Зачем ноль соединять с землей
Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.
Правила подключения заземления
В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?
Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.
А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?
Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.
Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.
Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.
«Заземление» и «зануление»
Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».
В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.
Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.
В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.
Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.
Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?
Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.
Что требуется для разводки по дому
Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).
Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.
ВОПРОС: Мне сделали заземление и ввели в щит в гараже. А электрик, который делает проводку по дому говорит что надо в розетках соединять заземление с нулем. Зачем это делать? Ведь насколько я понимаю, заземление нужно для защиты?
Соединять заземляющий контакт с нулевым непосредственно в розетках категорически нельзя. В этом случае, если у вас пропадает нулевой контакт в этой розетке, ток пойдет через заземляющий контакт и на корпусах бытовой техники может появиться опасный потенциал. Схема для частного дома приведена ниже.
У вас в щите должны быть две клемные планки. Одна рабочий ноль (N), вторая — земля (PE). Так вот, проводник от контура заземления надо подключить к планке N , а от нее пустить перемычку на ноль до вводного автомата.
Ни для кого не секрет, что огромное количество домов в нашей стране имеют старую систему заземления TN-C. Это когда в квартирах разведена двухпроводная электропровода. Один провод фаза «L», а второй провод проводник «PEN» (совмещенный нулевой рабочий и нулевой защитный проводники).
Сегодня постепенно, но очень медленно, идет модернизация электроснабжения многоквартирных домов, т.е. перевод на более современную и безопасную систему заземления TN-C-S. Если в вашем доме это уже произошло, то это просто счастье для вас )))
А вот ремонт старой электропроводки в квартирах ложится на плечи самих хозяев. Здесь многие люди рассуждают здраво и при капитальном ремонте меняют всю электропроводку. Если у вашего дома система заземления новая TN-S или уже модернизированная TN-C-S, то вы просто обязаны подключать все розетки трехжильным кабелем, т.е. проводники N и PE должны быть самостоятельными жилами.
Если у вашего дома все еще старая система заземления TN-C, то во время замены электропроводки также используйте трехжильные кабели. Смотрите вперед в будущее. А вдруг в скором будущем в ваш дом приедут электрики и проведут модернизацию электроснабжения всего дома. В этой ситуации вам нужно будет только подключить нулевые защитные проводники к шине заземления этажного щита. Если вы не позаботитесь о будущем, сэкономите немного денег и проложите двухжильные кабели, то чтобы вашу квартиру перевести на безопасную систему заземления необходимо будет снова делать капитальный ремонт с заменой всех кабелей.
Итак, сейчас постепенно перехожу к самому главному смыслу самой статьи.
Ваш дом со старой системой заземления TN-C и вы во время замены электропроводки везде заложили трехжильные кабели. Это правильное решение. Куда подключать две жилы — это «фазу» и «ноль» понятно. В такой ситуации у людей часто возникает другой вопрос: куда нужно подключить третьи желто-зеленые жилы кабелей, которые предназначены для выполнения функций нулевых защитных проводников? В таком доме же еще нет отдельного магистрального защитного проводника.
Очень часто я слышу следующие ответы на вопрос куда нужно подключать провода заземления если у дома старая система заземления TN-C:
- Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления и затем уже саму эту шину заземления подключить к корпусу этажного щитка.
- Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления, а саму эту шину заземления не подключать к корпусу этажного щитка.
- Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления и затем перемычкой подключить на нулевую шину, т.е. осуществить переход с TN-C на TN-C-S в квартирном щитке.
- Все заземляющие контакты в самих розетках нужно соединить перемычками с контактами нулевых рабочих проводников.
- Заземляющие проводники нужно подключить к стоякам и радиаторам отопления и водоснабжения, так как они заземлены.
Лично я считаю все эти ответы неверными, ошибочными и представляющими опасность для самих же хозяев квартир. Ниже постараюсь объяснить свою точку зрения. В комментариях вы можете высказать свое мнение по этому поводу.
Давайте сначала рассмотрим ситуацию в доме с новой системой заземления TN-S. Ниже нарисована элементарная схема распределительного щитка. Аналогичная схема будет и у квартирного щитка в доме с модернизированной системой заземления TN-C-S.
Теперь давайте представим аварийную ситуацию, когда на заземляющий контакт розетки попало опасное напряжение. Это может произойти из-за выхода из строя самой розетки, из-за поломки бытовой техники и т.д. Данную ситуацию я изобразил на схеме ниже для третьей по счету розетки. Предположим что фаза «L» попала на контакт розетки «PE». Поверьте, такое случается и довольно часто. Так как у нас все заземляющие контакты соединены с контуром заземления здания и потенциал земли принято считать равным нулю, то этот «аварийный» ток побежит по пути наименьшего сопротивления.
А именно его путь будет следующим: заземляющий контакт розетки — нулевой защитный проводник в квартире — шина заземления квартирного щитка — нулевой защитный проводник от квартирного до этажного щитка — шина заземления этажного щита — магистральный нулевой защитный проводник — контур заземления здания.
Таким образом получается, что опасный для человека потенциал будет «бежать» по пути наименьшего сопротивления и уходить в землю. Если эта розетка защищена УЗО или дифавтоматом, то эти защитные устройства сразу сработают и обесточат неисправную линию. Так человек будет защищен.
Ниже на схеме я стрелочками показал путь движения тока.
Теперь ниже представлена аналогичная элементарная схема распределительного щитка для дома со старой системой заземления TN-C. Тут приходят в щиток два провода «L» и «PEN», а на розетки уходит уже новая трехжильная электропроводка. На этой схеме представлена самая распространенная ситуация. Это когда все нулевые защитные проводники подключены к контактам розеток с одной стороны и подключены к общей шине заземления с другой стороны, но сама шина заземления не подключена к корпусу этажного щита.
Давайте теперь представим здесь подобную аварийную ситуацию и посмотрим что будет. В третьей розетки фаза «L» попала на заземляющий контакт розетки. Куда дальше она побежит?
Ответ тут логичен — ни куда она не побежит, а просто опасный потенциал попадет сначала на общую шину заземления и потом от нее распространится на все заземляющие контакты всех оставшихся розеток, а через них уже на металлические корпуса электроприборов (холодильник, стиральная машина, микроволновка и т.д.). В этой системе заземления нет связи шины PE с контуром заземления и нет точки с нулевым потенциалом, к которому бы стремился ток. Вывод отсюда можно сделать такой, что в данной ситуации человек может получить поражение электрическим током и может выйти из строя бытовая техника.
Теперь давайте разберем все ответы, которые я выше уже перечислил для вопроса куда нужно подключать провода заземления если у дома старая система заземления TN-C?
Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления и затем уже саму эту шину заземления подключить к корпусу этажного щитка.
Мой ответ: Этого делать нельзя, так как этажный щит может быть не заземлен и опасный потенциал может оказаться на его корпусе и на металлических корпусах вашей бытовой техники. Это будет представлять большую опасность для вас и для других жильцов дома.
Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления, а саму эту шину заземления не подключать к корпусу этажного щитка.
Мой ответ: Так делать нельзя. Данную ситуацию я уже выше рассмотрел в описываемом аварийном случае для дома с системой заземления TN-C.
Все заземляющие проводники нужно привести в домашний щиток, подключить в нем на общую шину заземления и затем перемычкой подключить на нулевую шину, т.е. осуществить переход с TN-C на TN-C-S в квартирном щитке.
Мой ответ: Так делать нельзя. Суть перехода на систему заземления TN-C-S заключается в повторном заземлении PEN проводника в месте его разделения, чтобы опасный потенциал уходил в землю. В квартирном щитке этого сделать невозможно. Если при таком подключении проводников случится аварийная ситуация и фаза попадет на контакт заземления розетки, то просто получится короткое замыкание. Проводник PE соединен же перемычкой с проводником N и поэтому получается что «фаза» сразу попадает на «ноль». А мы знаем, что короткое замыкание происходит с искрами и отгоранием контактов. «Бабах» может произойти в вашей розетке или бытовой технике, что может быть очень опасно.
Все заземляющие контакты в самих розетках нужно соединить перемычками с контактами нулевых рабочих проводников.
Мой ответ: Так тоже делать нельзя. Эта ситуация аналогична с ситуацией из ответа №3.
Заземляющие проводники нужно подключить к стоякам и радиаторам отопления, так как они заземлены.
Мой ответ: Так делать нельзя. Заземление стояков отопления и водоснабжения может быть нарушено. Например, кто-то этажом ниже во время ремонта вырезал старые металлические труби и поставил новые полипропиленовые. Связь металлических труб верхних этажей с «землей» будет нарушена. В такой ситуации если опасный потенциал попадет на заземляющий контакт розетки, то под напряжением окажутся стояки и трубы отопления и водоснабжения. Это очень опасно для вас и для и для других жильцов дома.
Куда нужно подключать провода заземления если у дома старая система заземления TN-C?
Теперь перехожу с своему ответу на вопрос куда нужно подключать провода заземления если у дома старая система заземления TN-C.
Лично я считаю, что нулевые защитные проводники необходимо подключать следующим образом:
- В квартирном щитке нужно установить общую шину заземления и подключить к ней все приходящие от розеток третьи желто-зеленые жилы кабелей.
- Во время ремонта проложить отдельный провод, например ПУГВ, для организации заземления шины PE квартирного щитка от шины PE этажного щита или использовать для этих целей трехжильный вводной кабель. В домашнем щитке нулевой защитный проводник можно подключить к шине заземления. В этажном щите его не подключать, а просто аккуратно скрутить и спрятать от посторонних лиц.
- В самих розетках нулевые защитные проводники не подключать к заземляющим контактам розеток. Их нужно просто аккуратно скрутить и спрятать вглубь подрозетника.
Кто-то скажет, что лучше в самих розетках подключить нулевые защитные проводники, а не подключать их только к шине PE в квартирном щитке. Так же потом при переводе дома на систему заземления TN-C-S будет проще их только завести на шину PE и не вскрывать все розетки, которых может быть несколько десятков.
Отвечаю почему так не стоит делать. Как правило, в одну розеточную группу (линию) может входить несколько розеток. Если в них подключить нулевые защитные проводники и их общую жилу PE не подключать в щитке, то получится следующая ситуация. Все желто-зеленые жилы одной розеточной группы на пути к щитку всегда объединяются в одну линию (жилу), например, в распределительной коробке. В щиток же приходит всего один кабель от нескольких розеток. Поэтому у всех розеток из одной розеточной группы будет хорошая связь между заземляющими контактами. Если «фаза» в одной из таких розеток попадет на ее заземляющий контакт, то эта «фаза» также попадет и на заземляющие контакты остальных розеток. Так будет опасная ситуация в нескольких розетках.
Так вот, если вы подключите провода заземления по предложенной схеме, то будет исключена опасная ситуация с попаданием фазы на заземляющие контакты всех розеток и на металлические корпуса бытовой техники. Тут фаза, попавшая на заземляющий контакт розетки, дальше него никуда не пойдет и аварийная ситуация будет только в одной точке, а не во всей квартире.
Ниже представлена правильная схема подключения проводов заземления в доме со старой системой заземления TN-C. Красные крестики означают, что сюда приходит нулевой защитный проводник, но не подключается.
Надеюсь мои рассуждения и доводы по этому вопросу вам понятны. Если вы придерживаетесь другого мнения и считаете, что я не прав и ошибаюсь, то обязательно это напишите ниже в комментариях. Найти правильное и безопасное решение в подключении проводов заземления в домах с системой заземления TN-C будет очень полезно вам и мне самому. Спасибо!
Высокое напряжение опасно для вашего здоровья, а низкое напряжение приятно или полезно )))
«Зачем необходимо делать заземление?» – Яндекс.Кью
Заземление – это принудительное соединение любых токопроводящих элементов с землей. Так как основной характеристикой заземления является переходное сопротивление между электродом и грунтом, то на практике данный показатель стараются уменьшить всеми возможными способами. В идеале переходное сопротивление должно стремиться к нулю, но согласно требований ПУЭ может быть не более 4 – 10 Ом, в зависимости от напряжения сети. В зависимости от конкретной ситуации все заземления условно подразделяются на защитные и рабочие.
В первом типе заземления с землей соединяются токопроводящие элементы, которые при нормальной работе электрооборудования ни в коем разе не должны попадать под какой-либо потенциал. На практике это корпус приборов, несущие и конструктивные элементы зданий, опор, закладных деталей и т.д. Задача защитного заземления – обеспечить перетекание электрического потенциала с корпуса электрических приборов в землю, в случае повреждения изоляции.
На рисунке выше приведена принципиальная электрическая схема, которая демонстрирует работу защитного заземления. В первом варианте представлен случай пробоя изоляции, когда корпус электрооборудования не соединен с землей, как видите, для человека складывается крайне опасная ситуация, в которой он может погибнуть даже от бытового напряжения в 220В (приблизительный ток 0,22А, в то время, как смертельным считается 0,1А). Во втором случае корпус электрооборудования соединен с землей и в случае пробоя изоляции человек, прикоснувшийся к такому корпусу, попадет под значительно меньший потенциал, который не только не опасен, но и должен отключиться при помощи защиты еще на этапе возникновения аварии.
Рабочее заземление используется как неотъемлемый элемент схемы, в бытовых условиях вы можете встретить его при подключении трансформатора в подстанции или КТП – нулевой вывод которого с низкой стороны соединяется с заземлением.
«Ноль» и «земля»: в чем принципиальное отличие?
Исторически так получилось, что в Российской Федерации, как и в приграничных государствах, используется заземляющий принцип, когда нулевой проводник соединяется с заземляющим контуром. У многих людей может возникнуть «законный» вопрос: если они контактируют между собой, то для чего тянуть столько проводов – достаточно провести повсюду двойную жилу (фазу и нулевую линию) и будет возможность заземляться посредством нулевой жилы! Однако в такой постановке вопроса скрывается один технический нюанс, который превращает данное решение не только в бесполезную игрушку, но в некоторых случаях и в довольно опасную затею.Для тех, кому не терпится, и кто любит «заглядывать в ответ», априори выскажу «секрет» – принципиальная идея заключается в том, в каком месте нулевой провод соединяется с заземлением. Вариант их соединения непосредственно внутри розетки, подключая заземляющую жилу (желто-зеленый провод) к нулевой (синий провод), не будет верным. Такая заземляющая схема войдет в противоречие с предписаниями ПУЭ. В результате никакой защиты людей от поражения током не получится, более того, добавится еще больше проблем с безопасностью.
В ПУЭ без каких-либо вариантов однозначно прописано, какой должна быть заземляющая жила. Она должна быть непрерывным проводом, без каких-либо размыкающих элементов – реле, предохранителей, выключателей, а также, положим, с помощью отсоединения электрической вилки от розетки.
Стоит нарушить это основное предписание, оговоренное в ПЭУ – и заземление из надежной защиты человека от поражения током превращается в бесполезную фикцию. Но проблемы на этом, как учит теория, и показывает практика, не заканчиваются! Если все-таки пытаться придавать нулевому проводу заземляющие функции, то не исключена возможность, что корпус холодильника, микроволновки или других бытовых приборов, окажется под напряжением. Это объясняется тем, что по нулевому проводу течет электроток с соответствующим падением напряжения, величину которого можно определить, умножая силу тока на показатель сопротивления проводника на промежутке между замеряемым местом и подлинной заземляющей точкой. Причем величина такого напряжения может характеризоваться десятками вольт, то есть может быть опасной для человека (в пределе – смертельной!).
Осталось подвести некоторые итоги и расставить акценты. В чем принципиальное отличие «ноля» от «земли»? В том, что по нулевому проводу протекает ток и к нему подключаются выключатели, те же вводные автоматы. То есть, если мы желаем иметь «землю» в виде непрерывной жилы, мы обязаны:
- в многоэтажных многоквартирных домах: подсоединиться к особой земляной жиле в электрическом тоннеле;
- для индивидуального жилого коттеджа: точкой подсоединения должен стать вводной автомат, точнее, его нулевой провод на входе, который тянется по воздуху или подземному кабелю от ближайшего от дома понижающего трансформатора, причем сечение нулевого провода должно быть не менее десяти квадратных миллиметров для медного провода и 16 мм2 – для алюминиевой жилы (см. в ПУЭ соответствующий пункт).
Любое другое место за вводным автоматом не может использоваться в качестве «земли», поэтому ни что, от металлических болванок, вкопанных недалеко от дома, до корпуса самого электрического щитка, таковыми считаться не могут.
Никогда не забывайте о правилах, изложенных в ПЭУ. Согласно им, следует руководствоваться элементарным, но верным правилом: когда нет уверенности в том, что вот этот конкретный провод является «землей», не стоит подсоединять к нему что бы то ни было, кроме устройства защитного отключения (УЗО) на 30 мА, который срабатывает мгновенно в отличие от автомата защиты. Бережёного, как известно, бог бережет!
Что такое «фаза», «ноль» и «земля», и зачем они нужны.
Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.
Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.
Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.
«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.
Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).
Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).
Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).
Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.
Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)
Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».
Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».
Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).
Изобретён этот «трёхфазный ток» был в самом конце XIX века.
Передача электричества в виде именно трёхфазного тока, как некоторые говорят, экономичнее (возможно, меньше потерь в проводах, или что-нибудь типа того), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся штуковину на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на кольце, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а сила тока в проводах при этом — около 300 Амперов).
Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак, да и различные заводы потребляют порою огого сколько мощности: металлургические, например.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение (потому что мощность тока — это сила тока умноженная на напряжение).
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов при передаче электроэнергии на расстояние по проводам (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов — именно поэтому чем толще провода в ЛЭП, тем экономичнее, потому что чем толще провод, тем меньше его сопротивление).
Поэтому экономически целесообразно повышать мощность передаваемого тока, наращивая не силу тока, а напряжение (напряжению никак не мешает сопротивление проводов — такова его природа).
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не отдельно ток и не отдельно напряжение, поэтому его не волнует, в каком виде эта мощность к нему в дом придёт по проводам: будет ли там больше тока и меньше напряжения, или, наоборот, больше напряжения и меньше тока — потребителя волнует только мощность в целом.
Поэтому на электростанции, перед передачей электроэнергии в провода ЛЭП, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома выполняется обратное преобразование — излишнее напряжение перегоняют обратно в силу тока, поскольку к этому моменту весь путь по ЛЭП уже успешно пройден электроэнергией с минимальными потерями.
Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под ЛЭП, или ещё чего-нибудь).
Вот забавное видео про короткое замыкание ЛЭП в 110 килоВольтов — весёлый феерверк:
Занимательный факт: при длине ЛЭП переменного тока более нескольких тысяч километров возникает ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.
Я уже объяснил, что такое «фаза» и что такое «земля», и дальше я объясню, что такое «ноль» («нулевой провод») и зачем он нужен. Объяснение займёт следующие несколько абзацев, и может показаться непростым, но для понимания того, что такое «ноль», придётся понять это объяснение.
Для упрощения, пока представим, что как будто бы трёхфазный генератор стоит не на ГидроЭлектроСтанции, а прямо у нас в квартире. Условно «левые» концы катушек на статоре мы, как и раньше, соединяем вместе.
Такой способ соединения называется соединением по схеме «звезда». Полученная точка соединения трёх фазных проводов называется «нейтралью».
«Нейтраль» обычно заземляют для большей безопасности: если нейтраль не заземлить, то потом когда одна из фаз случайно замкнётся на землю где-нибудь в доме, то полученная электрическая цепь будет разомкнутой — не будет токопроводящего пути от места касания фазой земли в доме обратно на эту фазу на подстанции. А если бы нейтраль заземлили на подстанции, то обратный путь с земли в доме на фазу на подстанции прошёл бы через землю: землю можно в данном случае представить как огромный проводник, хотя строго говоря это и не так, она же не металлическая, но для наглядности можно представить её как один огромный проводник. Итак, при отсутствии заземления «нейтрали» на подстанции, при коротком замыкании фазы на землю ток из фазы в землю не пойдёт (или, может быть, пойдёт, но будет относительно небольшим), и такая неисправность не будет засечена специально созданными для этого приборами («автоматами»), и эти приборы («автоматы») не смогут вовремя предотвратить опасное замыкание фазы на землю, выключив электричество. Подробнее принцип работы «автоматов» описан в конце этой статьи. А если вас заинтересует более подробное объяснение, зачем используется именно заземлённая нейтраль, то можете прочесть его по этой ссылке.
В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».
Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).
Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).
На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).
Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.
В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.
Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.
До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу
В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:
Бывают маленькие, и не очень мощные, а бывают большие и мощные:
Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».
Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).
Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).
Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).
Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).
Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?
Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…
Тогда зачем нам в доме нужен провод «земли»?
Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.
Приборы тоже иногда ломаются.
Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?
Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).
Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.
Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).
УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.
Поэтому нужны все три провода: «фаза», «ноль» и «земля».
В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)
От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..
Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):
И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):
Каждый «автомат» изготовлен на заводе под определённую максимально допустимую силу тока.
Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).
Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.
Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).
Вроде бы, по этой теме пока всё.