Характеристики лэп – что это: классификация линий электропередач, виды, воздушные, высоковольтные, кабельные ЛЭП

Линия электропередачи Википедия

Одноцепная промежуточная опора ЛЭП 330кВ Двухцепная анкерно-угловая опора ЛЭП 35кВ Двухцепная промежуточная опора ЛЭП 35кВ

Ли́ния электропереда́чи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции[1].

Различают воздушные и кабельные линии электропередачи. В последнее время приобретают популярность газоизолированные линии — ГИЛ.

По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам специалистов, в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Строительство ЛЭП — сложная задача, которая включает в себя проектирование, производственные работы, монтаж, пусконаладку, обслуживание.

История[ |

Ассортимент и характеристики проводов для воздушной ЛЭП

Электрическая энергия основной вид энергии, который применяете буквально на каждом шагу. Широкое использование возможно благодаря электросетям, объединяющим производителя и потребителя энергии. ЛЭП (линии электропередач) транспортируют электричество. Линии проводят под землей либо по воздуху. Провода, для воздушных линий электропередач при помощи изоляторов и линейной арматуры монтируются к кронштейнам специальных сооружений.

Разновидности проводов для ЛЭП

Ассортимент изделий используемых для монтажа воздушных линий электропередач весьма широк используются марки А, АС, так же СИП-1;СИП-2,СИП-3,СИП-4.
Различаются  изделия по техническим характеристикам (параметрам). Используется провод:

  • Алюминиевый;
  • Изолированный;
  • Сталеалюминевый;
  • Не изолированный.

Изделия разнообразны по виду, имеют большой диапазон сечений. Вариант кабеля А, АС относится к не изолированным изделиям для ЛЭП. В процессе эксплуатации кабель подвержен атмосферным неблагоприятным воздействиям (высокая влажность, мороз, жара, наледь). Так же влияют химические вещества, содержащиеся в окружающей атмосфере такие, как — сернистый газ, морская соль. Провода воздушных линий обладают прочностью и отличаются высокой антикоррозийной устойчивостью.
Область применения данных изделий — открытое воздушное пространство 1 и 2 типа (если в атмосфере присутствует сернистый газ менее 150мг. на квадратный метр в сутки) во всех климатических точках на суше.

  • Провод А — не изолированный. Изготовлено изделие  из алюминия (проволока). Скрутка кабеля выполнена концентрическим повивом;
  • Провод АС с сердесником стальным оцинкованным,  обмотанным специальным способом алюминиевой проволокой. Вес провода АС весьма мал, что дает ему неоспоримое преимущество, в случае применения большого количества материала;
  • Самонесущий изолированный провод  (СИП).

Такое изделие, как кабель СИП весьма востребовано. Как правило, ему отдают предпочтение при монтаже ЛЭП.
Провода ВЛ СИП имеют массу достоинств:

  1. Надежность;
  2. Эффективность;
  3. Экономичность в обслуживании, эксплуатации;
  4. Долговечность;
  5. Значительное  сокращение потерь электроэнергии;
  6. Простота и легкость при монтаже, ввиду специально применяемой арматуры;
  7. Ввод в эксплуатацию без отключения напряжения электроустановки;
  8. Значительно сокращается  незаконное потребление энергии.

Конструктивные особенности проводов для ЛЭП

Изделие СИП состоит из нескольких  алюминиевых жил. Применяется для устройства магистральных линий электропередач, так же часто используется для электропроводки в жилых домах (допускается прокладка кабеля снаружи помещения, по стенам).

Каждый вид кабеля СИП предназначен для определенной цели. Кабель СИП2 2х16 (самонесущий  изолированный провод) применяется для монтажа ВЛЭ с напряжением до 35000Вт, и частотой 50Гц. Используется в районе с холодным и умеренным климатом (побережье моря, промышленные зоны).


СИП4 2х16 обладает особенностью исключающую риск замыкания. Изделие экономично в процессе эксплуатации. Провод долговечен, если соблюдать правила пользования. Срок службы изделия более 40 лет. Перед приобретением продукции необходимо консультироваться со специалистом в данной области.

Если напряжение воздушной ЛЭП выше 1000в то используют голый кабель, трос. Во внешней среде погодные условия (дождь, гололед, ветер) влияют на прочность материала, поэтому кабель должен отличаться прочностью, устойчивостью к коррозии.


Некоторое время назад использовали медные провода, сейчас же отдают предпочтение алюминиевым либо сталеалюминевым или стальным, иногда применяют изделие из сплава алюминия — альдрея. Так же используют для ЛЭП грозозащитный трос, изготовленный из стали.
Изделия для ЛЭП могут состоять из одной проволоки либо из нескольких жил (перевитой между собой проволоки).Бывает однопроволочный провод, который имеет сплошное сечение и состоит из одной проволоки. Существует многопроволочный кабель, который состоит из двух металлов, например бронзы со сталью либо стали и алюминия. Кабель АС – сталеалюминевый, имеет оцинкованную жилу (свитую из 7-19 проволок, либо однопроволочную). Жила обвита алюминием из 6 или 24 , возможно более проволок.
Что такое провод СИП видео

Виды провода и технические характеристики

  • Медный провод производится из проволоки твердотянутой, имеет небольшое удельное сопротивление, наделен высокой механической прочностью. Превосходно противостоит воздействиям атмосферы (коррозии, химических примесей окружающей среды). Данные изделия обозначены маркой М, добавляется номинальное сечение кабеля. Например, если сечение 50мм2 то обозначается, как М50.Изделия дорогостоящие ввиду чего практически не применяются для создания ЛЭП;
  • Алюминиевый провод в отличие от медного намного меньше весит. Обладает большим удельным сопротивлением, но наименьшей механической устойчивостью. В основном данные изделия применяются в местной сети. Из за малой прочности продолжительное натяжение алюминиевого кабеля не допустимо. Во избежание провисания, для выполнения норм и правил монтажа ЛЭП производится уменьшение расстояний межу опорами (это увеличивает расходы строительства линии электропередач). Что бы увеличить надежность провода из алюминия производят многопроволочными, изготавливая из твердотянутых проволок. Данный вид материала не устойчив к влиянию вредных химических составляющих воздуха, при этом хорошо переносит неблагоприятные погодные условия. Как правило, в местах вблизи побережья либо рядом с крупными химическими комбинатами, используется для ЛЭП алюминиевый провод в основном марки АКП. Такие изделия имеют защиту от коррозии, изготавливаются с нейтральной смазкой на скрученной проволоке. На проводах стоит маркировка — А и показатель сечения изделия;
  • Стальной провод имеет высокую прочность. Удельное сопротивление гораздо выше, чем у алюминиевого кабеля, что зависит от уровня тока. Изделие производится однопроволочным и многопроволочным. Область применения – местные сети с величиной напряжения до 10кВ. У кабеля есть свой минус – неустойчивость к коррозии. Для придания стойкости изделия проходят процесс оцинковки. Производят многопроволочные стальные изделия — марки ПС и ПМС, что означает провод стальной, провод омедненный стальной;
  • Сталеалюминевый провод обладает таким же удельным сопротивление, что и алюминий. Его конструкция — стальная проволока внутри и алюминиевая снаружи. Стальная часть служит для увеличения надежности, прочности, а алюминий проводит ток. Существуют марки — АС, АСКС, АСКП. У каждой марки есть свои особенности и предназначение. Например, АСК кабель имеет стальной сердечник изолированный оболочкой. Буква П (АпСК) при маркировке обозначает повышенную прочность .Кабель АС имеет сердечник из стальной оцинкованной проволоки и повивов сверху из алюминия.
    Изделия разных марок изготавливаются с различным сечением относительно алюминиевой составляющей к сечению сердечника из стали. Область применения – строящиеся и реконструируемые линии в зоне, где толщина обледенение не выше 20 мм;
  • Провод из альдрея наделен практически одинаковым сопротивлением с алюминиевым, но есть отличительная характеристика — обладает высокой прочностью. Материал состоит их небольшой части железа и сплава алюминия. По устойчивости к коррозии сравним с алюминием. Минусом изделия является неустойчивость при вибрации.

Как подключить кабель СИП видео смотрите ниже:

ОБЩАЯ ХАРАКТЕРИСТИКА ВОЗДУШНЫХ ЛИНИЙ И ОСНОВНЫЕ ЭЛЕМЕНТЫ — Мегаобучалка

КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ И УСЛОВИЯ РАБОТЫ

ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

 

ОСНОВНЫЕ СВЕДЕНИЯ

 

Линии электропередачи (ЛЭП) – центральный элемент системы пе-редачи и распределения ЭЭ. Линии выполняются преимущественно воз-душными (ВЛ) и кабельными (КЛ). На энергоёмких предприятиях приме-няют также токопроводы, на генераторном напряжении электростанций – шинопроводы; в производственных и жилых зданиях – внутренние про-водки.

 

Выбор типа ЛЭП, её конструктивного исполнения определяется на-значением линии, местом расположения (прокладки) и, соответственно, её номинальным напряжением, передаваемой мощностью, дальностью элек-тропередачи, площадью и стоимостью занимаемой (отчуждаемой) терри-тории, климатическими условиями, требованиями электробезопасности и технической эстетики и рядом других факторов и в конечном итоге эко-номической целесообразностью передачи ЭЭ. Указанный выбор произво-дится на стадиях принятия проектных решений.

 

В данной и следующей главах формулируются требования, которые должны удовлетворять ЛЭП (ВЛ и КЛ), условия их выполнения и на их основе представляются некоторые принципы и варианты конструктивного исполнения ЛЭП.

Наиболее распространены на всех ступенях системы электроснабже-ния ВЛ ввиду их относительно малой стоимости. По этой причине приме-нение ВЛ должно рассматриваться в первую очередь.

 

 

ОБЩАЯ ХАРАКТЕРИСТИКА ВОЗДУШНЫХ ЛИНИЙ И ОСНОВНЫЕ ЭЛЕМЕНТЫ

 

Воздушными называются линии, предназначенные для передачи и распределения ЭЭ по проводам, расположенным на открытом воздухе и поддерживаемым с помощью опор и изоляторов. Воздушные ЛЭП соору-жаются и эксплуатируются в самых разнообразных климатических усло-виях и географических районах, подвер-

  жены атмосферному воздействию (ветер,
  гололёд, дождь, изменение температуры).
  В связи с этим ВЛ должны сооружаться с
  учётом атмосферных явлений, загрязнения
  воздуха, условий прокладки (слабозасе-
  лённая местность, территория города,
  предприятия) и др. Из анализа условий ВЛ
  следует, что материалы и конструкции
  линий должны удовлетворять ряду требо-
  ваний [7]: экономически приемлемая
  стоимость, хорошая электропроводность и
  достаточная механическая прочность ма-
  териалов проводов и тросов. Стойкость их
  к коррозии, химическим воздействиям;
  линии должны быть электрически и эко-
  номически безопасны, занимать мини-
  мальную территорию.
  Основными элементами ВЛ (рис. 2.1)
Рис. 2.1. Основные являются: 1 провода; 2 – изоляторы; 3 –
элементы воздушных линий опора; 4 грозозащитные тросы; 5 – тра-
электропередачи версы; 6 тросостойки; 7 – фундаменты.
         

 



1 2

 

а) б)

 

Рис. 2.2. Конструктивная схема одноцепной ВЛ:

а 1–анкерная опора;2–промежуточная опора; б –основные характеристики габаритного пролёта ВЛ

 

По конструктивному исполнению опор наиболее распространены од-но- и двухцепные ВЛ. На трассе линии могут сооружаться до четырёх це-пей. Трасса линии – полоса земли, на которой сооружается линия. Одна цепь высоковольтной ВЛ объединяет три провода (комплекта проводов) трёхфаз-ной линии, в низковольтной – от трёх до пяти проводов. В целом конструк-тивная часть ВЛ (рис. 2.2) характеризуется типом опор, длинами пролётов, габаритными размерами, конструкцией фаз, количеством изоляторов.

 

Длины пролётов ВЛ выбирают по экономическим соображениям, так как с увеличением длины проекта l возрастает провес проводов f, необхо-димо увеличить высоту опор H, чтобы не нарушить допустимый габарит линии h (рис. 2.2, б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии h – наименьшее расстояние от нижней точки провода до земли (воды, полотна дороги) – должен быть таким, чтобы обеспечить безопасность движения людей и транспорта под линией. Это расстояние зависит от номинального напряжения линии и условий местности (населённая, ненаселённая). Расстояние между соседними фазами линии зависит главным образом от её номинального напряжения. Основные конструктивные размеры ВЛ приведены в табл. 2.1 [8].

 

Линия электропередачи Википедия

Одноцепная промежуточная опора ЛЭП 330кВ Двухцепная анкерно-угловая опора ЛЭП 35кВ Двухцепная промежуточная опора ЛЭП 35кВ

Ли́ния электропереда́чи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции[1].

Различают воздушные и кабельные линии электропередачи. В последнее время приобретают популярность газоизолированные линии — ГИЛ.

По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам специалистов, в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Строительство ЛЭП — сложная задача, которая включает в себя проектирование, производственные работы, монтаж, пусконаладку, обслуживание.

История

Получение энергии и её немедленное использование применялось человечеством издревле (напр. ветряные двигатели, совмещенные с мельничными жерновами; водяные колеса, совмещенные с механическим молотом; вертелы, вращаемые рабами или животными, совмещенные с кузнечными мехами). Данный подход не всегда удобен, т.к. местностей со стабильно дующими ветрами немного, количество запруд на реке ограничено, расположены они могут быть в неудобной труднопроходимой местности вдали от поселений и промышленных центров и т.п. Очевидным решением было получение энергии в одном месте с возможностью ее передачи к потребителю в другое. В средние века и в эпоху промышленной революции предлагались проекты передачи механической мощности на большие расстояния с помощью длинных валов и пневматических труб, которые не были реализованы ввиду технических сложностей. Открытия в области электричества сделали возможным генерацию различными способами электрической энергии и передачу её потребителю с помощью относительно простых, компактных, дешевых и лёгких в прокладке и монтаже электрокабелей.

Воздушные линии электропередачи

Воздушная ЛЭП 500 кВ

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам). ВЛи — воздушная линия, выполненная изолированными проводами (

Угловые характеристики ЛЭП без потерь, выраженные через волновые параметры.

,

Найдем выражение для :

.

Проводимости получаются чисто реактивными .

 

 

 

Рассмотрим общие выражения для характеристик мощности:

,

, ,

В частном случае, когда ,

.

В случае, если ,

.

 

 

 

Рассмотрим случай, когда ЛЭП связывает между собой две ЭЭС:

1. Режим передачи , , т.е. , , , .

В рассматриваемом режиме имеет место самокомпенсация реактивной мощности в линии, генерация реактивной мощности в ней точно покрывает потери, напряжение во всех точках линии по модулю одинаковы, а фазовой сдвиг равен волновой длине линии.

Как правило, такой режим расчета близок к экономическому режиму работы ЛЭП.

2. Рассмотрим случай, когда , .

В этом случае , а и для принятых положительных направлений потоков реактивной мощности

( — входит в узел 1, — выходит из узла 2).

Суммарные потери реактивной мощности, связанные с протеканием тока не скомпенсированы генерируемой реактивной мощностью. Т.е. в этом режиме ЛЭП потребляет реактивную мощность из приемной и передающей ЭЭС.

 

 

 

 

Эпюры распределения модулей напряжения вдоль линии в различных режимах загрузки по активной мощности выглядят следующим образом:

 

Если по линии , то при наблюдается пучность напряжения, если наблюдается провал, максимальный в середине.

3. Рассмотрим случай ненагруженной ЛЭП, т.е. когда линия связывает между собой две ЭЭС, но мощность по ней не передается.

 

 

 

 

 

Представим линию двумя участками

 

 

, в этом случае , .

В силу симметрии схемы, в середине никакого тока нет и линию условно можно разорвать, т.е. это режим х.х. половинной ЛЭП. Фазовый сдвиг между векторами напряжений отсутствует, т.е. .

В других режимах, когда ( ),т.е. есть передача реактивной мощности, в середине линии в любом случае имеет место потокораздел по реактивной мощности, поэтому . При известных , можно найти напряжение в середине ЛЭП .

 

 

\

 

 

Пропускная способность ЛЭП и пути ее повышения.

Рассмотрим пропускную способность ЛЭП применительно к линии без потерь.

.Максимальное знание мощности отвечает пропускной способности ЛЭП: .

Способы увеличения пропускной способности ЛЭП.

 

1. Уменьшать (т.е. уменьшать длину линии).

2. Увеличвать (т.е. увеличить ), этого можно добиться, увеличив напряжение по концам ЛЭП вплоть до максимально допустимого рабочего напряжения.



 

 

 

3 Уменьшать за счет конструкции ЛЭП

( лини повышенной натуральной мощности или ПНМ).

Если указанными способами увеличить пропускную способность линии до нужной величины не удается , необходимо строительство параллельной цепи или переход на следующую ступень Uном.

 

 

 

 

Пропускная способность ВЛ 110-1150кВ

(Справочник под ред. С.С. Рокотяна)

 

Характеристики оборудования линий электропередач и подстанций

Воздушные линии электропередач (ВЛ) предназначены для передачи электроэнергии на расстояние по проводам. Основными конструктивными элементами ВЛ являются провода, тросы, опоры, изоляторы и линейная арматура. Провода служат для передачи электроэнергии. В верхней части опор над проводами для защиты ВЛ от грозовых перенапряжений монтируют грозозащитные тросы.

Опоры поддерживают провода и тросы на определенной высоте над уровнем земли или воды. Изоляторы изолируют провода от опоры. С помощью линейной арматуры провода закрепляются на изоляторах, а изоляторы на опорах.

В некоторых случаях провода ВЛ с помощью изоляторов и линейной арматуры прикрепляются к кронштейнам инженерных сооружений.

Наибольшее распространение получили одно- и двухцепные ВЛ. Одна цепь трехфазной ВЛ состоит из проводов разных фаз. Две цепи могут располагаться на одних и тех же опорах.

На работу конструктивной части ВЛ оказывают воздействие механические нагрузки от собственного веса проводов и тросов, от гололедных образований на проводах, тросах и опорах, от давления ветра, а также из-за изменений температуры воздуха. Из-за воздействия ветра возникает вибрация проводов (колебания с высокой частотой и незначительной амплитудой), а также пляска проводов (колебания с малой частотой и большой амплитудой). Указанные выше механические нагрузки, вибрация и пляска проводов могут приводить к обрыву проводов, поломке опор, схлестыванию проводов либо сокращению их изоляционных промежутков, что может привести к пробою или перекрытию изоляции. На повреждаемость ВЛ влияет и загрязнение воздуха.

Провода воздушной линии электропередач

На воздушных линиях применяются неизолированные провода, т.е. без изолирующих покровов. Эти провода изготавливают из меди, алюминия и стали без изолирующих покровов. Их применяют главным образом в воздушных сетях, где они подвешиваются к специальным опорам с помощью арматуры и изоляторов, но иногда и во внутренних сетях.

Медь обладает наименьшим удельным электрическим сопротивлением 18 Оммм2/км при 20C. Медь по сравнению с алюминием является более дорогим и дефицитным металлом, поэтому в настоящее время новых воздушных линий с медными проводами не сооружают.

Алюминий обладает в 1,6 раза большим удельным электрическим сопротивлением 29,5 Оммм2/км при 20C.

Сталь обладает значительно более высоким удельным сопротивлением, которое зависит от ее сорта, способа изготовления провода и от величины тока, проходящего по нему. Для предотвращения окисления стальные провода оцинковываются. Стальные провода применяют редко при сравнительно малых нагрузках, характерных для сельских сетей. В отдельных случаях вследствие высокой механической прочности стальные провода применяют при выполнении переходов воздушных линий через широкие реки и другие препятствия.

По конструктивному выполнению различают однопроволочные и многопроволочные провода. Последние часто бывают комбинированными – из алюминия и стали. На линиях иногда применяют расщепление проводов: подвешивают одновременно по несколько проводов на фазу.

Однопроволочный провод состоит из одной круглой проволоки. Многопроволочный провод свивается из отдельных круглых проволок диаметром 2-3 мм. При увеличении сечения провода число проволок возрастает.

Однопроволочные провода дешевле многопроволочных, однако, они мене гибки и имеют меньшую механическую прочность.

В сталеалюминиевых проводах внутреннюю жилу (сердечник провода) выполняют из стали, а верхние из алюминия. Стальной сердечник предназначен для увеличения механической прочности провода; алюминий является токопроводящей частью. Хотя сечение стальной части в среднем в 5 раз меньше сечения алюминиевой части, стальная часть воспринимает около 40% всей механической нагрузки. Сталеалюминиевые провода широко применяют в сетях напряжением 35 кВ и выше.

В марке провода буквой отмечается его материал: медные М, алюминиевые А, сталеалюминиевые АС, стальные однопроволочные ПСО, стальные многопроволочные провода ПС. В обозначении марки провода вводится номинальное сечение алюминиевой части провода и сечение стального сердечника, например АС-120/19.

Провода воздушных линий соединяют при помощи специальных зажимов путем обжатия или опрессования. Концы проводов соединяют термитной сваркой. Посредством термитной сварки создают цельнометаллическое соединение, не изменяющее с течением времени своих электрических характеристик и имеющее хорошие механические характеристики.

Изолированные провода имеют внешние изолирующие, а иногда и защитные покровы. Они используются в основном для внутренних сетей. Токоведущие жилы проводов выполняют из круглой медной или алюминиевой проволоки. Изготавливают одно-, двух-, трех-, четырехжильные и многожильные провода.

Кабелем называют многопроволочный провод или несколько скрученных вместе взаимно изолированных проводов (жил) при выполнении в общей герметической оболочке. Поверх оболочки могут быть наложены защитные покровы. Силовые кабели предназначены для прокладки в земле, под водой, на открытом воздухе и внутри помещений.

Силовые кабели напряжением до 35 кВ включительно изготавливают главным образом с изоляцией из плотной бумаги, пропитанной специальной кабельной массой (компаундом). Применяют также кабели с резиновой и пластмассовой изоляцией. Токоведущие жилы изготавливают из медных или алюминиевых проволок для уменьшения размеров выполняют секторной формы и между отдельными жилами вставляют специальные жгутики – заполнители из джута. Поверх изоляции кабель опрессовывают бесшовной оболочкой из алюминия или свинца для того, чтобы в изоляцию не попадала влага из воздуха. Для кабелей напряжением до 1 кВ применяют также оболочки из пластмасс.

Для защиты от механических повреждений кабель покрывают броней из стальной ленты. Между металлической оболочки кабеля и броней и поверх брони накладывают покровы из джута, пропитанные антикоррозионными составами. В воздухе прокладывают кабели без наружного джутового покрова. Для прокладки в туннелях и других местах, опасных в пожарном отношении, применяют специальные кабели с негорючими защитными покровами. Наибольшее распространение имеют кабельные линии 6-10 кВ, реже 35кВ. Кабельные линии 110 и 220 кВ не получили пока широкого применения, ч то в основном объясняется значительно большей стоимостью кабельных линий по сравнению с воздушными. Кабельные линии 6-35 кВ в 2-3 раза дороже воздушных, а кабельные линии 110 кВ дороже воздушных в 5-8 раз.

При напряжении 35 кВ используются также газонаполненные кабели с избыточным давлением инертного газа (обычно азота). В таких кабелях практически исключены деформации оболочки и образование пустот из-за значительно большого температурного коэффициента линейного расширения кабельной массы по сравнению с температурным коэффициентом линейного расширения кабельной бумаги.

В марке кабеля указывают число и сечение жил кабеля. Например, СБ-395 означает освинцованный двумя стальными лентами трехжильный кабель с медными жилами сечением 95 мм2 , с наружным джутовым покровом; СБГ-395 означает такой же кабель, но без наружного джутового покрова; АСБГ – освинцованный бронированный кабель с алюминиевыми жилами без наружного джутового покрова; ААБГ – кабель с алюминиевыми жилами в алюминиевой оболочке.

2. Параметры элементов электроэнергетических систем

Если провода фаз ВЛ расположены симметрично, например, в вершинах равностороннего треугольника, то э.д.с. взаимоиндукции, наводимые в каждом проводе, будут одинаковыми и, следовательно, одинаковыми будут индуктивные сопротивления всех трех фаз.

При несимметричном расположении проводов, например, в горизонтальной плоскости э.д.с. взаимоиндукции проводов крайних фаз будут отличаться от э.д.с. взаимоиндукции среднего провода. Соответственно будут отличаться и индуктивные сопротивления проводов, что при достаточно большой длине линии приведет к несимметрии напряжений фаз.

Для ВЛ напряжением 110 кВ и выше длиной более 100 км при несимметричном расположении проводов выполняется транспозиция проводов, т.е. изменение взаимного расположения проводов с целью выравнивания индуктивных сопротивлений и, следовательно, напряжений разных фаз. Изменение расположения проводов выполняется через каждую треть длины линии.

Для двухцепных ВЛ отличие индуктивного сопротивления провода фазы при учете и без учета взаимного влияния одной цепи на другую составляет 5…6% и в практических инженерных расчетах не учитывается. Ниже будем считать, что индуктивные сопротивления проводов линии при любом их расположении как в одноцепной, так и двухцепной ВЛ одинаковые.

Погонное индуктивное сопротивление, Ом/км, для проводников из немагнитного материала (алюминий, медь) определяется по выражению

хо=0,144lg(Dср/Rпр)+0,016,

(2.4)

где Dср – среднегеометрическое расстояние между проводами, м; Rпр – радиус провода, м.

Первая составляющая выражения (2.4) определяется магнитным полем вне провода и называется внешним индуктивным сопротивлением; вторая составляющая определяется магнитным полем внутри провода и называется внутренним индуктивным сопротивлением.

Среднегеометрическое расстояние между проводами фаз a, b и с при их произвольном расположении определяется как

D

= 3 D D D ,

(2.5)

ср

ab ac bc

 

где Dаb, Dас, Dbc – расстояния между соответствующими фазами. При расположении фаз в вершинах равностороннего треугольника со

стороной D и горизонтальном расположении фаз при расстоянии D между соседними фазами величина среднегеометрического расстояния соответственно составляет

Dср=D;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *