Характеристики диода: Диод — Википедия – Диоды и их разновидности

Содержание

Характеристика диодов

История возникновения диода

Возникновение диода обязано ученому из Великобритании Фредерику Гутри и немецкому физику Карлу Фердинанду Брауну. В 1873 и 1874 годах они открыли принцип работы термионных диодов и принцип работы кристаллических диодов. Позже термионными диодами стали называть специализированные вакуумные лампы. В начале 1880 года Томас Эдиссон повторно задокументировал работу термионного диода, но развитие этого радиоэлектронного компонента произошло только через 9 лет, когда немецкий ученый Карл Браун показал действие выпрямителя на кристалле. В начале 20 века Гринлиф Пикард предъявил публике первый радиоприемник, в основе которого был положены свойства диода реагировать на электромагнитные колебания. Промышленный выпуск диодов термионного типа (ламповых диодов) был налажен в Британии с разрешения Джона Флеминга в 1904 году, а через 2 года американец Пикард запатентовал первый детектор из кристаллов кремния. Современную терминологию слова «диод» (от греч. «di» — два, «odos» — путь) ввел Вильям Генри Иклс в 1919 году. В СССР главную роль в развитии полупроводниковых компонентов сыграл физик Б. М. Вул.

Первое развитие получили ламповые диоды или кенотроны (электровакуумные диоды), а так же газонаполненные диоды (газотроны, стабилитроны, игнитроны). Однако основной вклад в развитие радиоэлектронных компонентов внесли полупроводниковые диоды на основе кремния и германия.

Физические основы работы диода

Открытый в 1882 году химический элемент «германий» Клеменсом Винклером в процессе изучения в электричестве позволил выявить эффект полупроводника тока. Эксперименты физиков для получения одностороннего проводника тока привели к такому результату, что если к германию присоединить акцепторную примесь (барий, алюминий, галлий или индий), способную захватывать электроны, накопленные в германии, то в результате получится электронный элемент, способный пропускать электроны только в одну сторону (от германия к акцепторной смеси). Как мы знаем, электрон – это отрицательно заряженная частица, притягивающаяся к положительной частице, однако в электронике принято обозначение перемещения тока от плюса к минусу. Таким образом, диод представляет собой смесь германия или кремния с акцепторным материалом. Германий, за счет накопленных электронов несет в себе отрицательный N заряд (N — negative), а акцепторная смесь насыщается положительными P ионами (P — positive). Процесс протекания тока из P области в N область через место «соединения» или p-n переход и есть принцип работы диода. Его особенностью является возможность протекания тока только в одном направлении, поэтому диод является однонаправленным полупроводником. Отрицательно заряженную сторону с германием принято называть «катодом», а положительно заряженную половину «анодом». На схемах диод обозначается в виде направления протекания тока в виде стрелки к отрицательно заряженной стороне.

Когда диод не подключен к источнику питания, p-n переход находится в состоянии покоя. И в результате притягивания электронов к положительным ионам происходит их дрейф через переход. Такой процесс называется «диффузией», предусматривающий притягивание электронов через переход к «дыркам» положительных ионов. Диффузионное движение из-за постоянно меняющейся концентрации ионов и электронов происходит возле перехода постоянно.

При подключении к p-n структуре внешнего источника напряжения или напряжения смещения происходит изменение условий переноса заряда через переход. Важным фактором здесь становится полярность внешнего напряжения, подключенного к аноду и катоду диода.

Прямое подключение напряжения к p-n структуре

При прямом включении диода, когда плюс источника питания подключен к p-области, а минус к n-области происходит прямое протекание тока через переход. При этом электроны, находящиеся в n-области за счет подключенного минуса источника питания будут передвигаться ближе к переходу. Собственно, с положительно заряженными частицами в p-области будет происходить то же эффект. В результате p-n переход будет заполняться электронами в «дырках» (положительных ионах). Возникнет электрическое поле, которое позволит свободным электронам преодолеть сопротивление перехода, пройти барьерную зону и p-область к положительному контакту источника питания. В данной цепи возникнет электрический ток, который называют прямым током смещения перехода. Величина этого тока будет ограничена техническими характеристиками диода.

Момент, когда создается электрическое поле в p-n переходе на положительной ветви Вольт — Амперной Характеристики диода (ВАХ) отмечен некоторым напряжением ∆Ua. Это напряжение определено не только силой тока, но и сопротивлением самого p-n перехода. Чем ниже это сопротивление, тем меньше необходимо энергии для того, чтобы открыть переход, а так же его закрыть. Отступив от темы статьи, стоит сказать, что энергия в переходе при исчезновении питания моментально не пропадает. Происходит эффект рассасывания заряда, обусловленный емкостью перехода. Чем ниже эта емкость, тем быстрее диод перейдет в «выключенное» состояние с успокоением всех переходных процессов в p-n переходе. Этот параметр очень важен в частотных диодах, о которых мы расскажем ниже. В современных диодах значения напряжения ∆Ua варьируется от 0,3 до 1,2 вольта (кремний 0,8 – 1,2В., германий 0,3 – 0,6В.) в зависимости от мощности диода. Так же его называют падением напряжения p-n перехода.

Обратное подключение напряжения к p-n структуре

При подключении к диоду питания в обратном направлении происходит увеличение сопротивление p-n перехода и барьер возрастает, вследствие того, что электронам в n-области и свободным ионам в p-области легче соединиться с зарядом источника питания. При увеличении напряжения питания происходит лавинообразный отток заряженных частиц от перехода. В результате диод переходит в закрытое состояние из-за обратного напряжения.

На обратной ветви ВАХ участок 0 – 1 обусловлен небольшим обратным напряжением. При этом увеличение обратного тока наблюдается за счет уменьшения диффузионной составляющей. Другими словами в p и n областях присутствуют неосновные носители. Даже когда диод закрыт, через барьер при малом напряжении они могут протекать из одной области в другую. Значение этого тока несоизмеримо мало по сравнению с прямым током, поскольку количество неосновных носителей в разных областях p и n минимально. Начиная с точки 1 основные носители уже не способны преодолеть барьер, а диффузионные неосновные носители полностью рассасываются в свои области переходов. Этим объясняется отсутствие роста тока при увеличении обратного напряжения. Поскольку концентрация неосновных носителей заряда зависит от температуры сплава (иначе «кристалла»), то обратный ток будет увеличиваться в зависимости от увеличения температуры кристалла. Именно поэтому его называют тепловым. Это лавинообразный процесс и он подчиняется экспотенциальному закону. Именно из-за обратных токов диоды начинают греться и их устанавливают на теплоотводы. Если значение обратного тока будет выше предусмотренного диодом, то начнется неконтролируемый процесс так называемого теплового пробоя, после которого следует электрический пробой, приводящий диод в негодность. Стабильная работа кремниевых диодов возможна при температуре 130 – 135 градусов. Разрушение кристалла германиевых диодов происходит при температуре 50 – 60 градусов.

Полная вольт – амперная характеристика диода

Вольт – амперная характеристика отображает зависимость протекающего через диод тока от величины приложенного прямого и обратного напряжения. Чем круче и ближе к оси Y прямая ветвь и ближе к оси X его обратная ветвь, тем лучше выпрямительные свойства диода. При несоизмеримо большом обратном напряжении у диода наступает электрический пробой. При этом резко возрастает обратный ток. Нормальная работа диода возможна в том случае, если приложенное к нему обратное напряжение не превышает максимально допустимое, называемое пробивным напряжением. Как мы уже писали, токи диодов зависят от температуры кристалла. На каждый градус падение напряжения на p-n переходе изменяется на 2мВ. Если температура кристалла растет вверх, то обратный ток германиевых диодов увеличивается в 2 раза, у кремниевых диодов обратный ток растет в 2,5 раза на каждые 10 градусов. При этом пробивное напряжение при увеличении температуры понижается.

(adsbygoogle = window.adsbygoogle || []).push({});

Конструктивное исполнение диодов

По технологическому исполнению диоды могут быть плоскостные и точечные. P-n переход плоскостных диодов (на рисунке б – плоскостной сплавной диод) выполняется на границе двух слоев в полупроводнике. Слои имеют электропроводимость разных типов. За счет большей площади перехода плоскостные диоды могут пропускать большие токи через себя. Их недостатком является большая переходная емкость , что ограничивает применение плоскостных диодов в высокочастотной технике. Однако, есть гибридные диоды, сочетающие в себе и малую емкость, и малое переходное сопротивление, и возможность пропускать большие токи. Примером может быть отечественный диод КД213.

У точечных диодов p-n переход изготовляется в месте контакта полупроводниковой пластины с острием металлической иглы. Современные диоды производят с применением германия, кремния, фосфида и арсенида галлия.

Типы и характеристика диодов

Выпрямительные диоды

Выпрямительные диоды используются для выпрямления переменных токов на частотах, как правило, ниже 50 кГц. Конструктивное исполнение таких диодов преимущественно плоскостное. За счет этого диоды позволяют проводить через себя большие выпрямленные токи. Большей частью материалом изготовления выпрямительных диодов является кремний за счет устойчивости к температурным изменениям. Основными параметрами, определяющими характеристику диода, являются:

Uпр. – постоянное прямое напряжение на диоде при заданном постоянном прямом токе.

Uобр. – постоянное напряжение, приложенное к диоду в обратном направлении.

Iпр. – постоянный ток, протекающий через диод при подключении в прямом направлении.

Iобр. – постоянный ток, протекающий через диод, включенный в обратном направлении.

Iпр.ср. – прямой ток, усредненный за период.

Iобр.ср. – обратный ток, усредненный за период.

Rдиф. – отношение приращения напряжения на диоде к вызвавшему его малому приращению тока.

Кроме того, всех типов существуют ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДИОДОВ, определяющие их максимальные технические возможности, к которым относятся:

Uобр.max – максимальное напряжение, приложенное при обратном включении диода.

Iпр.max – максимально допустимый постоянный прямой ток (один из важнейших параметров).

Iпр.ср.max – максимально допустимый средний прямой ток.

Iвп.ср.max – максимально допустимый средний выпрямленный ток.

К дополнительным параметрам относится интервал рабочих температур.

Выпрямительные диоды широко применены в электронной схемотехнике. На их основе нередко можно встретить диодные мосты для изменения формы тока из переменного в постоянный.

Современное развитие электроники невозможно без применения высокочастотных диодов.

Высокочастотные диоды

Данные диоды используются в широком диапазоне частот вплоть до нескольких сотен мегагерц и выше. Чаще всего их применяют для модуляции и детектирования, а так же в высокочастотных радиоцепях. В качестве высокочастотных диодов используются элементы, выполненные в точечном исполнении из-за малой емкости перехода.

Для таких диодов дополнительно важны две характеристики, это максимальная рабочая частота в МГц и емкость диода в пФ.

Импульсные диоды

Импульсные диоды предназначены для преобразования импульсных сигналов. В силовой схемотехнике мощные импульсные диоды могут работать в качестве выпрямителей. Примером может служить импульсный блок питания, где они используются во вторичной цепи после импульсного трансформатора. Так же импульсные диоды применяют в телевизионной технике (детекторах видеосигналов), в ключевых и логических устройствах. Различают двух и трех электродные импульсные диоды (спаренные). Трех электродные диоды могут быть с общим анодом или с общим катодом. Для импульсных диодов свойственны следующие дополнительные характеристики:

Uпр.и – пиковое прямое напряжение при заданном импульсе тока.

Uобр.и – соответственно, обратное напряжение в пике как однократное, так и периодически повторяющееся.

Сд – общая емкость диода при заданных напряжениях и частоте. Большой параметр Сд снижает частотные свойства диода. Так же от значения Сд напрямую зависит следующий параметр.

τ вос – время восстановления с момента окончания импульса тока в состояние заданного обратного запирающего напряжения (окончание переходных процессов рассасывания заряда в p-n переходе)

Qпк – часть накопленного заряда, вытекающего во внешнюю цепь при реверсивном изменении тока с прямого значения на обратное.

Одним из основных параметров диодов Шотки является

Iпр.и max – максимально допустимый ИМПУЛЬСНЫЙ прямой ток.

Стабилитроны и стабисторы

Данный тип диодов необходим в цепях стабилизации напряжения при изменении проходящего через диод тока. Его основными характеристиками является:

Uст — напряжение стабилизации.

Iст. max и Iст. min – максимальный и минимальный ток стабилизации.

Pmax – максимально допустимая рассеиваемая мощность.

Для стабилитронов рабочим является пробойный участок ВАХ. На рисунке он отмечен расстоянием между точками Iст.min и Iст.max. На этом участке напряжение на стабилитроне остается постоянным при существенном изменении значения тока. Для стабисторов рабочим является прямой участок ВАХ. Так же существуют двуханодные стабилитроны, включающие в себя два встречно включенных p-n перехода. Каждый из этих переходов является основным при изменении полярности его подключения.

Варикап

Специальный полупроводниковый диод. Его емкость p-n перехода изменяется в значительных пределах в зависимости от приложенного к нему обратного напряжения. В случае увеличения обратного напряжения, емкость перехода уменьшается и наоборот. Варикапы активно применяются в гетеродинах (радиоблоках, где необходима регулировка частоты). К примеру, варикап довольно часто можно встретить в FM – радиоприемниках. К основным характеристикам варикапа относятся:

Сн – измеренная емкость при заданном напряжении.

Кс – соотношение емкостей при минимальном и максимально допустимом напряжении.

Iобр – максимальный ток, протекающий через варикап в обратном напрявлении. (ток утечки).

Туннельный диод

Туннельный диод используется в высокочастотных усилителях и генераторах электрических колебаний (например телевизионных усилителях). Кроме того его применяют в различных импульсных устройствах. Его особенностью является участок А-В с отрицательным дифференциальным сопротивлением, определяющим отношение между изменением напряжения к приращению тока. К его дополнительным параметрам относятся:

Iп – прямой ток в точке максимума ВАХ, при котором приращение тока к напряжению равняется 0.

Lд – индуктивность диода, препятствующая прохождению высокочастотного сигнала.

Кш – шумовая составляющая диода.

Rп – сопротивление потерь туннельного диода.

Диод Шоттки

Популярный диод в радиотехнике за счет малого шума и высокого быстродействия. Его относят к подвиду импульсных диодов. Технологически диод Шоттки выполняется из структуры металл-полупроводник. Применение диодов с барьером Шоттки самое разнообразное, от ATX блоков питания ПК, до СВЧ устройств. Переход диода Шоттки выполнен по принципу p-i-n, где в качестве i выступает высокоомный слаболегированный полупроводник. Под действием напряжения изменяются его частотные характеристики, что позволяет использовать диод в схемах управления сигналами, например аттеньюаторах, ограничителях уровня, модуляторах. Мощные диоды Шоттки могут использоваться в качестве выпрямительных радиоэлементов частотных блоков питания.

Светодиод

Специальный тип диода, который может создавать некогенерентное излучение (испускание видимых фотонов света атомами p-n перехода). В зависимости от количества легирующего материала изменяют длину спектра. За счет этого светодиоды могут изготавливать разных цветов. Применение светодиода самое широкое: от сигнальных цепей оповещения, до бытового освещения. Кроме того, при использовании специальных материалов изготовления светодиод может излучать в инфракрасном спетре. Это свойство нашло ему применение в пультах дистанционного управления и других электронных устройствах. Современные светодиоды выполняются на большие мощности (до 10Вт.) p-n переход очень чувствителен к токовым изменениям, поэтому для его использования необходим специализированный драйвер, представляющий собой стабилизатор / регулятор тока.

Фотодиод

Часто применяется для приема инфракрасного светового спектра, а так же в цепях гальванической развязки. Кроме того, первые солнечные батареи использовали именно фотодиод. Совместно с излучающими диодами или транзисторами может организовывать единое устройство, называемое оптопарой. Работа фотодиода основана на фотогальваническом эффекте, при котором за счет разделения электронов и дырок в p-n переходе начинает появляться ЭДС. В зависимости от степени освещенности уровень вырабатываемой ЭДС в фотодиоде так же изменяется.

Какие характеристики диодов действительно имеют смысл?

Несмотря на свою простоту, некоторые технические характеристики современных диодов могут вызвать вопросы у неопытных разработчиков. Дело в том, что некоторые модели диодов были созданы 30 — 50 лет назад. Тогда же для них создавалась и сопутствующая документация. По этой причине в отрасли все еще используют многие устаревшие характеристики и определения, даже если речь касается новых моделей диодов. Старая документация создавалась с прицелом на оптимизацию серийного производства и минимизацию брака. В ней не учитывалась стратегия нулевых дефектов. Очевидно, что разница между этими подходами значительна.

В этой статье мы обсудим наиболее важные параметры, которые должны учитывать разработчики при выборе диодов. Мы также объясним, каким образом производители тестируют диоды и определяют их характеристики. В свою очередь, эти знания помогут разработчикам правильно оценивать характеристики, приведенные в документации.

Мы обсудим наиболее важные предельно допустимые параметры, такие как импульсный ток и напряжение пробоя, а также связанные с ними характеристики, например, I2t и ΔVf. Мы также рассмотрим максимальную температуру перехода и другие технические характеристики, которые требуются для оценки допустимого нагрева в различных приложениях, включая факторы, влияющие на тепловое сопротивление, а также уменьшение допустимого тока при разогреве (дирейтинг).

В статье будут предложены способы оценки надежности компонентов, а также будут обсуждаться другие параметры, в частности, ток утечки и значения Cpk. В настоящей статье обсуждаются только стандартные кремниевые диоды и мостовые выпрямители. Аналогичный обзор параметров для диодов Шоттки будет выполнен в следующей статье.

Предельно допустимые характеристики

На самом деле у диодов есть только две предельно допустимых характеристики: максимальный импульсный ток Ifsm и напряжение пробоя Vrrm. Превышение допустимых токов и напряжений может привести к катастрофическому отказу компонента. Существует несколько механизмов пробоя диодов. Чтобы определить конкретный механизм пробоя, используют растровые электронные микроскопы (SEM). Катастрофические отказы можно воспроизвести при испытаниях.

Уровень напряжения пробоя диодов Vrrm в обязательном порядке проверяют на производстве. Более того, такая проверка выполняется неоднократно, чтобы гарантировать нулевой уровень брака. В результате, разработчики могут не сомневаться в этом параметре и использовать его в расчетах. С другой стороны, проблемы могут возникнуть из-за превышения Vrrm. Большинство стандартных диодов имеют много различных исполнений с рабочими напряжениями от 100 В до 1000 В, однако для производства каждого из них используют один и тот же тип кристалла (или два типа кристаллов). Дело в том, что при массовом производстве неизбежны отклонения. Это и объясняет различия в значениях напряжения пробоя.

Устройства, в которых диод сталкивается с превышением рейтинга напряжения Vrrm, могут без отказов отработать в лабораторных условиях и в прототипах. Однако при крупносерийном производстве подобных изделий поставщику вряд ли удастся обеспечить нулевой уровень отказов. Как правило, диоды не предназначены для работы в режиме лавинообразного пробоя (если об этом напрямую не сказано в документации).

Превышение Vrrm не рекомендуется, так как лавинный ток обычно происходит по поверхности кристалла, а не в его объеме. Разумеется, если производитель определяет стойкость диода к лавинному пробою, то это очень хорошо и является признаком надежности компонента. Однако к этому нужно относиться очень осторожно, так как условия испытаний, используемые производителем, могут существенно отличаться от параметров конкретной схемы. Очень часто в документации приводят параметры устойчивости диодов к одиночным выбросам напряжения, в то время как для реальных схем, как правило, характерны повторяющиеся импульсы перенапряжений.

Импульсный ток Ifsm не тестируется при серийном производстве, но гарантируется конструкцией самого диода. Длительность импульсов тока в большинстве AC/DC-преобразователей не превышает 1,5 мс. Переходное тепловое сопротивление является ключевым параметром, который определяет надежность работы диода. Устойчивость диода к импульсам тока длительностью 1,5 мс определяется размером кристалла и качеством его разварки. Качество разварки в свою очередь очень сильно зависит от качества паяных соединений и способности производителя минимизировать количество пустот в объеме припоя.

Обычно в документации приводят значения Ifsm для импульса 8,3 мс или синусоидальной волны 10 мс и резистивной нагрузки, что соответствует работе линейного источника питания 50/60 Гц. Очевидно, что эти условия испытаний были разработаны еще в прошлом веке и являются устаревшими, так как современные источники питания в большинстве своем оказываются импульсными и обычно работают с емкостной нагрузкой. Для них длительность пускового тока существенно меньше, чем 10 мс.

Некоторые разработчики стараются использовать значения I2t, которые обычно приводят в документации. Однако здесь также легко ошибиться. Величина прямого падения напряжения Vf не является постоянной даже для больших токов, кроме того формы сигналов различаются. По этой причине I2t позволяет выполнять только ориентировочные расчеты. Таким образом, разработчику в любом случае потребуется проверять свои расчеты на прототипах.

Большинство производителей диодов контролируют значение ΔVf в ходе заключительной программы испытании. В ходе таких испытаний измеряется прямое падение напряжения на диоде (Vf) до и после воздействия короткого импульса тока. Хорошо известно, что для диодов значение Vf имеет отрицательный температурный коэффициент. Таки образом, по изменению ΔVf можно судить о тепловом сопротивлении компонента и при необходимости отбраковывать диоды с плохим качеством разварки кристалла.

Для того чтобы свести к нулю число отказов, необходимо обратиться к производителю и обсудить с ним некоторые аспекты производственных процессов и дирейтинг тока с учетом особенностей вашего конкретного приложения.

Температура перехода

Максимально допустимая температура перехода для диода (Tj) необходима для определения рейтинга тока, а также используется при проведении испытаний надежности и при оценке долгосрочной надежности с использованием уравнения Аррениуса.

Диоды – это устройства с сильной температурной зависимостью. Наиболее важное уравнение, используемое для теплового анализа работы диода, имеет вид:

Tj = Ta + Pd*Rthj-a

где Tj – температура перехода, Ta – температура окружающей среды, Pd – рассеиваемая мощность, а Rthj-a – это теплового сопротивление переход – окружающее пространство.

Если не учитывать ток утечки и потери на переключения, то мощность, рассеиваемую на диоде, можно рассчитать как Pd = If * Vf. Так как прямое падение на диоде является величиной практически постоянной, то ограничение мощности в первую очередь определяется рейтингом тока. Очевидно, что допустимый ток зависит от температуры кристалла, а значит и от эффективности отвода тепла от кристалла. Уменьшение предельного тока при разогреве называют «дирейтингом». К сожалению, очень часто из маркетинговых соображений график дирейтинга тока, искусственно «приукрашивается». Если выбрать низкое значение Rthj-a (иногда совсем нереальное) можно сдвинуть точку излома графика в сторону более высоких температур, тем самым сделать дирейтинг тока более привлекательным. В качестве примера мы взяли график снижения тока для 1N4007 (рис. 1).

 Зависимость максимального прямого тока от температуры (дирейтинг) для кремниевого диода общего назначения 1N4007

Рис. 1. Зависимость максимального прямого тока от температуры (дирейтинг) для кремниевого диода общего назначения 1N4007

Как уже было сказано выше, точка излома этой характеристики определяется тепловым сопротивлением кристалл-окружающая среда Rthj-a. Значение Rthj-a может быть выбрано производителем произвольно и очень часто занижается из маркетинговых соображений. Очевидно, что при различных показателях Rthj-a токовая нагрузка диода может изменяться в очень широких пределах. Такой неоднозначности можно избежать, если производитель будет строить график дирейтинга тока в зависимости от температуры корпуса Tc, а не от температуры окружающей среды Ta, и при этом, укажет конкретное значение Rthj-l.

Однако, даже когда производитель указывает дирейтинг с учетом Tc, а не Ta, разработчики все равно должны быть осторожны (особенно в случае с SMD-компонентами). В большинстве устройств тепловое сопротивление состоит из двух частей: тепловое сопротивление переход-корпус (или переход-вывод) и тепловое сопротивление корпус-среда (вывод-среда). Если компонент не имеет внешнего теплоотвода, то основной вклад в общее тепловое сопротивление вносит сопротивление корпус-среда (до 75%). Очевидно, что в таких случаях дирейтинг с учетом Tc становится бессмысленным. Концепция бесконечного радиатора является чисто теоретической – она не может быть реализована на практике.

Производители могут использовать различные условия испытаний, что приводит к тому, что рейтинги тока, представленные в документации, оказываются не столь однозначными и способны вводить в заблуждение разработчиков. Другими словами указание рейтинга тока 2 А или 5 А может не имеет особого практического смысла. Более эффективным будет сравнение диодов по их Vf и по условиям испытаний. Большинство поставщиков включают типовые ВАХ в документацию. Вольт-амперные характеристики являются объективными – их нельзя подстроить по желанию маркетингового отдела. Они позволяют объективно сравнивать диоды.

Максимальная температура перехода также играет очень важную роль с точки зрения надежности. Обратите внимание, что производители диодов могут сами выбирать, как определять максимальную температуру кристалла и как проводить тестирование надежности. Но если компонент сертифицируется согласно требованиям AEC Q101, то условия испытаний становятся четко определенными. Высокотемпературное тестирование с обратным смещением (High-temperature reverse-bias, HTRB) особенно важно для определения надежности. Компоненты, соответствующие требованиям AEC Q101, в обязательном порядке проходят испытания для определения Tj и пробивного напряжения (DC/RMS). Если диод не сертифицирован согласно AEC Q101, то разработчику следует ознакомиться, каким образом производитель выполняет тест HTRB.

Важно понимать, что в документации приводится максимальная температура, однако использование компонента при более низкой температуре позволит снизить количество отказов. Чтобы объяснить эту закономерность, следует изучить факторы ускорения химической реакции в уравнении Аррениуса. Если вы разрабатываете электронику для автомобильной техники с номинальным бортовым напряжением 12 В, то вашими основными инструментами для оценки долгосрочной надежности и вероятности отказов станут модель Коффина-Менсона и испытания с термоциклированием. Однако в случае неавтомобильных приложений, таких как AC/DC- и DC/DC-преобразователи, следует использовать уравнение Аррениуса.

Производители обычно предоставляют значение интенсивности отказов FIT (failures in time) для температуры 55 °C с определенным уровнем достоверности, например, 60% или 90%. Значение FIT определяется как отношение количества отказов на один миллиард устройство-часов. Если разработчик учтет коэффициент ускорения AF, то он сможет определить, каким будет FIT в его устройстве. Коэффициент AF высчитывается для заданной температуры Tj, после чего умножается на значение FIT при 55 °C. В таблице 1 приведены коэффициенты ускорения, рассчитанные с энергией активации 0,7 эВ, которая является стандартной для кремниевых диодов.

Таблица 1. Коэффициенты ускорений для различных температур перехода

Tj  (°C)

AF

55

1

100

19

110

34

120

58

130

97

140

158

149

240

150

251

151

263

Во многих компаниях существует правило, согласно которому допустимый перегрев корпусов компонентов не должен превышать 90 °C. Для диодов это обычно соответствует температуре кристалла Tj от 100 °C до 110 °C. Это очень хорошее правило. Мы также включили в таблицу значения AF для 149 °C и 151 °C, чтобы подчеркнуть, что для диодов с максимальной температурой кристалла Tj 150 °C разница в частоте отказов между 149 °C и 151 C не так велика. Однако и в том, и в другом случае уровень отказов оказывается очень высоким.

Другие параметры

Для многих стандартных диодов в документации указывают предельные значения токов утечки (Ir): 1 мкА или 5 мкА. Такие значения были вполне адекватными 30…50 лет назад, однако за эти годы было сделано много технологических улучшений. Сегодня кривая распределения токов утечки ограничивается сотнями нА, в зависимости от размера кристалла. Таким образом, указанные предельные значения 5 мкА или даже 1 мкА не имеют смысла.

В документации обычно указываются значения Cpk (индекса возможностей процесса) от 20 и более. Значение Cpk не характеризует уровень погрешности ppm, но указывает на ошибку указанных значений. На самом деле диоды, для которых ток утечки располагается между нормальным распределением и предельными значениями (от 1 до 5 мкА), являются наиболее вероятными причинами сбоев в работе. Они имеют механические повреждения, проблемы с пассивацией или другие дефекты. Вместо того чтобы полагаться на значения, приведенные в документации, разработчик, стремящийся приблизить количество отказов к нулю, должен спросить у производителя, выполняет ли он PAT-тестирование (part average tested) для своих компонентов (рис. 2).

PAT-тестирование предназначено для обнаружения явных отклонений

Рис. 2. PAT-тестирование предназначено для обнаружения явных отклонений

PAT-тестирование оказывается гораздо полезнее, чем табличные предельные значения, и связывает спецификацию теста с нормальным распределением (методология 6 сигм). Это гарантирует, что компоненты с низкой надежностью будут обнаружены. Если диод должен иметь напряжение пробоя 1000 В, но не соответствует этой спецификации, то его либо отбраковывают, либо понижают рейтинг напряжения и продают как 100 В диод. Но первоначальный провал теста показывает, что у компонента есть дефект, и его надежность будет ниже.

Заключение

Диоды производятся миллиардами штук ежегодно. Во время работы им приходится сталкиваться с различными негативными факторами, например бросками напряжения или перегревом. Обычно при исследовании температурного профиля печатной платы оказывается, что именно диоды являются самыми горячими компонентами. В результате риск отказа диодов может быть выше, чем для других компонентов.

Однако, следуя основным правилам и имея представление о процессе производства и программе испытаний, можно минимизировать риск отказа диода при работе в составе реальных устройств.

Источник: http://www.how2power.com

Технические характеристики диодов

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 3 – Полупроводниковые приборы

Добавлено 4 февраля 2017 в 22:50

Сохранить или поделиться

В дополнение к прямому падению напряжения и максимальному обратному напряжению есть много других технических параметров диодов, важных при разработке схем и выборе компонентов. Производители полупроводниковых приборов предоставляют подробные спецификации своих продуктов (в том числе, и диодов) в публикациях, известных как технические описания (datasheets, «даташиты»). Технические описания для широкого спектра полупроводниковых приборов могут быть найдены в справочниках и интернете. В качестве источника спецификаций компонентов я предпочитаю интернет, так как данные, полученные от производителей, более актуальны.

Типовые технические описания диодов содержат данные для следующих параметров:

Максимальное повторяющееся (импульсное) обратное напряжение (Uобр.и.п.макс, VRRM)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения при повторяющихся импульсах. В идеале, эта величина была бы бесконечной.
Максимальное постоянное обратное напряжение (Uобр.макс, VR, VDC)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения на постоянной основе. В идеале, эта величина была бы бесконечной.
Максимальное прямое напряжение (Uпр, VF)
Обычно указывается при номинальном прямом токе диода. В идеале эта величина была бы равна нулю: диод не оказывает никакого сопротивления прямому току. В реальности прямое напряжение описывается уравнением Шокли для диода.
Максимальный (средний) прямой ток (Iпр.ср.макс, IF(AV))
Максимальная средняя величина тока, которую ток может проводить в режиме прямого смещения. Является принципиальным тепловым ограничением: насколько может нагреться PN переход, учитывая что рассеиваемая мощность равна току (I), умноженному на напряжение (U), а прямое напряжение зависит и от тока, и от температуры перехода. В идеале, эта величина была бы бесконечной
Максимальный (пиковый или импульсный) прямой ток (Iпр.и.макс, IFSM, if(surge))
Максимальная пиковая величина тока, которую диод может проводить в режиме прямого смещения. Опять же, этот параметр ограничивается рассеиваемой мощностью диода и, как правило, намного выше максимального среднего тока из-за тепловой инерции (дело в том, что диоду необходимо определенное количество времени, чтобы достигнуть максимальной температуры при заданном токе). В идеале, эта величина была бы бесконечной.
Максимальная общая рассеиваемая мощность(Pд, PD)
Величина мощности (в ваттах), допустимая для рассеивания диодом, учитывая рассеивание P = IU (ток через диод, умноженный на падение напряжения на диоде) и рассеивание P = I2R (ток в квадрате, умноженный на сопротивление). Фундаментально ограничивается тепловой емкостью диода (способностью выдерживать высокие температуры).
Рабочая температура перехода (Tп.макс, TJ)
Максимальная допустимая температура для PN-перехода диода, как правило, дается в градусах Цельсия (°C). Тепло является «ахиллесовой пятой» полупроводниковых приборов: они должны оставаться холодными как для правильного функционирования, так и для более долгого срока службы.
Диапазон температур хранения
Диапазон температур, допустимых для хранения диода (без подачи питания). Иногда дается в сочетании с рабочей температурой перехода (Tп.макс, TJ), так как значения максимальной температуры хранения и максимальной рабочей температуры часто одинаковы. Хотя, на самом деле, значение максимальной температуры хранения будет больше значения максимальной рабочей температуры.
Тепловое сопротивление (RT, R(Θ)), тепловое сопротивление для разности температур перехода и окружающего воздуха (RTпер–окр, RΘJA), тепловое сопротивление для разности температур перехода и выводов/корпуса (RTпер–кор, RΘJL) при определенной рассеиваемой мощности
Выражаются в единицах градусов Цельсия на ватт (°C/Вт). В идеале, этот показатель был бы равен нулю, что означало бы, что корпус диода был идеальным теплопроводником и радиатором, способным передать всю тепловую энергию от перехода в окружающий воздух (или к выводам) без разницы температур по всей толщине корпуса диода. Высокое тепловое сопротивление означает, что диод будет наращивать чрезмерную температуру в переходе (в своем самом критически важном месте), несмотря на все усилия по охлаждению с внешней стороны диода, и, таким образом, будет ограничиваться максимальная рассеиваемая мощность.
Максимальный обратный ток (Iобр.макс, IR)
Величина тока через диод в режиме обратного смещения с приложенным максимальным обратным напряжением (Uобр.макс, VR, VDC). Иногда называется током утечки. В идеале, этот показатель был бы равен нулю, так как идеальный диод при обратном смещении будет блокировать весь ток. В реальности, он очень мал по сравнению с максимальным прямым током.
Типовая емкость перехода (Cпер, CJ)
Типовая величина емкости, свойственной переходу из-за обедненной области, действующей как диэлектрик, разделяющий соединения анода и катода. Как правило, она очень мала и измеряется в диапазоне пикофарад (пФ).
Время восстановления (tвос.обр trr)
Количество времени, необходимое диоду «выключиться», когда напряжение на нем меняет полярность с прямого смещения на обратное. В идеале, этот показатель был бы равен нулю: диод останавливает проводимость сразу после изменения полярности. Для типовых выпрямительных диодов время восстановления находится в диапазоне десятков микросекунд; для «быстрых коммутирующих» диодов оно может составлять всего несколько наносекунд.

Большинство из этих параметров зависит от температуры и других условий эксплуатации, и поэтому одно значение не в полной мере описывает любой из этих показателей. Поэтому производители предоставляют графики показателей компонентов в зависимости от других переменных (например, температура), благодаря чему разработчик схем имеет лучшее представление о том, на что способно устройство.

Оригинал статьи:

Теги

Время восстановленияДиодЕмкость переходаОбратное напряжениеОбратный токОбучениеПрямое напряжениеПрямой токРассеиваемая мощностьТемпература переходаТепловое сопротивлениеТермическое сопротивлениеЭлектроника

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.


Виды диодов, характеристики, применение

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

виды диодов

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

триод и диод

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

ламповые диоды

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

характеристики полупроводниковых диодов

Светодиод

Особенность данного типа диодов заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

диод переменного тока

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

диоды цена

Диоды и триоды (транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

Плюсы:

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Немного интересных сведений о диодах

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

сопротивление диода

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

Основные характеристики и параметры диодов

  1. Полупроводниковые диоды, их параметры и характеристики. Область применения диодов.

Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

  • Вольт-амперная характеристика

  • Максимально допустимое постоянное обратное напряжение

  • Максимально допустимое импульсное обратное напряжение

  • Максимально допустимый постоянный прямой ток

  • Максимально допустимый импульсный прямой ток

  • Номинальный постоянный прямой ток

  • Прямое постоянное напряжение на диоде при номинальном токе (т. н. «падение напряжения»)

  • Постоянный обратный ток, указывается при максимально допустимом обратном напряжении

  • Диапазон рабочих частот

  • Ёмкость

  • Пробивное напряжение (для защитных диодов и стабилитронов)

  • Тепловое сопротивление корпуса при различных вариантах монтажа

  • Максимально допустимая мощность рассеивания

Вольт-ампе́рная характери́стика (ВАХ) — зависимость тока через двухполюсник от напряжения на этом двухполюснике. Описывает поведение двухполюсника на постоянном токе. А также функция выражающая (описывающая) эту зависимость. А также — график этой функции. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности ), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трёхполюсных элементо в (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.

Диодные выпрямители

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

  1. Тиристоры, их параметры и характеристики. Область применения.

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

Фотодиод — Википедия

Материал из Википедии — свободной энциклопедии

ФД-10-100 (активная площадь — 10×10 мм²). ФД1604 (активная площадь ячейки 1,2×4 мм² — 16 шт). Обозначение на схемах. Типовая спектральная чувствительность кремниевого фотодиода.

Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n-области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p и n находится слой нелегированного полупроводника i. p-n- и p-i-n-фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.

Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.

Принцип работы:

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n

Фотодиод может работать в двух режимах:

  • фотогальванический — без внешнего напряжения
  • фотодиодный — с внешним обратным напряжением

Особенности:

  • простота технологии изготовления и структуры
  • сочетание высокой фоточувствительности и быстродействия
  • малое сопротивление базы
  • малая инерционность

Параметры и характеристики фотодиодов[править | править код]

Параметры:

  • чувствительность
    отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему.
    Si,Φv=IΦΦv{\displaystyle S_{i,{\Phi _{v}}}={\frac {I_{\Phi }}{\Phi _{v}}}}; Si,Ev=IΦEv{\displaystyle S_{i,{E_{v}}}={\frac {I_{\Phi }}{E_{v}}}} — токовая чувствительность по световому потоку
    Su,Φe=UΦΦe{\displaystyle S_{u,{\Phi _{e}}}={\frac {U_{\Phi }}{\Phi _{e}}}}; Si,Ee=UΦEe{\displaystyle S_{i,{E_{e}}}={\frac {U_{\Phi }}{E_{e}}}} — вольтаическая чувствительность по энергетическому потоку
  • шумы
    помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

Характеристики:

  • вольт-амперная характеристика (ВАХ)
    зависимость выходного напряжения от входного тока. UΦ=f(IΦ){\displaystyle U_{\Phi }=f(I_{\Phi })}
  • спектральные характеристики
    зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
  • световые характеристики
    зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
  • постоянная времени
    это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
  • темновое сопротивление
    сопротивление фотодиода в отсутствие освещения.
  • инерционность
  • В p-i-n-структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n-переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n-фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр ≈ 0,1 В p-i-n-фотодиод имеет преимущество в быстродействии.
Достоинства:
1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области.
2) высокая чувствительность и быстродействие
3) малое рабочее напряжение Uраб
Недостатки:
сложность получения высокой чистоты i-области
  • Фотодиод Шоттки (фотодиод с барьером Шоттки)
    Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
  • Лавинный фотодиод
  • В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения:
    M=IΦIΦ0{\displaystyle M={\frac {I_{\Phi }}{I_{\Phi _{0}}}}}
    M=11−(UUpr)m{\displaystyle M={\frac {1}{1-\left({\frac {U}{U_{pr}}}\right)^{m}}}}
    Для реализации лавинного умножения необходимо выполнить два условия:
    1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны:
    qλ=3Ig2{\displaystyle q\lambda ={\frac {3I_{g}}{2}}}
    2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега:
    W>>λ{\displaystyle W>>\lambda }
    Значение коэффициентов внутреннего усиления составляет M = 10—100 в зависимости от типа фотодиодов.
  • Фотодиод с гетероструктурой
    Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *