжения и мощность ветвей и отдельных элементов цепи. Связь между ЭДС, напряжениями и токами линейных электрических цепей выражается линейными уравнениями. Значения токов, напряжений и мощностей дают возможность оценить условия и эффективность работы электротехнического оборудования во всех участках электрической цепи.

Для расчета электрических цепей с законом Ома применяются два закона Кирхгофа.

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам электрических цепей:

В ветвях, образующих узел электрической цепи, алгебраическая сумма токов равна нулю:

∑ I = 0. 

          В эту сумму токи входят с разными знаками в зависимости от направления их по отношению к узлу. На основание первого закона Кирхгофа для каждого узла можно составить уравнения токов. Например, для точки 2 (Рис. 5(в) и (г) ) уравнение имеет вид: (см. ссылку — перейти)

 

I1 + I6 – I3 = 0

 

В этом уравнении токи, направлены к узлу, условно взяты – положительные, а токи, направленные от узла – отрицательные.

I1 + I6 = I3.

В этом уравнение первый закон Кирхгофа можно сформулировать как: сумма токов, направленных к узлу электрической цепи, равна сумме токов, направленных от того же узла.




Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрических цепей:

      В контуре электрической цепи алгебраическая сумма напряжений на его ветвях равна нулю:

∑ U = 0.

Тоэ -9

Рис.6

          Для доказательства второго закона Кирхгофа обойдём контур  по часовой стрелке (Рис. 6) 1-2-3-4-5-6-1 и запишем потенциалы точек контура по указанным направлениям токов в ветвях, которые выбраны произвольно. Обход начнём с точки 1, потенциал которой V1. Потенциал следующей точки выразим относительно предыдущей: V2 = V1 + E1; V3 = V2 – I1; V4 = V3 — I4; V5 = V4 – E3; V6 = V5 + I6; V1 = V6 – I3.

                 Изменение потенциала по выбранному контуру должно быть равно нулю, т.к. оно выражает работу, затраченную на перемещение частиц, обладающих вместе единицей заряда, по замкнутому пути в электрических полях источников и приёмников энергии (см. Рис. 1). Тогда в замкнутом контуре:

V1 + V2 + V3 + V4 + V5 + V6 = 0,    E1 – I1 – I4 – E3 + I6 – I3 = 0,

или   — (E1 – I1) + I4 + (E3 – I6) + I2 = 0.

Соответственно в этом уравнении напряжение ветвей: 3 – 2 – 1         E1 – I1 = U3,1;               4 – 5 – 6           E3 – I6 = U4,6; 3 – 4                 I4 = U3,4;                        6 – 1                I2 = U6,1,

поэтому U3,1 + U4,6 + U6,1 = 0. В данном уравнении напряжения считаются положительными (по обходу контура), а направления против обхода – отрицательными.

Перепишем уравнение в следующем виде:

I1 + I4 + I3 – I6 = E1 – E3.

В таком виде уравнение даёт другую формулировку второго закона Кирхгофа:

     В контуре электрической цепи алгебраическая сумма падений напряжения в пассивных элементах равна алгебраической сумме ЭДС этого контура:

∑ IR = E. 

      Соответственно к другим контурам составляются другие уравнению, которые нетрудно составить, не прибегая к выражениям потенциалов точек контура, пользуясь простым правилом. В левую часть уравнения записывать алгебраическую сумму падений напряжения в пассивных элементах контура, а в правую алгебраическую сумму ЭДС, встречающихся при обходе контура. Соответственно положительными считаются токи и ЭДС, направление которых совпадает с направлением обхода.

Вернутся в раздел   ТОЭ  

Ответы@Mail.Ru: третий закон киргоффа срочно!

Всем известны правила Кирхгофа для электрических цепей (спасибо Nadejda Shakarova за их подробное описание) . Однако Кирхгоф занимался не только электродинамикой. Он ввел термин «абсолютно черное тело» и открыл закон излучения для данного тела, который и назван в его честь. Но этот закон нельзя назвать «третьим законом Кирхгофа» в данном контексте, поскольку он не относится к электродинамике. Но тем не менее, он тоже открыт данным ученым и носит его имя. Подробнее о законе излучения Кирхгофа см. здесь: <a rel=»nofollow» href=»http://www.astronet.ru/db/msg/1188370″ target=»_blank»>http://www.astronet.ru/db/msg/1188370</a>

их два всего<br>:)

что самое интересное, гугл о нем не знает. он вообще существует? такое ощущение, что нет: <a rel=»nofollow» href=»http://www.google.com/search?hl=en&rls=en&q=3-й+закон+киргоффа&btnG=Search» target=»_blank»>http://www.google.com/search?hl=en&rls=en&q=3-й+закон+киргоффа&btnG=Search</a>

нет их три но третий я не помню.

Оба закона Кирхгофа формулируются достаточно просто и имеют понятную физическую интерпретацию. Первый закон гласит, что если рассмотреть любой узел цепи (то есть точку разветвления, где сходятся три или более проводов) , то сумма поступающих в цепь электрических токов будет равна сумме исходящих, что, вообще говоря, является следствием закона сохранения электрического заряда. Например, если вы имеете Т-образный узел электрической цепи и по двум проводам к нему поступают электрические токи, то по третьему проводу ток потечет в направлении от этого узла, и равен он будет сумме двух поступающих токов. Физический смысл этого закона прост: если бы он не выполнялся, в узле непрерывно накапливался бы электрический заряд, а этого никогда не происходит. Второй закон не менее прост. Если мы имеем сложную, разветвленную цепь, ее можно мысленно разбить на ряд простых замкнутых контуров. Ток в цепи может различным образом распределяться по этим контурам, и сложнее всего определить, по какому именно маршруту потекут токи в сложной цепи. В каждом из контуров электроны могут либо приобретать дополнительную энергию (например, от батареи) , либо терять ее (например, на сопротивлении или ином элементе) . Второй закон Кирхгофа гласит, что чистое приращение энергии электронов в любом замкнутом контуре цепи равно нулю. Этот закон также имеет простую физическую интерпретацию. Если бы это было не так, всякий раз, проходя через замкнутый контур, электроны приобретали или теряли бы энергию, и ток бы непрерывно возрастал или убывал. В первом случае можно было бы получить вечный двигатель, а это запрещено первым началом термодинамики; во втором — любые токи в электрических цепях неизбежно затухали бы, а этого мы не наблюдаем. Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома. В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Пример параллельной цепи является — ламп «лесенкой» : напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по второму закону Кирхгофа.

Конечно их ТРИ! Закон 1-й: Сумма токов в узле электрической цепи ровна нулю; 2-й: Разность потенциалов в двух точках электрической цепи равна нулю; 3-й: Это симбиоз первых двух — сопротивление в двух точках электрической цепи тоже равно нулю!

Третий? Мэн на занятия приходить надо и записывать!

Смешно, его не существует))) Хотя, третий закон Киргофа- не кому не говорить о третьем законе Киргофа.

3-й закон Кирхгофа — dmagin — LiveJournal

Продвижение по теме потоков в почти симметричных графах продолжается.
Было (кратко, ес-но) изучено состояние дел в теории электрических сетей (по работам «Random Walks and Electrical Networks», «Inverse Problems for Electrical Networks»). Обнаружено, что люди почему-то не используют мой прием — задание разности потенциалов в сети через введение асимметричного ребра. А мучаются со стандартной задачей Дирихле — то есть через задание краевых условий на потенциалы. Зря. Теряется общность и простота «графического» подхода. (Правда меня немного смущает, что такую асимметрию можно задать, просто воткнув в землю диод, без всяких источников тока).

Что еще понято. Наконец-то постиг, как доказывается пресловутый инвариант для графа любой размерности. Для этого пришлось, правда, ввести 3-й закон Кирхгофа )). Ну и наиболее интересная часть — продвинулся в решении обратной задачи для электрических сетей — вычисление проводимостей графа на основе известных разностей потенциала. Поскольку материала много, то разобью на несколько постов.

Начнем с Кирхгофа.


Как известно, Кирхгофу приписывают два правила, которые полезны для расчета электрических цепей:
1) Сумма токов в каждом узле равна нулю — мы это называем балансом потоков.
2) Сумма разностей потенциалов по замкнутому контуру равна нулю (про всякие ЭДС и пр. мы здесь намеренно опускаем,- они нам без надобности).- Это тоже очевидность, на которой не останавливаемся.

А вот про 3-й закон (скорее, правило), похоже никто не знает. Включая самого Кирхгофа. А он, оказывается, тоже полезен. И важен для всех, кто занимается электроразведкой, кто подает ток/напряжение в одном месте, а снимает в другом.

В электротехнике известен принцип эквивалентности — если мы меняем местами питающие электроды (по которым подаем ток) и съемные (снимаем напряжение), то результат остается тот же самым. Вроде бы очевиден,- связан с линейностью уравнений. Для графов я особо не вникал — почему так происходит. Проверил — действительно так.
Как проверяется. Берем симметричный граф (аналог электрической сети). И вводим асимметрию, например, ребра ij,- то есть вводим разность между проводимостями: dC = Cij — Сji. Смотрим — чему равна разность потенциалов между любыми произвольными узлами графа (m и n, например). Потом восстанавливаем симметричность ребра ij и вводим асимметрию между узлами m и n. А разность меряем между i и j (как много приходится писать) — полученные разности Umn (в 1-м случае) и Uij (во 2-м) — равны. Это и есть принцип эквивалентности.

Теперь допустим, что мы снимаем разность потенциалов Umn с одних и тех же узлов (измерительные электроды фиксированы), но при этом последовательно меням расположение питающих электродов. Например, сначала задали ток через узлы 12 (измерили Umn), потом через 23 (снова измерили Umn), потом — через 34 и т.д. Теперь мы можем сформулировать 3-е правило:
Если путь, по которому меняются питающие электроды,- замкнут (12-23-34-41), то сумма измеренных разностей потенциалов Umn будет равна нулю.

Фактически, 3-е правило — это использование 2-го закона совместно с принципом эквивалентности.
Почему данное правило не пользуется популярностью (неизвестно)? Скорее всего потому, что в традиционной электротехнике (и электроразведке тоже) редко меняют положение питающих электродов.

Где мы можем применить данное правило?
Ну, доказать, наконец-то наш инвариант (след. пост).
Но более интересно — понять — какие же измерения нам нужно провести (а какие, наборот — уже будут лишними), чтобы решить обратную задачу (для электрических сетей, например). Результаты данного исследования планируется изложить через пост.

Законы Кирхгофа — это… Что такое Законы Кирхгофа?

Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

Формулировка

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

В этом случае законы формулируются следующим образом.

Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений
для переменных напряжений

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Пример
m-mi-(p-1)~ На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

Особенности составления уравнений для расчёта токов

  • Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
    • положительные направления токов в ветвях и обозначить их на схеме;
    • положительные направления обхода контуров для составления уравнений по второму закону.
  • С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке)
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму закону, стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие)

О значении для электротехники

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.[источник не указан 912 дней]

Закон излучения

Закон излучения Кирхгофа — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

Примечания

Литература

  • Матвеев А. Н. Электричество и магнетизм — Учебное пособие. — М.: Высшая школа, 1983. — 463 с.
  • Калашников С. Г. Электричество — Учебное пособие. — М.: Физматлит, 2003. — 625 с.
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи — 11-е издание. — М.: Гардарики, 2007.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *