Явление электромагнитной индукции кратко: Закон электромагнитной индукции (закон Фарадея) – формула, физический смысл

Содержание

Изучение явления электромагнитной индукции

Автор Alexey На чтение 4 мин. Просмотров 737 Опубликовано Обновлено

Изучение возникновения электрического тока всегда волновало ученых. После того, как в начале XIX века датский ученый Эрстед выяснил, что вокруг электрического тока возникает магнитное поле, ученые задались вопросом: может ли магнитное поле порождать электрический ток и наоборот.Первым ученым, кому это удалось, был ученый Майкл Фарадей.

Опыты Фарадея

После многочисленных проведенных опытов Фарадей смог достичь кое-каких результатов.

1.Возникновение электрического тока

Для проведения опыта он взял катушку с большим количеством витков и присоединил ее к миллиамперметру (прибору, измеряющему силу тока). По направлению вверх и вниз ученый передвигал магнит по катушке.

Во время проведения эксперимента, в катушке действительно появлялся электрический ток по причине изменения магнитного поля вокруг нее.

По наблюдениям Фарадея стрелка миллиамперметра отклонялась и указывала на то, что движение магнита порождает собой электрический ток. При остановке магнита стрелка показывала нулевую разметку, т.е. ток не циркулировал по цепи.

рис. 1 Изменение силы тока в катушке за счет передвижения реjcтата

Данное явление, при котором  ток возникает под действием переменного магнитного поля в проводнике, назвали явлением электромагнитной индукции.

2.Изменение направления индукционного тока

В своих последующих исследованиях Майкл Фарадей пытался выяснить, что влияет на направление возникающего индукционного электрического тока. Проводя опыты, он заметил, что изменяя числа мотков на катушке или полярность магнитов, направление электрического тока, которое возникает в замкнутой сети меняется.

3.Явление электромагнитной индукции

Для проведения опыта ученый взял две катушки, которые расположил близко друг к другу. Первая катушка, имеющая большое количество витков проволоки, была подсоединена к источнику тока и ключу, замыкающему и размыкающему цепь. Вторую такую же катушку он присоединил к миллиамперметру уже без подключения к источнику тока.

Проводя эксперимент, Фарадей заметил, что при замыкании электрической цепи возникает индуцированный ток, что видно по движению стрелки миллиамперметра. При размыкании цепи миллиамперметр также показывал, что в цепи есть электрический ток, но показания были прямо противоположными. Когда же цепь была замкнута и равномерно циркулировала ток, тока в электрической цепи согласно данным миллиамперметра не было.

https://youtu.be/iVYEeX5mTJ8

Вывод из экспериментов

В результате открытия Фарадея была доказана следующая гипотеза: электрический ток появляется только при изменении магнитного поля. Также было доказано, что изменение числа витков в катушке изменяет значение силы тока (увеличение мотков увеличивает силу тока). Причем индуцированный электрический ток может появиться в замкнутой цепи только при наличии переменного магнитного поля.

От чего зависит индукционный электрический ток?

Основываясь на всем вышесказанном, можно отметить, что даже если есть магнитное поле, это не приведет к возникновению электрического тока, если данное поле не будет при этом переменным.

Так от чего же зависит величина индукционного поля?

  1. Число витков на катушке;
  2. Скорость изменения магнитного поля;
  3. Скорость движения магнита.

Магнитный поток является величиной, которая характеризует магнитное поле. Изменяясь, магнитный поток приводит к изменению индуцированного электрического тока.

рис.2 Изменение силы тока при перемещении а) катушки , в котором находится соленоид; б) постоянного магнита , внесением его в катушку

Закон Фарадея

Основываясь на проведенных опытах, Майкл Фарадей сформулировал закон электромагнитной индукции. Закон заключается в том, что, магнитное поле при своем изменении приводит к возникновению электрического тока, Ток же указывает на наличие электродвижущей силы электромагнитной индукции (ЭДС).

Скорость магнитного тока изменяясь влечет за собой изменение скорости тока и ЭДС.

Закон Фарадея: ЭДС электромагнитной индукции равна численно и противоположна по знаку скорости изменения магнитного потока, который проходит через поверхность, ограниченную контуром

Индуктивность контура. Самоиндукция.

Магнитное поле создается в том случае, когда ток протекает в замкнутом контуре. Сила тока при этом влияет на магнитный поток и индуцирует ЭДС.

Самоиндукция – явление, при котором ЭДС индукции возникает при изменении силы тока в контуре.

Самоиндукция изменяется в зависимости от особенностей формы контура, его размеров и среды, его содержащей.

При увеличении электрического тока, ток самоиндукции контура может замедлить его. При его уменьшении, ток самоиндукции, напротив, не дает ему так быстро убывать. Таким образом, контур начинает обладать своей электрической инертностью, замедляющей любое изменение тока.

Применение индуцированного ЭДС

Явление электромагнитной индукции имеет применение на практике в генераторах, трансформаторах и двигателях, работающих на электричестве.

При этом ток для этих целей получают следующими способами:

  1. Изменение тока в катушке;
  2. Движение магнитного поля через постоянные магниты и электромагниты;
  3. Вращение витков или катушек в постоянном магнитном поле.

Открытие электромагнитной индукции Майкла Фарадея внесло большой вклад в науку и в нашу обыденную жизнь. Это открытие послужило толчком для дальнейших открытий в области изучения электромагнитных полей и имеет широкое применение в современной жизни людей.

Конспект урока «Явление электромагнитной индукции»

11 класс. Тема:Открытие электромагнитной индукции. Магнитный поток. Правило Ленца

Цели урока:

  • Образовательные – раскрыть сущность явления электромагнитной индукции; разъяснить учащимся правило Ленца и научить их пользоваться им для определения направления индукционного тока; разъяснить закон электромагнитной индукции; научить учащихся производить расчет ЭДС индукции в простейших случаях.

  • Развивающие – развивать познавательный интерес учащихся, умение логически мыслить и  обобщать. Развивать мотивы учения и интерес к физике. Развивать умение видеть связь между физикой и практикой.

  • Воспитательные – воспитывать любовь к ученическому труду, умение работать в  группах. Воспитывать культуру публичных выступлений.

ХОД УРОКА

I. Организационный момент

1. Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами. Поэтому можно сделать предположение о том, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 году в опытах выдающегося английского физика М. Фарадея, в которых он открыл явление электромагнитной индукции. (слайд 1)

.

Эпиграф:

«Счастливая случайность
выпадает лишь на одну долю 
подготовленного ума».

Л.Пастернак

2. Краткий исторический очерк о жизни и деятельности М.Фарадея. (Сообщение учащегося). (Слайды 2, 3).

II. Впервые явление, вызванное переменным магнитным полем, наблюдал в 1831 году М.Фарадей. Он решил проблему: может ли магнитное поле вызывать появление электрического тока в проводнике? (Слайд 4).

Электрический ток, рассуждал М.Фарадей, может намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока? Долгое время эту связь обнаружить не удавалось.  Трудно было додуматься до главного, а именно: движущийся магнит, или меняющееся магнитное поле, может возбудить электрический ток в катушке. (Слайд 5).

(просмотр видеофрагмента «Примеры электромагнитной индукции» [4]). (Слайд 6).

Вопросы:

  1. Как вы думаете, что приводит к возникновению электрического тока в катушке?

  2. Почему ток был кратковременным?

  3. Почему тока нет, когда магнит находится внутри катушки (Рисунок 1), когда не перемещается ползунок реостата (Рисунок 2), когда одна катушка перестает двигаться относительно другой?

Вывод: ток появляется при изменении магнитного поля.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо  движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур меняется.
В случае изменяющегося магнитного поля его основная характеристика В – вектор магнитной индукции может меняться по величине и направлению. Но явление электромагнитной индукции наблюдается и при магнитном поле с постоянной В.

Вопрос: Что же при этом меняется?

Изменяется площадь, которую пронизывает магнитное поле, т.е. изменяется число силовых линий, которые пронизывают эту площадь.

Для характеристики магнитного поля в области пространства  вводят физическую величину – магнитный поток – Ф (Слайд 7).

Магнитным потоком Ф через поверхность площадью S называют величину, равную произведения модуля вектора магнитной индукции В  на площадь S и косинус угла  между векторами В и n.

Ф = ВS cos 

Произведение  В cos  = Вn представляет собой проекцию вектора магнитной индукции на нормаль  к плоскости контура. Поэтому  Ф = Вn S.

Единица магнитного потока – Вб (Вебер).

Магнитный поток в 1 вебер (Вб) создается однородным магнитным полем с индукцией 1Тл через поверхность площадью 1м2 , расположенную перпендикулярно вектору магнитной индукции. 
Главное в явлении электромагнитной индукции состоит в порождении электрического поля переменным магнитным полем. В замкнутой катушке возникает ток, что и позволяет регистрировать явление (Рисунок 1).
Возникающий индукционный ток того или иного направления как-то взаимодействует с магнитом. Катушка с проходящим по ней током подобно магниту с двумя полюсами – северным и южным. Направление индукционного тока определяет, какой конец катушки выполняет роль северного полюса. На основании закона сохранения энергии можно предсказать, в каких случаях катушка будет притягивать магнит, а в каких отталкивать.
Если магнит приближать к катушке, то в ней появляется индукционный ток такого направления, магнит обязательно отталкивается. Для сближения магнита и катушки нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные полюса отталкиваются. При удалении магнита наоборот.

В первом случае магнитный поток увеличивается (Рисунок 5), а во втором случае уменьшается. Причем в первом случае линии индукции В/ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, т.к. катушка отталкивает магнит, а во втором случае входят в этот конец. Эти линии на рисунке изображены более темным цветом. В первом случае катушка с током аналогична магниту, северный полюс которого находится сверху, а во втором случае – снизу.
Аналогичные выводы можно сделать с помощью опыта показанного на рисунке (Рисунок 6).

(Просмотр фрагмента «Правило Ленца») [4]

Вывод: Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым вызван. (Слайд 8).

Правило Ленца. Индукционный ток всегда имеет такое направление, при котором возникает противодействие причинам, его породившим.

Алгоритм определения направления индукционного тока. (Слайд 9)

1. Определить направление линий индукции внешнего поля В (выходят из N и входят в S).
2. Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то ∆Ф>0, если выдвигается, то ∆Ф<0).
3. Определить направление линий индукции магнитного поля В′, созданного индукционным током (если ∆Ф>0, то линии В и В′ направлены в противоположные стороны; если ∆Ф<0, то линии В и В′ сонаправлены).
4. Пользуясь правилом буравчика (правой руки), определить направление индукционного тока.
Опыты Фарадея показали, что сила индукционного тока в проводящем  контуре пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. (Слайд 10).
При всяком изменении магнитного потока через проводящий контур в этом контуре возникает электрический ток. 
ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через площадь, ограниченную этим контуром. 
Ток в контуре имеет положительное направление при убывании внешнего магнитного потока.

(Просмотр фрагмента «Закон электромагнитной индукции» [4])

(Слайд  11).

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

Открытие электромагнитной индукции внесло существенный вклад в техническую революцию и послужило основой современной электротехники. (Слайд  12).

III. Закрепление изученного

Решение задач № 1819, 1821(1.3.5)

(Сборник задач по физике 10-11. Г.Н. Степанова [2]).

IV. Домашнее задание:

§811[1] (учить), Р. № 902(б, г, е), № 911 (письменно в тетрадях) [5]

в чем заключается явление электромагнитной индукции?

ОЧЕНЬ ПРОШУ, ПОМОГИТЕ ПОЖАЛУЙСТА РЕШИТЬ ЗАДАЧИ (хотя бы какие-то) : 1. Яку кылькість природного газу треба спалити, щоб 3 кг льоду за температури -10 … град. цельсія нагріти до 100 град. цельсія та 0.1% випаровувати? 2. Скільки природного гасу потрібно спалити у плавильної печі ККД якої 20% для нагрівання і плавлення 100 кг алюмінію взятого при кімнатній темпиратурі 20 град. цельсія? 3. Двигун мопеда розвиває потужність 2кВт при швидкості 54 км/год. Який шлях пройде мопед, якщо у бензобаку 2 л бензину? ККД двигуна 20%. 4. Літак витратив 2 т бензину для за 4 години польоту. Яка потужність двигунів літака, якщо їх ККД 25%? 5. До складу горючої суміші входить гас та спирт. Маса гасу вдвічі менша за масу спирту. Яка питома теплота згоряня такої суміші?

Поїзд проходить перші 10 км із середньою швидкістю 30 км/год, другі 10 км — із середньою швидкістю 40 км/год, треті 10 км — із середньою швидкістю 60 … км/год. Яка була середня швидкість поїзда на всьому 30-кілометровому відрізку шляху?

Пароход, двигаясь против течения со скоростью 16 км/ч, проходит расстояние между двумя пристанями за 4 ч. За какое время он пройдёт то же расстояние п … о течению, если скорость парохода по течению равна 5,2 м/с? Ответ: время равно ___ ч. (Результат округляй до десятых!)​

7. З яких точок простору олівець можна буде бачити в плоскому дзеркалі повністю? І – область, з якої можна бачити точку А1 ІІ – област … ь, з якої можна бачити точку В1 B 1 ІІІ – область, з якої можна бачити олівець повністю ребят даю 30 баллов

1. Сколько секунд в 0,2 часа? 2. Переведите 1,4 мин в секунды 3. Автобус едет со скоростью 54 км / ч. Какая скорость автобуса в м / c 4. Улитка движет … ся со скоростью 9 см / мин. Какая скорость улитки в м / c. 5. Ученик 1 класса и ученик 7 класса, находясь на расстоянии 100 м, увидев друг друга одновременно побежали навстречу со скоростями υ1=2 м/с и υ2=6 м/с. Кто из них бежал к встрече дольше? 6. Электропоезд за 2 мин 30 с проехал на прямолинейном участке пути расстояние 4,5 км. Определить скорость электропоезда на этом участке пути 7. Земля движется вокруг Солнца со скоростью 30 км / с. Какой путь преодолевает Земля в течение одного урока? 8. Во время равномерного движения пешеход проходит за 10 с путь 15 м. Какой путь он пройдет при движении с той же скоростью за 0,4 мин? 9. Выполняя поворот мотоциклист проехал полукруга радиусом 5 м. Определить путь и перемещение мотоциклиста? 10. Поезд двигался в течение 4,5 мин со скоростью 144 км / ч. За какое время автомобиль имеющий скорость 108 км / ч преодолеет такой же участок пути 11. Лодка с человеком плывет против течения реки. Определить скорость человека в лодке относительно берега, если лодки скорость относительно воды 1,5 м / с, а скорость течения реки 0,5 м / с. 12. Скорость пассажирского поезда относительно земли 90 км / ч, а в отношении товарного поезда, который двигался в том же направлении, 36 км / ч. Какая скорость у товарного поезда относительно земли? 13. Самолет движется относительно воздуха со скоростью 180 км / ч, скорость встречного ветра 36 км / ч. Какое расстояние пролетает самолет относительно земли за 0,5 мин? 14. Самолет движется относительно воздуха со скоростью 216 км / ч, скорость ветра относительно земли 36 км / ч. Самолет пролетает от одного населенного пункта к другому и обратно. Самолет в одну сторону двигался по направлению ветра, а в противоположную сторону против направления ветра. На сколько быстрее самолет пролетит по ветру чем против ветра, если расстояние между населенными пунктами 35 км? 15. Навстречу друг другу идут два пастуха со скоростями по 3,6 км / ч. Начальная расстояние между пастухами 800 м. От первого пастуха до второго бежит собака со скоростью 27 км / ч. Встретив второго пастуха собака сразу разворачивается и бежит к первому пастуха и это повторяется пока пастухи не встретятся. Какой путь пробежала собака.? 16. По графику определить: 1 за какое время тело прошло 30 м. 2 скорость движения тела 3. построить график зависимости скорости от времени 17. Автомобиль на первом участке двигался со скоростью 10 м / с, а на втором — 25 м / с. Определить среднюю скорость. 18. Первый участок пути длиной 1,8 км мотоциклист проехал за 1 мин, а второй участок пути длиной 2,2 км — за 3 мин 10 с. Какова средняя скорость мотоциклиста? 19. Электропоезд первую половину времени ехал со скоростью 57,6 км / ч, а вторую половину времени ехал двигаясь со скоростью 72 км / ч. Какова средняя скорость в электропоезда? (Ответ запишите в м / с)

Промінь світла падає на плоске дзеркало. Кут падіння в 2 рази більший, ніж кут між дзеркалом і променем, який падає. Чому дорівнює кут відбивання?

Какой объём занимает свеча массой 200 г?

как решить задачу? 8 класс Решить задачу: Какое топливо массой 15 г необходимо сжечь, чтобы нагреть 200 мл воды от 20 С до кипения. КПД нагревателя 10 … %.

Обчисліть середній радіус орбіти геостаціонарного супутника Землі (орбіту вважайте коловою). Ответ дать виде задачи желательно с обяснением

За графіком швидкості руху тіла визначте:1)швидкості руху тіла.2)шлях,пройдений тілом за 3с.3)побудуйте графік залежності шляху від часу.Помогите пожа … луйста ​

Открытие явления электромагнитной индукции кратко. Открытие электромагнитной индукции и самоиндукции и первые электромагнитные устройства

>> Открытие электромагнитной индукции

Глава 2. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электростатическое поле создается неподвижными заряженными частицами, а магнитное поле — движущимися, т. е. электрическим током . Теперь познакомимся с электрическими и магнитными полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, — это теснейшая взаимосвязь между электрическим и магнитным полями. Оказалось, что изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле — магнитное . Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно наблюдается на самом деле. Не существовало бы ни радиоволн, ни света.

§ 8 ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

В 1821 г. М. Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий сделан основоположником представлений об электромагнитном поле М. Фарадеем, который был уверен в единой природе электрических и магнитных явлений. Благодаря этому он и сделал открытие, вошедшее в основу устройства генераторов всех электростанции мира, превращающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальванические элементы, аккумуляторы и пр., — дают ничтожную долю вырабатываемой электрической энергии.)

Электрический ток, рассуждал М. Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока? Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: движущийся магнит , или меняющееся во времени магнитное поле, может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем получить электрический ток в катушке с помощью магнита пытался швейцарский физик Колладон. В ходе работы он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, куда Колладон вводил магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром, а кого-нибудь попросить заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока .

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко .

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем . Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

Ответ:

Следующим важным шагом в развитии электродинамики после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции английский физик Майкл Фарадей (1791 — 1867).

Фарадей, будучи еще моло дым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил злектричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если “электричество создает магнетизм” , то и наоборот, “магнетизм должен создавать электричество”. И вот еще в 1823 г. он записал в своем дневнике: “Обратить магнетизм в электричество”. В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи, и, наконец, в 1831 г. он решил ее — открыл явление электромагнитной индукции.

во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке.

Затем Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток.

наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит.

Открытие Фарадея привлекло внимание многих физиков, которые также стали изучать особенности явления электромагнитной индукции. На очереди стояла задача установить общий закон электромагнитной индукции. Нужно было выяснить, как и от чего зависит сила индукционного тока в проводнике или от чего зависит значение электродвижущей силы индукции в проводнике, в котором индуцируется электрический ток.

Эта задача оказалась трудной. Она была полностью решена Фарадеем и Максвеллом позже в рамках развитого ими учения об электромагнитном поле. Но ее пытались решить и физики, которые придерживались обычной для того времени теории дальнодействия в учении об электрических и магнитных явлениях.

Кое-что этим ученым удалось сделать. При этом им по могло открытое петербургским академиком Эмилием Христиановичем Ленцем (1804 — 1865) правило для нахождения направления индукционного тока в разных случаях электромагнитной индукции. Ленц сформулировал его так: “Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении”.

Это правило очень удобно для определения направления ицдукционного тока. Им мы пользуемся и сейчас, только оно сейчас формулируется несколько иначе, с упогребпением понятия электромагнитной индукции, которое Ленц не использовал.

Но исторически главное значение правила Ленца заключалось в том, что оно натолкнуло на мысль, каким путем подойти к нахождению закона электромагнитной индукции. Дело в том, что в атом правиле устанавливается связь между электромагнитной индукцией и явлением взаимодействии токов. Вопрос же о взаимодействии токов был уже решен Ампером. Поэтому установление этой связи на первых порах дало возможность определить выражение электродвижущей силы индукции в проводнике для ряда частных случаев.

В общем виде закон электромагнитной индукции, как мы об этом сказали, был установлен Фарадеем и Максвеллом.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Созданию первого реле предшествовало изобретение в 1824 г. англичанином Стардженом электромагнита — устройства, преобразующего входной электрический ток проволочной катушки, намотанной на железный сердечник, в магнитное поле, образующееся внутри и вне этого сердечника. Магнитное поле фиксировалось (обнаруживалось) своим воздействием на ферромагнитный материал, расположенный вблизи сердечника. Этот материал притягивался к сердечнику электромагнита.

Впоследствии эффект преобразования энергии электрического тока в механическую энергию осмысленного перемещения внешнего ферромагнитного материала (якоря) лег в основу различных электромеханических устройств электросвязи (телеграфии и телефонии), электротехники, электроэнергетики. Одним из первых таких устройств было электромагнитное реле, изобретенное американцем Дж. Генри в 1831 г.

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений .

Есть нечто символическое в том, что в год рождения М. Фарадея (1791 г.) был опубликован трактат Луиджи Гальвани с первым описанием нового физического явления — электрического тока, а в год его смерти (1867 г.) была изобретена «динамомашина» — самовозбуждающийся генератор постоянного тока, т.е. появился надежный, экономичный и удобный в эксплуатации источник электрической энергии. Жизнь великого ученого и его неповторимая по своим методам, содержанию и значению деятельность не только открыли новую главу физики, но и сыграли решающую роль в рождении новых отраслей техники: электротехники и радиотехники.

Вот уже более ста лет многие поколения учащейся молодежи на уроках физики и из многочисленных книг узнают историю замечательной жизни одного из самых знаменитых ученых, члена 68 научных обществ и академий. Обычно имя М. Фарадея связывают с самым значительным и потому наиболее известным открытием — явлением электромагнитной индукции, сделанным им в 1831 г. Но еще за год до этого, в 1830 г. за исследования в области химии и электромагнетизма М.Фарадей был избран почетным членом Петербургской Академии наук, членом же Лондонского Королевского общества (Британской академии наук) он был избран еще в 1824 г. Начиная с 1816 г., когда увидела свет первая научная работа М. Фарадея, посвященная химическому анализу тосканской извести, и по 1831 г., когда стал публиковаться знаменитый научный дневник «Экспериментальные исследования по электричеству», М. Фарадеем было опубликовано свыше 60 научных трудов.

Огромное трудолюбие, жажда знаний, прирожденный ум и наблюдательность позволили М. Фарадею достичь выдающихся результатов во всех тех областях научных исследований, к которым обращался ученый. Признанный «король экспериментаторов» любил повторять: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы».

Каждое исследование М. Фарадея отличалось такой обстоятельностью и настолько согласовывалось с предыдущими результатами, что среди современников почти не находилось критиков его работ.

Если исключить из рассмотрения химические исследования М. Фарадея, которые в своей области также составляли эпоху (достаточно вспомнить об опытах сжижения газов, об открытии бензола, бутилена), то все прочие его работы, на первый взгляд иногда разрозненные, как мазки на полотне художника, взятые вместе, образуют изумительную картину всестороннего исследования двух проблем: взаимопревращений различных форм энергии и физического содержания среды.

Рис. 2.11. Схема «электромагнитных вращений» (по рисунку Фарадея)

1, 2 — чаши с ртутью; 3 — подвижный магнит; 4 — неподвижный магнит; 5, 6 — провода, идущие к батарее гальванических элементов; 7 — медный стержень; 8 — неподвижный проводник; 9 — подвижный проводник

Работам М. Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Ампера, Био, Савара, проведенных в 1820 г., стало известно не только об электромагнетизме, но и о своеобразии взаимодействий тока и магнита: здесь, как уже отмечалось, действовали не привычные для классической механики центральные силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно проводнику. М. Фарадей поставил перед собой вопрос: не стремится ли магнит к непрерывному движению вокруг проводника стоком? Опыт подтвердил гипотезу. В 1821 г. М. Фарадей дал описание физического прибора, схематически представленного на рис. 2.11. В левом сосуде с ртутью находился стержневой постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде стержень магнита был неподвижен, а проводник с током, свободно подвешенный на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Поскольку в этом опыте впервые фигурирует магнитоэлектрическое устройство с непрерывным движением, то вполне правомерно начать именно с этого устройства историю электрических машин вообще и электродвигателя в частности. Обратим также внимание на ртутный контакт, нашедший впоследствии применение в электромеханике.

Именно с этого момента, судя по всему, у М. Фарадея начинают складываться представления о всеобщей «взаимопревращаемости сил». Получив при помощи электромагнетизма непрерывное механическое движение, он ставит перед собой задачу обратить явление или, по терминологии М. Фарадея, превратить магнетизм в электричество.

Только абсолютная убежденность в справедливости гипотезы о «взаимопревращаемости» может объяснить целеустремленность и настойчивость, тысячи опытов и 10 лет напряженного труда, затраченного на решение сформулированной задачи. В августе 1831 г. был сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была изложена сущность явления электромагнитной индукции.

Рис. 2.12. Иллюстрация опыта Араго («магнетизма вращения»)

1 — проводящий немагнитный диск; 2 — стеклянное основание для крепления оси диска

В качестве примера, характеризующего ход мыслей ученого и формирование его представлений об электромагнитном поле, рассмотрим исследование М. Фарадеем явления, получившего тогда название «магнетизма вращения». За много лет до работ М. Фарадея мореплаватели замечали тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В 1824 г. Д.Ф. Араго (см. § 2.5) описал явление «магнетизма вращения», удовлетворительно объяснить которое ни он, ни другие физики не могли. Сущность явления состояла в следующем (рис. 2.12). Подковообразный магнит мог вращаться вокруг вертикальной оси, а над его полюсами находился алюминиевый или медный диск, который также мог вращаться на оси, направление вращения которой совпадало с направлением вращения оси магнита. В состоянии покоя никаких взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить возможность увлечения диска потоками воздуха, магнит и диск были разделены стеклом.

Открытие электромагнитной индукции помогло М. Фарадею объяснить явление Д.Ф. Араго и уже в самом начале исследования записать: «Я надеялся сделать из опыта г-на Араго новый источник электричества».

Практически одновременно с М. Фарадеем электромагнитную индукцию наблюдал выдающийся американский физик Джозеф Генри (1797–1878 гг.). Нетрудно себе представить переживания ученого, будущего президента американской Национальной академии наук, когда он, собираясь опубликовать свои наблюдения, узнал о публикации М. Фарадея. Год спустя Д. Генри открыл явление самоиндукции и экстратоки, а также установил зависимость индуктивности цепи от свойств материала и конфигурации сердечников катушек. В 1838 г. Д. Генри изучал «токи высшего порядка», т.е. токи, индуцированные другими индуцированными токами. В 1842 г. продолжение этих исследований привело Д. Генри к открытию колебательного характера разряда конденсатора (позднее, в 1847 г., это открытие повторил выдающийся немецкий физик Герман Гельмгольц) (1821–1894 гг.).

Обратимся к главным опытам М. Фарадея. Первая серия опытов закончилась экспериментом, демонстрировавшим явление «вольта-электрической» (по терминологии М. Фарадея) индукции (рис. 2.13, а — г). Обнаружив возникновение тока во вторичной цепи 2 при замыкании или размыкании первичной 1 или при взаимном перемещении первичной и вторичной цепей (рис. 2.13, в), М. Фарадей поставил эксперимент для выяснения свойств индуцированного тока: внутрь спирали б, включенной во вторичную цепь, помещалась стальная игла 7 (рис. 2.13, б), которая намагничивалась индуцированным током. Результат говорил о том, что индуцированный ток подобен току, получаемому непосредственно от гальванической батареи 3.

Рис. 2.13. Схемы основных опытов, приведших к открытию электромагнитной индукции

Заменив деревянный или картонный барабан 4, на который наматывались первичная и вторичная обмотки, стальным кольцом (рис. 2.13, г), М. Фарадей обнаружил более интенсивное отклонение стрелки гальванометра 5. Данный опыт указывал на существенную роль среды в электромагнитных процессах. Здесь М. Фарадей впервые применяет устройство, которое можно назвать прототипом трансформатора.

Вторая серия опытов иллюстрировала явление электромагнитной индукции, возникавшее при отсутствии источника напряжения в первичной цепи. Исходя из того, что катушка, обтекаемая током, идентична магниту, М. Фарадей заменил источник напряжения двумя постоянными магнитами (рис. 2.13, д) и наблюдал ток во вторичной обмотке при замыкании и размыкании магнитной цепи. Это явление он назвал «магнитоэлектрической индукцией»; позднее им было отмечено, что никакой принципиальной разницы между «вольта-электрической» и «магнитоэлектрической» индукцией нет. Впоследствии оба эти явления были объединены термином «электромагнитная индукция». В заключительных экспериментах (рис. 2.13, е, ж) демонстрировалось появление индуцированного тока при движении постоянного магнита или катушки с током внутри соленоида. Именно этот опыт нагляднее других продемонстрировал возможность превращения «магнетизма в электричество» или, точнее выражаясь, механической энергии в электрическую.

На основе новых представлений М. Фарадей и дал объяснение физической стороны опыта с диском Д.Ф. Араго. Кратко ход его рассуждений можно изложить следующим образом. Алюминиевый (или любой другой проводящий, но немагнитный) диск можно представить себе в виде колеса с бесконечно большим числом спиц — радиальных проводников. При относительном движении магнита и диска эти спицы-проводники «перерезают магнитные кривые» (терминология Фарадея), и в проводниках возникает индуцированный ток. Взаимодействие же тока с магнитом было уже известно. В истолковании М. Фарадея обращает на себя внимание терминология и способ объяснения явления. Для определения направления индуктированного тока он вводит правило ножа, перерезающего силовые линии. Это еще не закон Э.Х. Ленца, для которого свойственна универсальность характеристики явления, а только попытки каждый раз путем подробных описаний установить, будет ли ток протекать от рукоятки к кончику лезвия или наоборот. Но здесь важна принципиальная картина: М. Фарадей в противовес сторонникам теории дальнодействия, заполняет пространство, в котором действуют различные силы, материальной средой, эфиром, развивая эфирную теорию Л. Эйлера, находящегося, в свою очередь, под влиянием идей М.В. Ломоносова.

М. Фарадей придавал магнитным, а затем при исследовании диэлектриков и электрическим силовым линиям физическую реальность, наделял их свойством упругости и находил очень правдоподобные объяснения самым различным электромагнитным явлениям, пользуясь представлением об этих упругих линиях, похожих на резиновые нити.

Прошло более полутора столетий, а мы до сих пор не нашли более наглядного способа и схемы объяснения явлений, связанных с индукцией и электромеханическими действиями, чем знаменитая концепция фарадеевских линий, которые и поныне нам представляются вещественно ощутимыми.

Из диска Д.Ф. Араго М. Фарадей действительно сделал новый источник электричества. Заставив вращаться алюминиевый или медный диск между полюсами магнита, М. Фарадей наложил на ось диска и на его периферию щетки.

Таким образом была сконструирована электрическая машина, получившая позднее наименование униполярного генератора.

При анализе работ М. Фарадея отчетливо проявляется генеральная идея, которая разрабатывалась великим ученым всю его творческую жизнь. Читая М. Фарадея, трудно отделаться от впечатления, что он занимался только одной проблемой взаимопревращений различных форм энергии, а все его открытия совершались между делом и служили лишь целям иллюстрации главной идеи. Он исследует различные виды электричества (животное, гальваническое, магнитное, термоэлектричество) и, доказывая их качественную тождественность, открывает закон электролиза. При этом электролиз, как и вздрагивание мышц препарированной лягушки, служил первоначально лишь доказательством того, что все виды электричеств проявляются в одинаковых действиях.

Исследования статического электричества и явления электростатической индукции привели М. Фарадея к формированию представлений о диэлектриках, к окончательному разрыву с теорией дальнодействия, к замечательным исследованиям разряда в газах (открытие фарадеева темного пространства). Дальнейшее исследование взаимодействия и взаимопревращения сил привели его к открытию магнитного вращения плоскости поляризации света, к открытию диамагнетизма и парамагнетизма. Убежденность во всеобщности взаимопревращений заставила М. Фарадея даже обратиться к исследованию связи между магнетизмом и электричеством, с одной стороны, и силой тяжести, с другой. Правда, остроумные опыты Фарадея не дали положительного результата, но это не поколебало его уверенности в наличии связи между этими явлениями.

Биографы М. Фарадея любят подчеркивать тот факт, что М. Фарадей избегал пользоваться математикой, что на многих сотнях страниц его «Экспериментальных исследований по электричеству» нет ни одной математической формулы. В связи с этим уместно привести высказывание соотечественника М. Фарадея великого физика Джеймса Кларка Максвелла (1831–1879 гг.): «Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков».

«Математичность» мышления Фарадея можно иллюстрировать его законами электролиза или, например, формулировкой закона электромагнитной индукции: количество приведенного в движение электричества прямо пропорционально числу пересеченных силовых линий. Достаточно представить себе последнюю формулировку в виде математических символов, и мы немедленно получаем формулу, из которой очень быстро следует знаменитое d?/dt, где? — магнитное потокосцепление.

Д.К. Максвелл, родившийся в год открытия явления электромагнитной индукции, очень скромно оценивал свои заслуги перед наукой, подчеркивая, что он лишь развил и облек в математическую форму идеи М. Фарадея. Максвеллову теорию электромагнитного поля по достоинству оценили ученые конца XIX и начала XX в., когда на почве идей Фарадея — Максвелла начала развиваться радиотехника.

Для характеристики прозорливости М. Фарадея, его умения проникать в глубь сложнейших физических явлений важно напомнить здесь, что еще в 1832 г. гениальный ученый рискнул предположить, что электромагнитные процессы носят волновой характер, причем магнитные колебания и электрическая индукция распространяются с конечной скоростью.

В конце 1938 г. в архивах Лондонского Королевского общества было обнаружено запечатанное письмо М. Фарадея, датированное 12 марта 1832 г. Оно пролежало в безвестности более 100 лет, а в нем были такие строки:

«Некоторые результаты исследований… привели меня к заключению, что на распространение магнитного воздействия требуется время, т.е. при воздействии одного магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным.

Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха, т.е. я намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку, и является наиболее вероятным объяснением световых явлений.

По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции. Эти воззрения я хочу проверить экспериментально, но так как мое время занято исполнением служебных обязанностей, что может вызвать продление опытов … я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие за собой определенной датой…» .

Поскольку эти идеи М. Фарадея оставались неизвестными, нет никаких оснований отказывать великому его соотечественнику Д.К. Максвеллу в открытии этих же идей, которым он придал строгую физико-математическую форму и фундаментальное значение.

Из книги Удивительная механика автора Гулиа Нурбей Владимирович

Открытие древнего гончара Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.В небольшой гончарной мастерской, с виду

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Обеспечение электромагнитной совместимости устройств связи и телемеханики Вопрос. Как выполняются устройства связи и телемеханики?Ответ. Выполняются помехозащищенными со степенью, достаточной для обеспечения их надежной работы как в нормальных, так и аварийных

Из книги Секретные автомобили Советской Армии автора Кочнев Евгений Дмитриевич

Семейство «Открытие» (КрАЗ-6315/6316) (1982 – 1991 гг.) В феврале 1976 года вышло секретное Постановление Совмина и ЦК КПСС о разработке на основных советских автозаводах семейств принципиально новых тяжелых армейских грузовиков и автопоездов, выполненных по требованиям

Из книги Шелест гранаты автора Прищепенко Александр Борисович

5.19. За что любят постоянные магниты. Самодельный прибор для измерения индукции поля. Другой прибор, избавляющий от мучений с расчетом обмотки Огромным преимуществом магнитов было то, что постоянное во времени поле не нуждалось в синхронизации со взрывными процессами и

Из книги Новые источники энергии автора Фролов Александр Владимирович

Глава 17 Капиллярные явления Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же

Из книги Металл Века автора Николаев Григорий Ильич

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА ХОББИ СВЯЩЕННИКА Семь металлов древности, а также сера и углерод — вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он

Из книги История электротехники автора Коллектив авторов

1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого

Из книги автора

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов .В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь

Из книги автора

3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и

Из книги автора

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации Открытие действия «электрического конфликта» на магнитную стрелкуВ июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра

Закон электромагнитной индукции – это формула, поясняющая образование ЭДС в замкнутом контуре проводника при изменениях напряжённости магнитного поля. Постулат объясняет работу трансформаторов, дросселей и прочих изделий, обеспечивающих сегодня развитие техники.

История Майкла Фарадея

Майкла Фарадея забрали из школы вместе со старшим братом, послужил поводом – дефект речи. Первооткрыватель электромагнитной индукции картавил, раздражая учительницу. Та дала денег, дабы купили палку и высекли потенциального клиента логопеда. Причём старшему брату Майкла.

Будущий светило науки был поистине любимцем судьбы. На протяжённости жизненного пути он, при должной настойчивости, находил помощь. Брат с презрением вернул монету, сообщив об инциденте матери. Семья не считалась богатой, и отец, талантливый ремесленник, с трудом сводил концы с концами. Братья рано стали искать работу: семья жила на милостыню с 1801 года, Майклу в ту пору шёл десятый год.

С тринадцати Фарадей поступает в книжную лавку разносчиком газет. Через весь город едва-едва успевает по адресам на противоположных концах Лондона. Ввиду прилежности хозяин Рибо дарует Фарадею место ученика переплётчика на семь лет бесплатно. В давнюю пору человек с улицы платил мастеру за процесс приобретения ремесла. Как и Георгу Ому умение механика, Фарадею в будущем процесс переплётного дела пригодился в полной мере. Большую роль сыграл факт, что Майкл скрупулёзно читал книги, попадающие к нему в работу.

Фарадей пишет, что одинаково охотно верил трактату миссис Марсет (Беседы о химии) и сказкам Тысячи и одной ночи. Желание стать учёным сыграло в этом деле важную роль. Фарадей избирает два направления: электричество и химию. В первом случае основным источником знаний служит Британская энциклопедия. Пытливый ум требует подтверждения написанного, юный переплётчик постоянно проверяет знания на практике. Фарадей становится опытным экспериментатором, что сыграет ведущую роль при исследовании электромагнитной индукции.

Напомним, что речь идёт об ученике без собственного дохода. Старший брат и отец посильно оказывали помощь. Начиная с химических реактивов и заканчивая сборкой электростатического генератора: для опытов нужен источник энергии. Одновременно Фарадей умудряется посещать платные лекции естествознания и скрупулёзно заносит знания в блокнот. Потом переплетает заметки, пользуясь приобретёнными навыками. Срок ученичества заканчивается в 1812 году, Фарадей начинает искать работу. Новый хозяин не столь покладист, и, несмотря на перспективу сделаться наследником дела, Майкл на пути к открытию электромагнитной индукции.

Научный путь Фарадея

В 1813 году судьба улыбается учёному, давшему миру представление об электромагнитной индукции: удаётся попасть на место секретаря к сэру Хампфри Дэви, недолгий период знакомства в будущем сыграет роль. Фарадею невыносимо исполнять долее обязанности переплётчика, он пишет письмо Джозефу Бэнксу, тогдашнему президенту Королевского научного общества. О характере деятельности организации расскажет факт: Фарадей получил место, называемое старший прислужник: помогает лекторам, вытирает пыль с оборудования, следит за транспортировкой. Джозеф Бэнкс игнорирует послание, Майкл не унывает и пишет Дэви. Ведь прочих научных организаций нет в Англии!

Дэви относится с большим вниманием, поскольку лично знаком с Майклом. Не будучи одарён от природы умением говорить – вспомним про школьный опыт – и излагать мысли письменно, Фарадей берет специальные уроки для развития необходимых навыков. Опыты тщательно систематизирует в блокноте, мысли излагает в кружке друзей и единомышленников. К моменту знакомства с сэром Хампфри Дэви достигает недюжинного мастерства, тот ходатайствует о принятии новоиспечённого учёного на вышеупомянутую должность. Фарадей рад, а изначально фигурировала идея назначить будущего гения мыть посуду…

По воле рока Майкл вынужден слушать лекции на разные темы. Помощь профессорам требовалась лишь периодически, в остальном допускалось находиться в аудитории и слушать. Учитывая, сколько стоит образование в Гарварде, это стало неплохим досугом. Через полгода блестящей работы (октябрь 1813 года) Дэви приглашает Фарадея в путешествие по Европе, война окончена, нужно оглядеться. Это стало хорошей школой первооткрывателю электромагнитной индукции.

По возвращении в Англию (1816 год), Фарадей получает звание лаборанта и публикует первую работу по исследованию известняка.

Исследования электромагнетизма

Явление электромагнитной индукции заключается в наведении ЭДС в проводнике под действием изменяющегося магнитного поля. Сегодня на этом принципе работают приборы, начиная трансформаторами и заканчивая варочными панелями. Первенство в области отдано Гансу Эрстеду, 21 апреля 1820 года заметившему действие замкнутой цепи на стрелку компаса. Подобные наблюдения публиковались в виде заметок Джованни Доменико Романьози в 1802 году.

Заслуга датского учёного в привлечении к делу многих видных учёных. Итак, замечено, что стрелка отклоняется проводником с током, и осенью упомянутого года появился на свет первый гальванометр. Измерительный прибор на ниве электричества стал большим подспорьем многим. Попутно высказывались различные точки зрения, в частности, Волластон огласил, что неплохо заставить проводник с током вращаться непрерывно под действием магнита. В 20-е годы XIX века вокруг указанного вопроса царила эйфория, до этого магнетизм и электричество считались независимыми явлениями.

Оенью 1821 года задумку воплотил в жизнь Майкл Фарадей. Утверждают, что тогда на свет появился первый электрический двигатель. 12 сентября 1821 года в письме Гаспару де ла Риву Фарадей пишет:

«Я выяснил, что притяжения и отталкивания магнитной стрелки проводом с током — детская забава. Некая сила станет вращать непрерывно магнит под действием электрического тока. Я построил теоретические выкладки и сумел реализовать на практике».

Письмо к де ла Риву не стало случайностью. По мере становления на научном поприще Фарадей обрёл немало сторонников и единственного непримиримого противника… сэра Хампфри Дэви. Экспериментальная установка объявлена плагиатом идеи Волластона. Примерная конструкция:

  1. Серебряная чаша заполнена ртутью. Жидкий металл обладает хорошей электропроводностью и служит подвижным контактом.
  2. На дне чаши находится лепёшка воска, куда одним полюсом воткнут стержневой магнит. Второй возвышается над поверхностью ртути.
  3. С высоты свисает провод, подключённый к источнику. Конец его погружен в ртуть. Второй провод — возле края чаши.
  4. Если пропускать через замкнутую цепь постоянный электрический ток, провод начинает описывать по ртути круги. Центром вращения становится постоянный магнит.

Конструкцию называют первым в мире электрическим двигателем. Но эффект электромагнитной индукции ещё не проявляется. Налицо взаимодействие двух полей, не более. Фарадей, кстати, не остановился, и сделал чашу, где провод неподвижный, а магнит двигается (образуя поверхность вращения – конус). Доказал, что нет принципиальной разницы между источниками поля. Потому индукция называется электромагнитной.

Немедленно Фарадея обвинили в плагиате и травили несколько месяцев, о чем он с горечью писал доверенным друзьям. В декабре 1821 года состоялась беседа с Волластоном, казалось, инцидент исчерпан, но… чуть позже группа учёных возобновила нападки, главой оппозиции стал сэр Хампфри Дэви. Смысл основных претензий заключался в противостоянии идее принятия Фарадея в члены Королевского общества. Это тяжким грузом давило на будущего открывателя закона электромагнитной индукции.

Открытие закона электромагнитной индукции

На время Фарадей, казалось, оставил идею исследований на ниве электричества. Сэр Хампфри Дэви был единственным, кто бросил шар против кандидатуры Майкла. Возможно, бывший ученик не хотел расстраивать покровителя, бывшего на тот момент президентом общества. Но постоянно терзала мысль о единстве природных процессов: если электричество удалось превратить в магнетизм, нужно попробовать сделать обратное.

Эта идея зародилась — по некоторым сведениям — в 1822 году, и Фарадей постоянно носил с собой кусок железняка, напоминавшего, служившего «узелком на память». С 1825 года, являясь полноправным членом Королевского общества, Майкл получает должность начальника лаборатории и немедленно совершает нововведения. Персонал теперь раз в неделю собирается на лекции с наглядными демонстрациями приборов. Постепенно вход становится открытым, даже дети получают возможность опробовать новое. Эта традиция положила начало знаменитым пятничным вечерам.

Целых пять лет занимался Фарадей оптическим стеклом, группа не достигла больших успехов, но практические результаты имелись. Произошло ключевое событие – обрывается жизнь Хампфри Дэви, постоянно противившегося опытам с электричеством. Фарадей отклоняет предложение о новом пятилетнем контракте и начинает теперь уже в открытую исследования, которые привели прямиком к магнитной индукции. Согласно литературе серия длилась 10 дней, неравномерно раскиданных в период с 29 августа по 4 ноября 1831 года. Фарадей описывает собственную лабораторную установку:

Из мягкого (с сильными магнитными свойствами) железа круглого сечения диаметром 7/8 дюйма я изготовил кольцо с внешним радиусом 3 дюйма. Фактически получился сердечник. Три первичные обмотки отделялись друг от друга хлопчатобумажной тканью и портняжным шнуром, чтобы удавалось объединить в одну или употреблять раздельно. Длина медного провода в каждой составляет 24 фута. Качество изоляции проверено при помощи элементов питания. Вторичная обмотка состояла из двух сегментов, по 60 футов длиной каждый, отстояла от первичной на расстояние.

От источника (предположительно элемент Волластона), имевшего в составе 10 пластин, площадью по 4 квадратных дюйма каждая, подавалось питание на первичную обмотку. Концы вторичной закорочены куском провода, в трёх футах от кольца вдоль цепи размещалась стрелка компаса. При замыкании источника питания намагниченная игла немедленно приходила в движение, и через интервал возвращалась на первоначальное место. Очевидно, что первичная обмотка вызывает отклик во вторичной. Сейчас бы сказали, что магнитное поле распространяется по сердечнику и наводит ЭДС на выходе трансформатора.

«Изучение явления электромагнитной индукции». Разработка урока»Опыты Фарадея. Электромагнитная индукция». Лабораторная работа «Исследование явления электромагнитной индукции» Почему происходит изменение магнитного потока про

Цель работы: экспериментальное изучение явления магнитной индукциии проверка правила Ленца.
Теоретическая часть: Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. В нашем случае разумнее было бы менять во времени магнитное поле, так как оно создается движущимися (свободно) магнитом. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. В данном случае это мы можем наблюдать по отклонению стрелки миллиамперметра.
Оборудование: Миллиамперметр, источник питания, катушки с сердечниками, дугообразный магнит, выключатель кнопочный, соединительные провода, магнитная стрелка (компас), реостат.

Порядок выполнения работы

I.Выяснение условий возникновения индукционного тока.

1. Подключите катушку-моток к зажимам миллиамперметра.
2. Наблюдая за показаниями миллиамперметра, отметьте, возникал ли индукционный ток, если:

* в неподвижную катушку вводить магнит,
* из неподвижной катушки выводить магнит,
* магнит разместить внутри катушки, оставляя неподвижным.

3. Выясните, как изменялся магнитный поток Ф, пронизывающий катушку в каждом случае. Сделайте вывод о том, при каком условии в катушке возникал индукционный ток.
II. Изучение направления индукционного тока.

1. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра.
Проверьте, одинаковым ли будет направление индукционного тока, если:
* вводить в катушку и удалять магнит северным полюсом;
* вводить магнит в катушку магнит северным полюсом и южным полюсом.
2. Выясните, что изменялось в каждом случае. Сделайте вывод о том, от чего зависит направление индукционного тока. III. Изучение величины индукционного тока.

1. Приближайте магнит к неподвижной катушке медленно и с большей скоростью, отмечая, на сколько делений (N 1 , N 2 ) отклоняется стрелка миллиамперметра.

2. Приближайте магнит к катушке северным полюсом. Отметьте, на сколько делений N 1 отклоняется стрелка миллиамперметра.

К северному полюсу дугообразного магнита приставьте северный полюс полосового магнита. Выясните, на сколько делений N 2 отклоняется стрелка миллиамперметра при приближении одновременно двух магнитов.

3.Выясните, как изменялся магнитный поток в каждом случае. Сделайте вывод, от чего зависит величина индукционного тока.

Ответьте на вопросы:

1.В катушку из медного провода сначала быстро, затем медленно вдвигают магнит. Одинаковый ли электрический заряд при этом переносится через сечение провода катушки?
2.Возникнет ли индукционный ток в резиновом кольце при введении в него магнита?

Цель работы: Изучить явление электромагнитной индукции.
Оборудование: Миллиамперметр, катушка-моток, магнит дугообразный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).
Указания к работе:
1. Подключите катушку-моток к зажимам миллиамперметра.
2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд остановите магнит, а затем вновь приближайте его к катушке, вдвигая в неё (рис. 196). Запишите, возникал ли в катушке индукционный ток во время движения магнита относительно катушки; во время его остановки.

Запишите, менялся ли магнитный поток Ф, пронизывающий катушку, во время движения магнита; во время его остановки.
4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индукционный ток.
5. Почему при приближении магнита к катушке магнитный поток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков
ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)
6. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра.
Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от неё одного и того же полюса магнита.

4. Приближайте полюс магнита к катушке с такой скоростью, чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.
Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.
При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку, менялся быстрее?
При быстром или медленном изменении магнитного потока сквозь катушку сила тока в ней была больше?
На основании вашего ответа на последний вопрос сделайте и запишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф, пронизывающего этукатушку.
5. Соберите установку для опыта по рисунку 197.
6. Проверьте, возникает ли в катушке-мотке 1 индукционный ток в следующих случаях:
а) при замыкании и размыкании цепи, в которую включена катушка 2;
б) при протекании через катушку 2 постоянного тока;
в) при увеличении и уменьшении силы тока, протекающего через катушку 2, путём перемещения в соответствующую сторону движка реостата.
10. В каких из перечисленных в пункте 9 случаев меняется магнитный поток, пронизывающий катушку 1? Почему он меняется?
11. Пронаблюдайте возникновение электрического тока в модели генератора (рис. 198). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.
Рис. 196

Контрольные вопросы

1.Что такое электроемкость?

2. Дайте определение следующих понятий: переменный ток, амплитуда, частота, циклическая частота, период, фаза колебаний

Лабораторная работа 11

Изучение явления электромагнитной индукции

Цель работы: изучить явление электромагнитной индукции.

Оборудование: миллиамперметр; катушка-моток; магнит дугообразный; источник питания; катушка с железным сердечником от разборного электромагнита; реостат; ключ; провода соединительные; модель генератора электрического тока (одна).

Ход работы

1. Подключите катушку-моток к зажимам миллиамперметра.

2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд остановите магнит, а затем вновь приближайте его к катушке, вдвигая в нее (рис). Запишите, возникал ли в катушке индукционный ток во время движения магнита относительно катушки; во время его остановки.

3. Запишите, менялся ли магнитный поток Ф, пронизывающий катушку, во время движения магнита; во время его остановки.

4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индукционный ток.

5. Почему при приближении магнита к катушке магнитный поток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)

6. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра.
Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от нее одного и того же полюса магнита.

7. Приближайте полюс магнита к катушке с такой скоростью, чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.

Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.

При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку, менялся быстрее?

При быстром или медленном изменении магнитного потока сквозь катушку в ней возникал больший по модулю ток?

На основании вашего ответа на последний вопрос сделайте и запишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф, пронизывающего эту катушку.

8.Соберите установку для опыта по рисунку.

9. Проверьте, возникает ли в катушке-мотке 1 индукционный ток в следующих случаях:

a. при замыкании и размыкании цепи, в которую включена катушка 2;

b. при протекании через катушку 2 постоянного тока;

c. при увеличении и уменьшении силы тока, протекающего через катушку 2, путем перемещения в соответствующую сторону движка реостата.

10. В каких из перечисленных в пункте 9 случаев меняется магнитный поток, пронизывающий катушку? Почему он меняется?

11. Пронаблюдайте возникновение электрического тока в модели генератора (рис.). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.

Контрольные вопросы

1. Сформулируйте закон электромагнитной индукции.

2. Кем и когда был сформулирован закон электромагнитной индукции?

Лабораторная работа 12

Измерение индуктивности катушки

Цель работы: Изучение основных закономерностей электрических цепей переменного тока и знакомство с простейшими способами измерения индуктивности и емкости.

Краткая теория

Под действием переменной электродвижущей силы (ЭДС) в электрической цепи, в ней возникает переменный ток.

Переменным называется такой ток, который изменяется по направлению и по величине. В данной работе рассматривается только такой переменный ток, величина которого изменяется периодически по синусоидальному закону.

Рассмотрение синусоидального тока вызвано тем обстоятельством, что все крупные электростанции вырабатывают переменные токи, весьма близкие к синусоидальным токам.

Переменный ток в металлах представляет собой движение свободных электронов то в одном, то в противоположном направлении. При синусоидальном токе характер этого движения совпадает с гармоническими колебаниями. Таким образом, синусоидальный переменный ток имеет период Т  время одного полного колебания и частоту v  число полных колебаний за единицу времени. Между этими величинами имеется зависимость

Цепь переменного тока, в отличие от цепи постоянного тока, допускает включение конденсатора.

https://pandia.ru/text/80/343/images/image073.gif» alt=»http://web-local.rudn.ru/web-local/uem/ido/8/Image443.gif»>,

называемая полным сопротивлением или импедансом цепи. Поэтому выражение (8) называют законом Ома для переменного тока.

В данной работе активное сопротивление R катушки определяется при помощи закона Ома для участка цепи постоянного тока.

Рассмотрим два частных случая.

1. В цепи отсутствует конденсатор . Это значит, что конденсатор отключается и вместо него цепь замыкается проводником, падение потенциала на котором практически равно нулю, то есть величина U в уравнении (2) равна нулю..gif» alt=»http://web-local.rudn.ru/web-local/uem/ido/8/Image474.gif»>.

2. В цепи отсутствует катушка : следовательно .

При из формул (6), (7) и (14) соответственно имеем

Изучением явления электромагнитной индукции занялся вплотную первым Майкл Фарадей. Точнее сказать, он установил и исследовал это явление в поисках способов превратить магнетизм в электричество.

У него на решение такой задачи ушло десять лет, мы же сейчас пользуемся плодами его труда повсеместно, и не представляем себе современную жизнь без применения электромагнитной индукции . В 8 классе, мы уже рассматривали эту тему, в 9 классе это явление рассматривается уже более детально, но вывод формул относится к курсу 10 класса. По этой ссылке вы можете перейти для ознакомления со всеми аспектами данного вопроса.

Явление электромагнитной индукции: рассмотрим опыт

Мы рассмотрим, что представляет собой явление электромагнитной индукции. Можно провести опыт, для которого понадобится гальванометр, постоянный магнит и катушка. Соединив гальванометр с катушкой, мы вдвигаем внутрь катушки постоянный магнит. При этом гальванометр покажет изменение тока в цепи.

Так как никакого источника тока у нас в цепи нет, то логично предположить, что ток возникает вследствие появления магнитного поля внутри катушки. Когда мы будем вытаскивать магнит обратно из катушки, мы увидим, что снова изменятся показания гальванометра, но его стрелка при этом отклонится в противоположную сторону. Мы опять получим ток, но уже направленный в другую сторону.

Теперь проделаем похожий опыт с теми же элементами, только при этом мы зафиксируем магнит неподвижно, а надевать на магнит и снимать с него мы теперь будем саму катушку, подсоединенную к гальванометру. Мы получим те же результаты стрелка гальванометра будет показывать нам появление тока в цепи. При этом, когда магнит неподвижен, тока в цепи нет стрелка стоит на ноле.

Можно провести измененный вариант такого же опыта, только постоянный магнит заменить электрическим, который можно включать и выключать. Мы получим схожие с первым опытом результаты при движении магнита внутри катушки. Но, кроме того, при выключении и выключении неподвижного электромагнита, он будет вызывать кратковременное появление тока в цепи катушки.

Катушку можно заменить проводящим контуром и проделать опыты по перемещению и вращению самого контура в постоянном магнитном поле, либо же магнита внутри неподвижного контура. Результаты будут те же появление тока в цепи при движении магнита или контура.

Изменение магнитного поля вызывает появление тока

Из всего этого следует вывод, что изменение магнитного поля вызывает появление электрического тока в проводнике . Ток этот ничем не отличается от тока, который мы можем получить от батареек, например. Но чтобы указать причину его возникновения, такой ток назвали индукционным.

Во всех случаях у нас менялось магнитное поле, а точнее, магнитный поток через проводник, вследствие чего и возникал ток. Таким образом, можно вывести следующее определение:

При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.

На этом уроке мы проведем лабораторную работу №4 «Изучение явления электромагнитной индукции». Целью этого занятия будет изучение явления электромагнитной индукции. С помощью необходимого оборудования мы проведем лабораторную работу, в конце которой узнаем, как правильно изучать и определять это явление.

Цель — изучение явления электромагнитной индукции .

Оборудование:

1. Миллиамперметр.

2. Магнит.

3. Катушка-моток.

4. Источник тока.

5. Реостат.

6. Ключ.

7. Катушка от электромагнита.

8. Соединительные провода.

Рис. 1. Экспериментальное оборудование

Начнем лабораторную работу со сбора установки. Чтобы собрать схему, которую мы будем использовать в лабораторной работе, присоединим моток-катушку к миллиамперметру и используем магнит, который будем приближать или удалять от катушки. Одновременно с этим мы должны вспомнить, что будет происходить, когда будет появляться индукционный ток.

Рис. 2. Эксперимент 1

Подумайте над тем, как объяснить наблюдаемое нами явление. Каким образом влияет магнитный поток на то, что мы видим, в частности происхождение электрического тока. Для этого посмотрите на вспомогательный рисунок.

Рис. 3. Линии магнитного поля постоянного полосового магнита

Обратите внимание, что линии магнитной индукции выходят из северного полюса, входят в южный полюс. При этом количество этих линий, их густота различна на разных участках магнита. Обратите внимание, что направление индукции магнитного поля тоже изменяется от точки к точке. Поэтому можно сказать, что изменение магнитного потока приводит к тому, что в замкнутом проводнике возникает электрический ток, но только при движении магнита, следовательно, изменяется магнитный поток, пронизывающий площадь, ограниченную витками этой катушки.

Следующий этап нашего исследования электромагнитной индукции связан с определением направления индукционного тока . О направлении индукционного тока мы можем судить по тому, в какую сторону отклоняется стрелка миллиамперметра. Воспользуемся дугообразным магнитом и увидим, что при приближении магнита стрелка отклонится в одну сторону. Если теперь магнит двигать в другую сторону, стрелка отклонится в другую сторону. В результате проведенного эксперимента мы можем сказать, что от направления движения магнита зависит и направление индукционного тока. Отметим и то, что от полюса магнита тоже зависит направление индукционного тока.

Обратите внимание, что величина индукционного тока зависит от скорости перемещения магнита, а вместе с тем и от скорости изменения магнитного потока.

Вторая часть нашей лабораторной работы связана будет с другим экспериментом. Посмотрим на схему этого эксперимента и обсудим, что мы будем теперь делать.

Рис. 4. Эксперимент 2

Во второй схеме в принципе ничего не изменилось относительно измерения индукционного тока. Тот же самый миллиамперметр, присоединенный к мотку катушки. Остается все, как было в первом случае. Но теперь изменение магнитного потока мы будем получать не за счет движения постоянного магнита, а за счет изменения силы тока во второй катушке.

В первой части будем исследовать наличие индукционного тока при замыкании и размыкании цепи. Итак, первая часть эксперимента: мы замыкаем ключ. Обратите внимание, ток нарастает в цепи, стрелка отклонилась в одну сторону, но обратите внимание, сейчас ключ замкнут, а электрического тока миллиамперметр не показывает. Дело в том, что нет изменения магнитного потока, мы уже об этом говорили. Если теперь ключ размыкать, то миллиамперметр покажет, что направление тока изменилось.

Во втором эксперименте мы проследим, как возникает индукционный ток , когда меняется электрический ток во второй цепи.

Следующая часть опыта будет заключаться в том, чтобы проследить, как будет изменяться индукционный ток, если менять величину тока в цепи за счет реостата. Вы знаете, что если мы изменяем электрическое сопротивление в цепи, то, следуя закону Ома, у нас будет меняться и электрический ток. Раз изменяется электрический ток, будет изменяться магнитное поле. В момент перемещения скользящего контакта реостата изменяется магнитное поле, что приводит к появлению индукционного тока.

В заключение лабораторной работы мы должны посмотреть на то, как создается индукционный электрический ток в генераторе электрического тока.

Рис. 5. Генератор электрического тока

Главная его часть — это магнит, а внутри этих магнитов располагается катушка с определенным количеством намотанных витков. Если теперь вращать колесо этого генератора в обмотке катушки будет наводиться индукционный электрический ток. Из эксперимента видно, что увеличение числа оборотов приводит к тому, что лампочка начинает гореть ярче.

Список дополнительной литературы:

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н. Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 347-348. Мякишев Г.Я. Физика: Электродинамика. 10-11 классы. Учебник для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — 476с. Пурышева Н.С. Физика. 9 класс. Учебник. / Пурышева Н.С., Важеевская Н.Е., Чаругин В.М. 2-е изд., стереотип. — М.: Дрофа, 2007.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — это… Что такое ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ?

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ, возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении магнитного потока через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током. Явление электромагнитной индукции открыто М. Фарадеем в 1831. Направление индукционного тока определяется правилом, установленным российским ученым Э.Х. Ленцем в 1833; согласно правилу Ленца, индукционный ток направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока через контур.

Современная энциклопедия. 2000.

  • ЭЛЕКТРОМАГНИТ
  • ЭЛЕКТРОМАГНИТНОЕ ВЗАИМОДЕЙСТВИЕ

Смотреть что такое «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ» в других словарях:

  • ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — (5) …   Большая политехническая энциклопедия

  • ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ, использование МАГНЕТИЗМА для получения электричества. Если поместить магнитный стержень внутрь проволочной обмотки, в ней возникнет электрический ток (это и есть индукция как таковая), который будет поддерживаться, пока …   Научно-технический энциклопедический словарь

  • ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — возникновение электрич. поля, электрич. тока или электрич. поляризации при изменении во времени магн. поля или при движении материальных сред в магн. поле. Различают два типа эффектов Э. и. Один из них состоит в наведении вихревого электрич. поля …   Физическая энциклопедия

  • ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током …   Большой Энциклопедический словарь

  • ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ — возникновение электродвижущей силы (эдс индукции) в проводящем контуре, находящемся в перем. магн. поле или движущемся в пост. магн. поле. Электрич. ток, вызванный этой эдс, наз. индукционным. Э. и. открыта англ. физиком М. Фарадеем в 1831 (и… …   Физическая энциклопедия

  • электромагнитная индукция — Явление возбуждения электродвижущей силы в контуре при изменении магнитного потока, сцепляющегося с ним. [ГОСТ Р 52002 2003] EN electromagnetic induction phenomenon in which an induced voltage or an induced current is produced [IEV number 121 11… …   Справочник технического переводчика

  • Электромагнитная индукция — ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ, возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении магнитного потока через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным… …   Иллюстрированный энциклопедический словарь

  • Электромагнитная индукция — Не следует путать с вектором электрической индукции. Не следует путать с вектором магнитной индукции.     …   Википедия

  • Электромагнитная индукция — 81. Электромагнитная индукция По ГОСТ 19880 74 Источник: ГОСТ 20938 75: Трансформаторы малой мощности. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • электромагнитная индукция — возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током. * * *… …   Энциклопедический словарь


Как Фарадей запряг электричество в работу – Наука – Коммерсантъ

В ходе экспериментов Фарадей создал устройство, которое сейчас называется трансформатором, а затем первую в мире динамо-машину. Фарадей подвел под открытые им явления теоретическую базу, сформулировав закон электромагнитной индукции о превращении механической работы в электрический ток.

К XIX веку ученые довольно хорошо изучили законы электричества, вызванного трением, и даже открыли новый, химический источник электроэнергии — аккумулятор. Но для полезной работы, отличной от притягивания и отталкивания пушинок в электрическом поле и создания искусственной молнии (вольтовой дуги), эти источники тока были слишком слабые. Потом эту науку об электричестве назовут электростатикой, подчеркивая ее названием отсутствие в ней полезного движения.

Откуда взять ток в неограниченном количестве, было понятно. Если электричество можно превратить в магнетизм (обмотанный проволокой кусок железа при подаче тока в обмотку становился магнитом), то надо было лишь произвести обратное действие: превратить магнетизм в электричество. До Фарадея эту цель ставили себе многие ученые, но в цепочке их действий был логический пробел.

Все видели, что вблизи проводника с током магнитная стрелка в приходит в движение. Как раз движение они пропускали в своих рассуждениях об обратной связи магнетизма с электричеством, пытаясь вызвать ток в проводнике в поле неподвижного магнита. Стоило всего лишь подвигать магнит, и в проводке потек бы ток. Но задним умом любой крепок. Гениальность же Фарадея заключалась в том, что он тоже не предпринимал попыток подвигать магнитом, но после опыта 29 августа 1931 года понял, почему это надо сделать.

Намотав две изолированные друг от друга обмотки на железный бублик (сделав первый в мире трансформатор) он подавал ток в одну и видел, что при включении и выключении в ней тока магнитная стрелка вблизи проводов, отведенных от второй обмотки, дергается. Только при включении и выключении! Когда магнитное поле движется — растет или падает. Он подвигал магнитом внутри обмотки из проводов, и в ней потек ток. Так было открыто явление электромагнитной индукции.

В следующих опытах Фарадей крутил в поле магнита медный круг со скользящими по нему проволочками-токосъемниками — в цепи потек ток. Это был первый электрогенератор, остальное было делом техники. Спустя полвека были построены первые электростанции и в домах людей зажглись первые электрические лампочки.

Сергей Петухов

Явление электромагнитной индукции — это (а) процесс зарядки тела.

Нокаут NEET 2024

Персонализированный наставник с ИИ и адаптивное расписание, Материал для самообучения, Неограниченные пробные тесты и персонализированные аналитические отчеты, Круглосуточная поддержка в чате сомнений.

₹ 40000 / —

купить сейчас
Нокаут NEET 2025

Персонализированный наставник с ИИ и адаптивное расписание, Материал для самообучения, Неограниченные пробные тесты и персонализированные аналитические отчеты, Круглосуточная поддержка в чате сомнений.

₹ 45000 / —

купить сейчас
Основание NEET + Нокаут NEET 2024

Персонализированный наставник с ИИ и адаптивное расписание, Материал для самообучения, Неограниченные пробные тесты и персонализированные аналитические отчеты, Круглосуточная поддержка в чате сомнений.

54999 ₹ / — 42499 / —

купить сейчас
NEET Foundation + Knockout NEET 2024 (простая рассрочка)

Персонализированный наставник с ИИ и адаптивное расписание, Материал для самообучения, Неограниченные пробные тесты и персонализированные аналитические отчеты, Круглосуточная поддержка в чате сомнений.

3999 / —

купить сейчас
NEET Foundation + Knockout NEET 2025 (простая рассрочка)

Персонализированный наставник с ИИ и адаптивное расписание, Материал для самообучения, Неограниченные пробные тесты и персонализированные аналитические отчеты, Круглосуточная поддержка в чате сомнений.

3999 / —

купить сейчас

13: Электромагнитная индукция — Physics LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
Без заголовков

В этой и нескольких следующих главах вы увидите удивительную симметрию в поведении изменяющихся во времени электрических и магнитных полей.Математически эта симметрия выражается дополнительным членом в законе Ампера и другим ключевым уравнением электромагнетизма, называемым законом Фарадея. Мы также обсуждаем, как движение провода через магнитное поле создает ЭДС или напряжение.

  • 13.1: Введение к электромагнитной индукции
    Мы рассматривали электрические поля, создаваемые фиксированным распределением заряда, и магнитные поля, создаваемые постоянными токами, но электромагнитные явления не ограничиваются этими стационарными ситуациями.Фактически, большинство интересных приложений электромагнетизма зависят от времени. Чтобы исследовать некоторые из этих приложений, мы удалим сделанное нами не зависящее от времени предположение и позволим полям изменяться со временем.
  • 13.2: Закон Фарадея
    ЭДС индуцируется, когда магнитное поле в катушке изменяется путем проталкивания стержневого магнита внутрь или из катушки. ЭДС противоположных знаков создаются движением в противоположных направлениях, а направления ЭДС также меняются на противоположные за счет изменения полюсов.Те же результаты будут получены, если перемещать катушку, а не магнит — важно относительное движение. Чем быстрее движение, тем больше ЭДС, и когда магнит неподвижен относительно катушки, ЭДС отсутствует.
  • 13.3: Закон Ленца
    Направление индуцированной ЭДС движет ток по проволочной петле, чтобы всегда противодействовать изменению магнитного потока, вызывающему ЭДС. Закон Ленца также можно рассматривать с точки зрения сохранения энергии.Если толкание магнита в катушку вызывает ток, энергия в этом токе должна исходить откуда-то. Если индуцированный ток вызывает магнитное поле, противодействующее увеличению поля магнита, который мы втолкнули, тогда ситуация ясна.
  • 13,4: ЭДС движения
    Магнитный поток зависит от трех факторов: силы магнитного поля, площади, через которую проходят силовые линии, и ориентации поля с площадью поверхности. Если какая-либо из этих величин изменяется, происходит соответствующее изменение магнитного потока.До сих пор мы рассматривали только изменения потока из-за изменяющегося поля. Теперь мы рассмотрим другую возможность: изменение области, через которую проходят силовые линии, включая изменение ориентации области.
  • 13,5: Индуцированные электрические поля
    Тот факт, что ЭДС индуцируются в цепях, означает, что работа выполняется с электронами проводимости в проводах. Что может быть источником этой работы? Мы знаем, что это не батарея и не магнитное поле, поскольку батарея не обязательно должна присутствовать в цепи, в которой индуцируется ток, а магнитные поля никогда не действуют на движущиеся заряды.Ответ заключается в том, что источником работы является электрическое поле, индуцируемое в проводах.
  • 13.6: Вихревые токи
    ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника. Если двигательная ЭДС может вызвать ток в проводнике, мы называем этот ток вихревым током.
  • 13.7: Электрогенераторы и обратная ЭДС
    С помощью закона Фарадея можно понять множество важных явлений и устройств.В этом разделе мы рассмотрим два из них: электрические генераторы и электродвигатели.
  • 13.8: Применение электромагнитной индукции
    В современном обществе существует множество приложений закона индукции Фарадея, что мы исследуем в этой и других главах. В этот момент позвольте нам упомянуть несколько, которые включают запись информации с использованием магнитных полей.
  • 13.A: Электромагнитная индукция (ответы)
  • 13.E: Электромагнитная индукция (упражнения)
  • 13.S: Электромагнитная индукция (сводка)

Опишите один эксперимент для демонстрации явления класса 10 физики CBSE

Подсказка
Явление генерации Электрический ток, вызывая изменение магнитного поля, вызывает электромагнитную индукцию. Фарадей провел эксперимент, в котором катушка, подключенная к гальванометру, помещалась возле стержневого магнита.Движение стержневого магнита по направлению к катушке или от нее вызывает генерацию и протекание электрического тока в катушке.

Полное пошаговое решение
Явление электромагнитной индукции было впервые обнаружено Майклом Фарадеем, когда он экспериментировал с тем, как создать электрический ток в цепи, используя только силу магнитного поля. Фарадей заметил, что перемещение постоянного магнита внутрь и наружу катушки индуцирует электродвижущую силу, тем самым создавая ток.
Эксперимент, проведенный Фарадеем, кратко описывается следующим образом:
В эксперименте катушка, обозначенная $ {{\ rm {C}} _ ​​1} $, подключена к гальванометру, а стержневой магнит помещен рядом с ним в виде показано на рисунке.


Когда стержневой магнит удерживается в неподвижном состоянии, гальванометр не показывает отклонения. Когда северный полюс магнита подталкивается к катушке, стрелка гальванометра отклоняется, указывая на наличие электрического тока в катушке.Однако, когда северный полюс магнита отводится от катушки, стрелка гальванометра отклоняется в противоположном направлении, указывая на обратное направление тока. Точно так же, когда южный полюс магнита перемещается к катушке или от нее, гальванометр отклоняется способом, противоположным тому, который наблюдается, когда северный полюс магнита перемещается к катушке или от нее. Когда катушка подталкивается к неподвижному стержневому магниту и отводится от него, наблюдаются те же эффекты отклонений в гальванометре.Относительное движение между магнитом и катушкой $ {{\ rm {C}} _ ​​1} $ изменяет магнитный поток, связанный с катушкой. Это вызывает в катушке электродвижущую силу. Эта индуцированная ЭДС заставляет электрический ток течь в катушке и через гальванометр.

Примечание
Когда стержневой магнит не движется в сторону или к катушке, гальванометр не видит никаких признаков отклонения, что означает отсутствие индукции тока в катушке.

индукционный | Infoplease

индукция, электричество и магнетизм, общее название для трех различных явлений.Электромагнитная индукция — это производство электродвижущей силы (ЭДС) в проводнике в результате изменения магнитного поля вокруг проводника и является наиболее важным из трех явлений. Он был открыт в 1831 году Майклом Фарадеем и независимо Джозефом Генри. Изменение поля вокруг проводника может быть вызвано относительным движением между проводником и источником магнитного поля, как в электрическом генераторе, или изменением напряженности всего поля, так что поле вокруг проводника также изменяется. .Поскольку магнитное поле создается вокруг проводника с током, такое поле можно изменить, изменив ток. Таким образом, если проводник, в котором должна индуцироваться ЭДС, является частью электрической цепи, индукция может быть вызвана изменением тока в этой цепи; это называется самоиндукцией. Индуцированная ЭДС всегда такова, что противодействует вызывающему ее изменению, согласно закону Ленца. Изменение тока в данной цепи может также вызвать ЭДС в другой, соседней цепи, не связанной с исходной схемой; Этот тип электромагнитной индукции, называемый взаимной индукцией, лежит в основе трансформатора.Электростатическая индукция — это образование несбалансированного электрического заряда на незаряженном металлическом теле в результате того, что заряженное тело подносят к нему, не касаясь его. Если заряженное тело заряжено положительно, электроны незаряженного тела будут притягиваться к нему; если затем заземлить противоположный конец тела, электроны будут течь на него, чтобы заменить те, которые притягиваются к другому концу, тело, таким образом, приобретает отрицательный заряд после разрыва заземления. Аналогичную процедуру можно использовать для получения положительного заряда на незаряженном теле, когда к нему подносят отрицательно заряженное тело.Смотрите электричество. Магнитная индукция — это создание магнитного поля в куске немагнитного железа или другого ферромагнитного вещества при приближении к нему магнита. Магнит заставляет отдельные частицы железа, которые действуют как крошечные магниты, выстраиваться в линию, так что образец в целом становится намагниченным. Большая часть этого наведенного магнетизма теряется при удалении вызывающего его магнита. См. Магнетизм.

Колумбийская электронная энциклопедия, 6-е изд. Авторские права © 2012, Columbia University Press.Все права защищены.

Дополнительные статьи в энциклопедии: Электротехника

Электромагнитная индукция | Примеры и поле — Видео и стенограмма урока

Как возникает электромагнитная индукция?

Эксперимент 1

В этом эксперименте катушка подключена к гальванометру. Когда северный полюс стержневого магнита приближается к катушке, гальванометр отклоняется. Это указывает на наличие электрического тока в катушке.Если магнит движется, отклонение продолжается.

Реверс электрического тока происходит, когда магнит опускается, поскольку отклонение гальванометра происходит в противоположном направлении.

Аналогично, когда южный полюс перемещается к катушке, отклонения происходят в противоположном направлении.

Этот эксперимент показывает, как возникает электромагнитная индукция, т.е. что электрический ток индуцируется из-за относительного движения между катушкой и магнитом.

Направление движения изменяется, когда стержневой магнит подталкивается к катушке.

Эксперимент 2

Во втором эксперименте Фарадей взял другую катушку вместо стержневого магнита. Электрический ток индуцируется там, когда ток проходит через первичную катушку и перемещается во вторичную катушку. Точно так же, если первая катушка перемещается в противоположном направлении, отклонение гальванометра будет в противоположном направлении.

Этот эксперимент показывает, как электрический ток индуцируется из-за относительного движения между двумя катушками.

Эксперимент 3

В этом эксперименте две электронные катушки повторно взяты; один подключается к гальванометру, а другой подключается к батарее через ключ. При нажатии на резку гальванометр показывает временный прогиб. Если быстро нажимать кнопку, отклонения нет. Когда ключ отпускается, происходит отклонение в обратном направлении.

Этот эксперимент показывает, что относительное движение не обязательно для индукции электрического тока.

Ток индуцируется во вторичной катушке из-за тока в первичной катушке с помощью ответвительного ключа.

Что такое магнитный поток?

Эксперименты Фарадея помогли вывести простую математическую формулу для магнитного потока. Магнитный поток можно определить как полное магнитное поле, проходящее через данную область.

Φ = BA cosθ

Если мы выберем простую плоскую поверхность с площадью A в качестве нашей тестовой области, тогда:

θ — угол

Величина B — вектор магнитного поля

Магнитный поток

Закон Фарадея

Закон индукции Фарадея гласит, что величина индуцированной электромагнитной силы (ЭДС) в цепи равна скорости изменения магнитного потока в цепи во времени.Соотношение:

ЭДС = — ΔΦ / Δt

Где Φ —BA — магнитный поток

B — внешнее магнитное поле

A — площадь катушки

T — время

(-) — знак минус указывает направление тока в замкнутом контуре.

Когда эта тесно намотанная катушка поворачивает N витков, изменение магнитного потока с каждым витком также одинаково.

ЭДС = — NΔΦ / Δt

Где N — Число витков

Закон Ленца

Согласно закону Ленца, индуцированная электродвижущая сила создает ток в контуре, который противодействует изменению магнитного потока, которое его вызывает.Закон Ленца основан на принципе сохранения энергии.

ЭДС = -NΔΦ / Δt

Направление индуцированного тока противоположно вызывающему его изменению.

Примеры и приложения электромагнитной индукции

В современном обществе закон индукции Фарадея находит несколько применений.

  • Одним из примеров является хранение данных, которое осуществляется путем записи с помощью магнитных полей.В некоторых компьютерах данные жестких дисков записываются на вращающийся диск с покрытием.
  • Таблички, которые используют многие художники-графики, используют тот же принцип. Перо на батарейках используется на экране, который соединен несколькими проводами. Магнетизм, исходящий от наконечника, вызывает на экране ЭДС, которая преобразуется в графические изображения, которые рисует художник.
  • Гибридные или электромобили также работают по принципу электромагнитной индукции. Он также находит применение в лечении пациентов с психическими расстройствами, такими как галлюцинации и депрессия, с помощью транскраниальной магнитной стимуляции (ТМС).Здесь магнитная стимуляция применяется к определенным областям мозга пациента, чтобы принести облегчение.
  • Электромагнитная индукция также используется для генерации и передачи энергии.

Электрический генератор

Электрический генератор меняет положительную полярность на отрицательную, чтобы произвести электрический ток.

Электрогенератор

Электрический генератор состоит из катушки, расположенной под прямым углом к ​​магнитному полю.

Эта катушка механически вращается с помощью внешних средств. Контактные кольца соединяют концы катушки.

Электричество вырабатывается катушками, вращающимися в магнитном поле, создаваемом магнитами.

  • В первой половине оборота, когда катушка разрезается около северного полюса магнита, образовавшиеся электроны перемещаются вверх по проводу, заряжая нижнее контактное кольцо положительно.
  • Опять же, когда катушка разрезается около южного полюса, контактное кольцо получает отрицательный заряд, потому что электроны движутся по проводу.

В промышленных генераторах вращение якоря может производиться гидроэлектрическими генераторами, тепловыми генераторами или ядерными генераторами энергии, которые заставляют катушку вращаться быстрее, чтобы быстрее производить электричество.

Трансформатор

Электрический трансформатор работает по принципу, согласно которому переменный ток создает переменный поток.

Трансформатор — это статическая машина, состоящая из первичной и вторичной обмоток, соединенных металлическим сердечником, который токи могут намагничивать.Эти катушки ведут себя как индукторы.

Трансформатор

Первичная катушка подключена к источнику питания, который вырабатывает электрические токи, которые индуцируют магнитный поток в сердечнике. Поскольку провода вторичной катушки прорезают магнитное поле катушки, оно создает напряжение, которое, в свою очередь, создает электрический ток во вторичной катушке.

Формула для его расчета:

(Напряжение на первичной обмотке) / (Количество витков первичной обмотки) = (Напряжение на вторичной обмотке) / (Число витков вторичной обмотки)

Поток прямо пропорционален току.Следовательно, с большим количеством катушек напряжение будет увеличиваться, чтобы произвести больший ток.

Индукционная варочная панель

Индукционная варочная панель имеет плиту с медным проводом, через который проходит переменный ток, который помогает готовить пищу. Под стеклянной поверхностью установлены электромагниты, используется ферромагнитная посуда. Когда через провод проходит ток, магнитное поле начинает колебаться, и в сосуде индуцируется электрический ток. В емкости возникает резистивный нагрев из-за больших вихревых токов.

Индукционная готовка лучше традиционных методов непрямого нагрева, таких как газовая плита, электрическая варка и конвекция, следующими способами:

  • Более эффективно
  • Меньше тепловых потерь
  • Нет загрязнения воздуха
  • Простота использования и очистки
  • Больше безопасности

Вихревые токи

Изменение магнитного потока в проводниках вызывает в них индуцированные токи. Картина течения этих индуцированных токов напоминает вихри в воде; поэтому они называются вихревыми токами.

Вихревые токи

Вихревые токи могут быть нежелательными, поскольку возникают потери электроэнергии из-за ненужного нагрева металлического сердечника. Тепло выделяется, когда электроны теряют кинетическую энергию при столкновениях. В результате катушки могут быть повреждены, и даже металл может расплавиться из-за вихревых токов. Ламинирование изоляционными материалами, такими как лак, может помочь минимизировать потери из-за вихревых токов.

Краткое содержание урока

Из этого урока мы узнали следующее об электромагнитной индукции:

  • При электромагнитной индукции в проводе возникает ток из-за изменения магнитного поля.
  • Согласно закону Фарадея, величина наведенной ЭДС в катушке равна скорости изменения магнитного потока, проходящего через катушку, во времени.
  • Согласно закону Ленца, индуцированная электродвижущая сила создает ток в контуре, который противодействует изменению магнитного потока, которое его производит.
  • Электрический генератор меняет положительную полярность на отрицательную, чтобы произвести электрический ток.
  • Электрический трансформатор работает по принципу, согласно которому переменный ток создает переменный поток.
  • При изменении магнитного потока в проводниках возникают индуцированные токи. Картина течения этих индуцированных токов напоминает вихри в воде; поэтому они называются вихревыми токами.

Физический проект по электромагнитной индукции

Цель: изучить явление электромагнитной индукции


Введение:

Электромагнит: Электромагнит — это тип магнита, в котором магнитное поле создается электрическим током.Магнитное поле исчезает при отключении тока.

Индукция: Этот процесс генерации тока в проводнике путем помещения проводника в изменяющееся магнитное поле называется индукцией.

Электромагнитная индукция: Электромагнитная индукция — это создание разности потенциалов (напряжения) на проводнике, когда он подвергается воздействию переменного магнитного поля. Электромагнитная индукция — это когда электромагнитное поле заставляет молекулы в другом объекте течь.Индукция может производить электричество (в катушках), тепло (в черных металлах) или волны (в радиопередатчике). Наконец, это относится к явлению, когда ЭДС индуцируется при изменении магнитного потока, связывающего проводник. Магнитный поток определяется как произведение плотности магнитного потока и площади, перпендикулярной полю, через которую проходит поле. Это скалярная величина, и ее единицей S.I. является вебер (Wb).

  φ = B A  

Принцип:

Электромагнитная индукция (или иногда просто индукция) — это процесс, при котором проводник, помещенный в изменяющееся магнитное поле (или проводник, движущийся через постоянное магнитное поле), вызывает образование напряжения на проводнике.Этот процесс электромагнитной индукции, в свою очередь, вызывает электрический ток, который, как говорят, индуцирует ток

.

Теория:

Изобретение: Майклу Фарадею обычно приписывают открытие индукции в 1831 году, хотя это, возможно, было предвосхищением работ Франческо Зантедески в 1829 году. Примерно с 1830 по 1832 год Джозеф Генри сделал подобное открытие, но не опубликовал свои открытия. до более позднего времени. Индуцированная ЭДС: если магнитный поток, проходящий через катушку, изменяется, то e.м.ф. будет генерироваться в катушке. Этот эффект был впервые обнаружен и объяснен Ампером и Фарадеем между 1825 и 1831 годами. Фарадей обнаружил, что э.д.с. могут быть созданы: (а) перемещая катушку или источник магнитного потока относительно друг друга, или (б) каким-либо образом изменяя величину источника магнитного потока. Обратите внимание, что ЭДС. производится только при изменении потока. Например, рассмотрим две катушки, как показано на рисунке 1.

Катушка A подключена к гальванометру, а катушка B подключена к батарее, и через нее протекает постоянный ток.Катушка A находится в магнитном поле, создаваемом B и э.д.с. может быть произведено в A путем перемещения катушек относительно друг друга или путем изменения величины тока в B. Это можно сделать, используя реостат R, включая или выключая ток, или (c) используя переменный ток. питание для B. (ЭДС может быть также произведена в катушке A путем замены катушки B постоянным магнитом и перемещения его относительно катушки A.)

Представительство:

Электромагнитная индукция — это создание разности потенциалов (напряжения) на проводнике, когда он подвергается воздействию переменного магнитного поля.Работа и конструкция: ток создается в проводнике, когда он перемещается через магнитное поле, потому что магнитные силовые линии прикладывают силу к свободным электронам в проводнике и заставляют их двигаться. Этот процесс генерации тока в проводнике путем помещения проводника в изменяющееся магнитное поле называется индукцией.

Это называется индукцией, потому что между проводником и магнитом нет физического соединения. Говорят, что ток индуцируется в проводнике магнитным полем.Одно из требований для возникновения этой электромагнитной индукции состоит в том, что проводник, который часто представляет собой кусок проволоки, должен быть перпендикулярен магнитным силовым линиям, чтобы создать максимальную силу для свободных электронов. Направление, в котором протекает индуцированный ток, определяется направлением силовых линий и направлением движения провода в поле. На анимации выше амперметр (инструмент, используемый для измерения тока) показывает, есть ли ток в проводнике.

Если через кусок провода пропускается переменный ток, создаваемое электромагнитное поле постоянно растет и сокращается из-за постоянно меняющегося тока в проводе. Это растущее и сжимающееся магнитное поле может индуцировать электрический ток в другом проводе, который проводится рядом с первым проводом. Ток во втором проводе также будет переменным и фактически будет очень похож на ток, протекающий в первом проводе. Обычно провод наматывают в катушку, чтобы сконцентрировать силу магнитного поля на концах катушки.Обертывание катушки вокруг железного стержня дополнительно концентрирует магнитное поле в железном стержне. Магнитное поле будет самым сильным внутри стержня и на его концах (полюсах).

Закон Ленца: Когда ЭДС генерируется изменением магнитного потока в соответствии с законом Фарадея, полярность индуцированной ЭДС такова, что она создает ток, магнитное поле которого противодействует изменению, которое его вызывает. Индуцированное магнитное поле внутри любой проволочной петли всегда поддерживает постоянный магнитный поток в петле.В приведенных ниже примерах, если поле B увеличивается, индуцированное поле действует против него. Если оно уменьшается, индуцированное поле действует в направлении приложенного поля, пытаясь сохранить его постоянным.

Применение электрического генератора электромагнитной индукции : ЭДС, генерируемая законом индукции Фарадея из-за относительного движения цепи и магнитного поля, является явлением, лежащим в основе электрических генераторов. Когда постоянный магнит перемещается относительно проводника или наоборот, создается электродвижущая сила.Если провод подключен через электрическую нагрузку, ток будет течь, и, таким образом, вырабатывается электрическая энергия, преобразующая механическую энергию движения в электрическую энергию

Электрический трансформатор ЭДС, предсказываемая законом Фарадея, также отвечает за электрические трансформаторы. Когда электрический ток в проволочной петле изменяется, изменяющийся ток создает изменяющееся магнитное поле. Второй провод, находящийся в зоне действия этого магнитного поля, будет испытывать это изменение магнитного поля как изменение связанного магнитного потока, d ΦB / d t.Следовательно, во втором контуре возникает электродвижущая сила, которая называется наведенной ЭДС или ЭДС трансформатора. Если два конца этого контура соединить через электрическую нагрузку, ток будет течь.

Магнитный расходомер: Закон Фарадея используется для измерения расхода электропроводных жидкостей и шламов. Такие приборы называются магнитными расходомерами. Индуцированное напряжение ℇ, генерируемое в магнитном поле B из-за проводящей жидкости, движущейся со скоростью v, таким образом, определяется выражением:

 ∈ = -Blv, где ℓ - расстояние между электродами в магнитном расходомере.



Наблюдение:

Заключение: Закон электромагнитной индукции Фарадея, впервые обнаруженный и опубликованный Майклом Фарадеем в середине девятнадцатого века, описывает очень важную электромагнитную концепцию. Хотя его математические представления загадочны, суть теории Фарадея нетрудно понять: она связывает индуцированный электрический потенциал или напряжение с динамическим магнитным полем.У этой концепции есть много далеко идущих ответвлений, которые затрагивают нашу жизнь разными способами: от сияния солнца до удобства мобильной связи и до электричества для питания наших домов. Мы все понимаем, какое огромное влияние на нас оказывает закон Фарадея.

Принципы электромагнитной индукции применяются во многих устройствах и системах, в том числе:

  • Электрогенераторы
  • Двигатели асинхронные
  • Индукционное уплотнение
  • Индуктивная зарядка
  • Трансформаторы
  • Беспроводная передача энергии

Электромагнитная индукция, закон Фарадея и закон Ленца

Категория: Физика

Среди самых сложных концепций программы HSC Physics — электромагнитная индукция и связанный с ней закон Фарадея и закон Ленца.Эти концепции представлены в модуле «От двигателей к генераторам» старой программы HSC Physics и в модуле «Electromagnetism» новой программы HSC Physics. Трудность для учащихся понять и уметь убедительно объяснить эти концепции заключается в том, что, во-первых, это не интуитивное явление, наблюдаемое в повседневной жизни (например, движение снаряда). Кроме того, хотя математика, лежащая в основе электромагнитной индукции, проста в программе HSC Physics, методология ответов на вопросы экзамена все еще сравнительно сложнее, чем другие темы.Это руководство охватывает все, что вам нужно знать об индукции, с множеством примеров, пошаговых объяснений и советов о том, как отвечать на такие вопросы, так что читайте дальше!

Электромагнитная индукция

В 1831 году Майкл Фарадей сделал одно из важнейших открытий в физике: явление электромагнитной индукции. Электромагнитная индукция — это явление, при котором изменяющееся магнитное поле вызывает появление электрического тока. Фарадей заметил, что ток течет через петли катушки только тогда, когда он перемещал магнит по отношению к катушке.Он также заметил, что характеристики тока зависят от:

1. Как быстро он перемещал магнит (это влияло на величину)
2. Какой магнитный полюс был обращен к катушке и двигался ли он к катушке или от нее (это влияло на направление)

Закон Фарадея

В ходе своих экспериментов Фарадей разработал знаменитый закон Фарадея, который является одним из самых важных понятий в программе HSC Physics. Закон Фарадея гласит:
Электродвижущая сила, индуцированная изменяющимся магнитным полем, пропорциональна скорости изменения магнитного потока через площадь, а также количеству витков катушки.
Формула, которая не приведена в справочном листе HSC Physics, описывающем закон Фарадея: $$ EMF = -n \ frac {ΔФ} {Δt} $$ Вы должны уметь расшифровывать и использовать закон Фарадея очень часто, поэтому давайте объясним каждый из его компонентов:

Электродвижущая сила ($ EMF $) — это индуцированное напряжение, вызванное изменяющимся магнитным полем. Его название вводит в заблуждение, поскольку это определенно не сила!
Магнитный поток ($ Ф $) представляет собой количество силовых линий магнитного поля, проходящих через область.Он измеряется в Веберсах (Wb) и зависит от площади $ A $, плотности магнитного потока ($ B $ — также известной как напряженность магнитного поля) и угла между силовыми линиями и плоскостью области ($ θ $). $$ Ф = BA \ cos {θ} $$
Скорость изменения магнитного потока ($ \ frac {ΔФ} {Δt} $) относится к скорости изменения магнитного поля. С точки зрения расчетов, это равно первой производной магнитного потока по времени.
• Число витков катушки ($ n $) не требует пояснений.Во многих случаях, когда есть только один цикл, $ n = 1 $.
• Отрицательный знак относится к закону Ленца , который будет объяснен позже.

Следует отметить, что закон Фарадея предсказывает индукцию напряжения (ЭДС), а не тока. Ток (если он появляется) является результатом этого напряжения ЭДС, но должны выполняться два условия:

1. Должен быть проводящий материал (металл), и
2. Для протекания тока должен быть замкнутый путь.

Вы можете визуализировать закон Фарадея и эксперименты с электромагнитной индукцией на анимации ниже. Попробуйте перемещать магнит по направлению к катушке, от нее и вокруг нее с разной скоростью, и вы увидите, как ток течет через лампу и гальванометр.

Изменения магнитного потока

В экзаменационных вопросах HSC Physics электромагнитная индукция и скорость изменения потока через область ($ \ frac {ΔФ} {Δt} $) могут быть результатом различных ситуаций. Вы должны уметь их идентифицировать и интерпретировать, поэтому вот исчерпывающий список, который следует запомнить:

1.Когда магнит движется к катушке или проводящей поверхности или от них.
2. Когда катушка или проводящая поверхность движется к магниту или от него.
3. Когда область, через которую проходят силовые линии, меняет форму (например, сжатие или растяжение, позволяющее проходить более низкому или более высокому потоку соответственно).
4. При изменении напряженности магнитного поля.
5. Когда проводящая область / катушка вращается в магнитном поле (например, что происходит с двигателями).
6.Когда существует относительное движение между магнитом и проводящей поверхностью / катушкой (не обязательно по направлению или в сторону друг от друга) — это может быть, например, когда металлический диск вращается параллельно магниту (индукция разрывается).
7. Когда есть магнитное поле, вызванное переменным током (AC) или вращающимся магнитным полем (как в асинхронных двигателях).

Закон Ленца

Как мы видели ранее, закон Ленца объясняет отрицательный знак в формуле закона Фарадея.Закон Ленца гласит:
Индуцированная ЭДС будет в направлении, противоположном причине (изменение магнитного потока), которая ее создала.
Закон Ленца на самом деле является результатом сохранения энергии: энергия, используемая (работа) для изменения магнитного потока через область (например, при перемещении магнита), преобразуется в тепловую энергию, когда ток течет через проводящую петлю (или область ). В вопросах физики HSC очень важен закон Ленца, поскольку он помогает нам предсказать и объяснить, что происходит в любой ситуации, когда изменяется магнитный поток (см. Список из 7 случаев выше).Вы всегда должны пытаться ответить на эти вопросы шаг за шагом, обратившись к:

1. Изменение магнитного потока через рассматриваемую область и влияние на $ \ frac {ΔФ} {Δt} $.
2. Закон Фарадея, предсказывающий возникновение ЭМП.
3. Возникновение тока в результате ЭДС (при соблюдении условий замкнутости пути и наличия токопроводящего материала).
4. Появление магнитного поля в результате индуцированного тока (воспользуйтесь правилом захвата правой рукой, чтобы понять его направление).
5. Примените закон Ленца, чтобы определить направление поля, которое противодействовало изменению, вызвавшему ЭДС (шаг 1). Это наиболее важный шаг — вы должны сначала четко указать изменение, а затем спрогнозировать «противоположную» реакцию на это изменение (которое обычно относится к генерации электрического тока). Вы должны попытаться интерпретировать изменения магнитного потока и закон Ленца как с точки зрения направления линий магнитного поля , так и величины потока , протекающего во время изменения (больше или меньше линий).

Применение электромагнитной индукции

Генераторы

Явление электромагнитной индукции имеет решающее значение для развития нашего современного общества, поскольку на нем основано производство электроэнергии. Генератор переменного тока состоит из вращающейся катушки в магнитном поле. Работа для вращения змеевика обеспечивается внешним источником — например, батареей, сжиганием топлива (нефть, уголь, природный газ и т. Д.) Или механической энергией ветра или воды, протекающей через турбину.В любом случае, поскольку внутри магнитного поля находится вращающаяся катушка, магнитный поток через катушку будет постоянно изменяться, и это, в свою очередь, вызывает индукцию ЭДС и тока.

На рисунке выше вы можете увидеть, как изменяется магнитный поток при изменении положения катушки (красная кривая). Как мы видели выше, скорость изменения потока $ \ frac {ΔФ} {Δt} $ является производной кривой магнитного потока, а $ EMF $ (синяя кривая) является отрицательной производной кривой магнитного потока (из-за Закон Ленца).Предполагая, что катушка начинается параллельно линиям магнитного поля, вы можете использовать некоторые вычисления (необязательные в физике HSC, но они помогают, если вы выполняете математику с двумя единицами или расширениями!), Чтобы запомнить и объяснить индукцию $ EMF $:

• Кривая магнитного потока $ Ф (t) $ может быть представлена ​​кривой $ \ sin $.
• Скорость изменения кривой магнитного потока $ \ frac {ΔФ} {Δt} $ может быть представлена ​​кривой $ \ cos $, поскольку это производная от $ \ sin $.
• Кривая $ EMF $ может быть представлена ​​кривой $ — \ cos $ в соответствии с законом Ленца.

Версия с генератором постоянного тока имеет разрезное кольцо вместо контактного кольца (например, двигатель постоянного тока), чтобы гарантировать, что направление индуцированного тока не изменится.

Задний ЭДС

Во время работы двигателя катушка вращается внутри магнитного поля (в результате моторного эффекта). В результате электромагнитной индукции возникает наведенная ЭДС, пропорциональная скорости изменения магнитного потока (или, проще говоря, скорости вращения катушки двигателя).Это называется «обратная ЭДС», так как согласно закону Ленца индуцированный ток будет создавать поле, противодействующее изменению магнитного поля, которое вызвало его в первую очередь. Чтобы понять и объяснить обратную ЭДС в вопросах физики HSC, вам необходимо убедительно обрисовать следующее:

1. ЭДС питания двигателя постоянного тока постоянна и равна напряжению, подаваемому батареей.
2. Обратная ЭДС является результатом закона Ленца и пропорциональна скорости вращения — чем быстрее вращается катушка двигателя, тем выше обратная ЭДС.Однако она никогда не может превышать ЭДС питания, так как это противоречило бы закону сохранения энергии.
3. Чистая ЭДС — это алгебраическая сумма ЭДС питания и обратной ЭДС, которые противоположны друг другу и, следовательно: $ net = Supply-back $.

Вы можете увидеть, как это развивается со временем после запуска двигателя:

Скорость вращения двигателя увеличивается со временем, и в конечном итоге обратная ЭДС будет равна ЭДС питания, в результате чего чистая ЭДС и чистый электрический ток будут равны нулю.После этого частота вращения двигателя остается постоянной. В реальных двигателях постоянного тока чистая ЭДС на самом деле не равна нулю, так как на сопротивлении цепи есть некоторое падение напряжения (однако тот факт, что вращение двигателя достигает предела, все еще остается в силе).

Это также объясняет причину, по которой переменные резисторы могут использоваться в больших двигателях — когда двигатели включены, обратная ЭДС равна нулю, и, следовательно, общая ЭДС будет очень высокой, что приведет к чрезмерным и опасным токам. Переменный резистор гарантирует, что общее сопротивление будет очень высоким (и, следовательно, общий ток будет очень низким — закон Ома) в эти первые моменты времени, пока не сработает обратная ЭДС.

Индукционное торможение

Явление индукционного торможения возникает, когда проводящая поверхность движется или вращается относительно магнитного поля. В обеих ситуациях магнитный поток, проходящий через участок проводящей поверхности, изменяется, что приводит к электромагнитной индукции ЭДС. Вместо одиночного тока, протекающего через петлю, у нас есть концентрические токи, протекающие через этот участок проводящей поверхности, которые называются вихревыми токами , .Это явление можно наблюдать, если уронить магнит через металлическую трубку и увидеть, как он замедляется, или с помощью индукционных тормозов в поездах.

Согласно закону Ленца, эти вихревые токи будут течь в направлении, противоположном изменениям магнитного потока из-за относительного движения поверхности и магнитного поля. В результате поле, вызванное вихревыми токами, пытается «замедлить» движение — явление, известное как индукционное торможение. Давайте посмотрим на пример индукционного торможения.

1.Поскольку металлическая пластина входит в поле с левой стороны, $ \ frac {ΔФ} {Δt} $ через область увеличивается, поскольку все больше линий магнитного поля, указывающих внутри страницы , проходят через область.
2. Согласно закону Ленца индуцированные вихревые токи должны противодействовать этому изменению и, следовательно, должны течь в направлении, которое создает магнитное поле с линиями, указывающими за пределы страницы.
3. Если мы воспользуемся правилом захвата правой рукой с большим пальцем (направление поля), направленным за пределы страницы, мы увидим, что текущее направление (пальцы) должно быть против часовой стрелки.Вот почему красный ток ($ I_1 $) течет в направлении, показанном на диаграмме.
4. Точно так же ток $ I_2 $ должен быть направлен по часовой стрелке, чтобы создать поле, которое противодействует изменению магнитного потока, когда металлическая пластина выходит из поля. Когда пластина выходит, на меньше линий поля , указывающих внутрь страницы, проходит через поверхность, и, следовательно, вихревые токи должны генерировать поле, указывающее и внутри страницы, в попытке создать на больше линий поля , указывающих внутрь.

через GIPHY

Примеры стилей экзамена по физике HSC

Закон Ленца в соленоиде


В этом вопросе нам дается текущее направление, входящее сзади соленоида и выходящее спереди.Следовательно, мы должны работать в обратном направлении, чтобы понять, какое изменение магнитного потока вызвало индукцию такого тока.

1. Используя правую ручку для захвата, пальцы входят за соленоид и выходят спереди, мы можем видеть, что направление индуцированного магнитного поля (большой палец) указывает вправо.
2. Это означает, что северный полюс индуцированного поля находится с правой стороны соленоида, а южный полюс — с левой стороны от соленоида.
3.Вспоминая магнитное поле, вызванное стержневым магнитом, это означает, что индуцированный ток вызывает на больше линий поля , входящих с левой стороны (южный полюс).
4. Это означает, что согласно закону Ленца, изменение потока, которое индуцировало ток, должно было быть противоположным направлением — то есть на меньше силовых линий, входящих с левой стороны .
5. Поскольку северный полюс магнита обращен к соленоиду, изменение магнитного потока, определенное на шаге 4, должно происходить, когда магнит перемещается от соленоида, то есть когда магнит движется влево, а катушка движется в сторону правильно (ответ А).

Закон Ленца и наведенный ток в кольце

Для первого вопроса мы сначала должны заявить, что при изменении магнитного потока через это кольцо будет возникать наведенная ЭДС. Поскольку это металлическое кольцо и есть замкнутый путь, ток будет течь по кольцу в результате индуцированного напряжения (ЭДС).

Что касается направления тока, и, как мы обсуждали ранее, нам необходимо идентифицировать изменение магнитного потока через область (кольцо):

1.Мы можем видеть, что в результате изменения еще линий магнитного поля текут к верхней части страницы .
2. Согласно закону Ленца индуцированный ток будет в направлении, противоположном изменению « больше силовых линий — к вершине ». Противоположное направление будет тогда « больше строк поля — к низу страницы» (эквивалентно «меньшему количеству строк поля — к верху страницы»).
3.{-3}} $$ $$ EMF = -0,006 Вольт $$ Вспоминая закон Ома: $$ I = \ frac {V} {R} $$ $$ I = \ frac {0.006} {0.003} $$ $$ I = 2 ампера $$

Контрольный список для проверки электромагнитной индукции

Студент HSC Physics, проходящий пробный, HSC или даже небольшой тест, включающий электромагнитную индукцию, должен уметь делать следующее, чтобы быть хорошо подготовленным к любому вопросу:

⚡ Объясните, почему электродвижущая сила индуцируется в результате изменения магнитного потока, проходящего через область.
⚡ Используйте закон Фарадея для качественного и количественного прогнозирования величины ЭДС как функции скорости ($ \ frac {ΔФ} {Δt} $) изменения.
⚡ Используйте закон Ленца и правило правой руки, чтобы обосновать направление тока при изменении магнитного потока.
⚡ Используйте закон Ленца и правило правой руки, чтобы определить изменение магнитного потока через область при наличии тока.
⚡ Объясните, как в двигателях постоянного тока возникает обратная ЭДС, а также ее влияние на работу двигателя.
⚡ Объясните, как работает генератор переменного или постоянного тока, включая графики изменения магнитного потока и ЭДС во времени при вращении катушки.
⚡ Используйте закон Фарадея и закон Ленца, чтобы объяснить возникновение и направление вихревых токов в ситуациях, когда магнитный поток через проводящую поверхность изменяется.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *