Высокочастотные диоды: Высокочастотный диод — Википедия – Высокочастотные диоды Справочник Любительская Радиоэлектроника

Высокочастотные диоды Справочник Любительская Радиоэлектроника

Тип    диода Uоб/Uимп
   В/В
 Iпр/Iимп
  мА/мА
Uпр/Iпр
   В/мА
 Cд/Uд
 пф/В
Io(25)Ioм
 мкА/мкА
Fmax
МГц
Кор-
пус
2Д401А
2Д401Б
2Д401В
  75/
  75/
 100/
  30/90
  30/90
  30/90
 1.0/5
 1.0/5
 1.2/5
1.0/5
1.0/5
1.0/5
   5/100
   5/100
   5/100
 100
 100
 100
 23
 23
 23
ГД402А
ГД402Б
  15/
  15/
  30/100
  30/100
0.45/15
 —
0.8/5
0.5/5
 100/
 100/
    1
  1
ГД403А    5/    5/
 
       23
ГД404АР    3/   20/  0.4/10        24
КД407А
  24/24
  50/500  1.0/50 1.0/5  0.5/10     1
2ДС408А1
2ДС408Б1
2ДС408В1
2ДС408Г1
  12/12
  12/12
  12/12
  12/12
  10/100
  10/100
  10/100
  10/100
0.83/0.1
0.83/0.1
0.83/0.1
0.83/0.1
1.3/.5
1.3/.5
1.3/.5
1.3/.5
0.01/
0.01/
0.01/
 0.1/
   12
 12
 12
 12
КД409А
КД409Б
КД409В
КД409А9
КД409Б9
  24/
  40/
  24/
  40/40
  40/40
  50/500
  50/500
  50/500
 100/500
  50/500
 1.0/50
 1.0/50
 1.0/50
 1.0/50
 1.0/50
  2/15
1.5/20
  2/15
1.5/20
1.5/15
 0.5/10
 0.5/10
 0.5/10
 0.5/10
 0.5/10
 —
1000
1000
 —
1000
 30
 30
 30
 55
 55
КД410А
КД410Б
    /1000
    /600
  50/
  50/
 2.0/50
 2.0/50
  3 мА/5 мА
3 мА/5 мА
0.02
0.02
 31
 31
КД411АМ
КД411БМ
КД411ВМ
КД411ГМ
КД411ДМ
КД411ЕМ
КД411НМ
    /700
    /750
    /600
    /500
    /550
    /300
    /800
  2А/100А
  2А/100А
  2А/100А
  2А/100А
  2А/
  2А/
  2А/
 1.4/1 А
 1.4/1 А
 1.4/1 А
 2.0/1 А
 1.4/1 А
 1.4/1 А
 1.4/1 А
   300/700
 300/700
 300/700
 300/700
  10/
  10/
   1/
    5
  5
  5
  5
  5
  5
  5
КД412А
КД412Б
КД412В
КД412Г
1000/1000
 800/800
 600/600
 400/
 10А/20А
 10А/20А
 10А/20А
 10А/20А
 2.0/10 А
 2.0/10 А
 2.0/10 А
 2.0/10 А
   100/2000
 100/2000
 100/2000
 100/
    8
  8
  8
  8
КД413А
КД413Б
  24/
  24/
  20/20
  20/20
 1.0/20
 1.0/20
0.7/0
0.7/0
     13
 13
КДС414А1
КДС414Б1
КДС414В1
  20/30
  20/30
  20/30
  10/20
  10/20
  10/20
0.75/1
0.75/1
0.75/1
  3/0
  3/0
  3/0
0.01/

   
КДС415А1
КДС415Б1
КДС415В1
  20/30
  20/30
  20/30
  10/20
  10/20
  10/20
0.75/1
0.75/1
0.75/1
  3/0
  3/0
  3/0
0.01/

   
КД416А
КД416Б
 400/400
 200/200
 0.3/15 А
 0.3/15 А
   3/15А
 25/400
 25/400
 500/
 500/
    5
  5
КД417А   24/   20/    1/20 0.4/1      
2Д419А
2Д419Б
2Д419В
2Д419Г
2Д419Д
  15/
  30/
  50/
  15/
  10/
  10/
  10/
  10/
  10/
  10/
0.15/0.1
 0.4/1
 0.4/1
 0.5/1
 0.4/1
1.5/0
1.5/0
1.5/0
  2/0
1.5/0
  10/
  10/
  10/
  10/
  10/
 400
 400
 400
 400
 400
 13
 13
 13
 13
 13
2Д420А   24/35   50/500  1.0/50 1.0/0    1/     1
КД421А      5/ 0.65/1 0.4/0      56
2Д422А
2Д422Б
 1.5/
 1.5/
   5/
   5/
0.35/5
0.35/5
    70/
  70/
   
2Д423А
2Д423Б
1000/2000
 800/1600
    /400
    /400
   3/20
   3/20
  1500/
1500/
   48
 48
КД424А
КД424В
КД424Г
 250/250
 200/200
 150/150
 350/2000
 350/2000
 350/2000
 1.1/300
 1.1/300
 1.1/300
 10/0
 10/0
 10/0
 0.1/10
 0.1/10
 0.1/10
   33
 33
 33
АД425А
АД425Б
 600/600
 400/400
     2/2000
   2/2000
  2000
2000
    8
  8
КД427А
КД427Б
КД427В
КД427Г
КД427Д
    /750
    /650
    /550
    /350
    /150
1000/8000
1000/8000
1000/8000
1000/8000
1000/8000
 1.4/1000
 1.4/1000
 1.4/1000
 1.4/1000
 1.4/1000
      30
  30
  30
  30
  30
  1
  1
  1
  1
  1

VYSOKOChASTOTNYE_IMPUL_SNYE_DIODY_VARIKAPY

ВЫСОКОЧАСТОТНЫЕ, ИМПУЛЬСНЫЕ ДИОДЫ, ВАРИКАПЫ

Высокочастотные диоды

Высокочастотные диоды ‒ приборы универсального назначения. Они могут быть использованы для выпрямления, детектирования и других нелинейных преобразований электрических сигналов в диапазоне частот до 600 МГц. Высокочастотные диоды изготовля­ются, как правило, из германия или кремния и имеют точечную структуру. Конструкция точечного германиевого диода показана на рис. 6.8. Диод состоит из кристалла германия, припаянного к кристаллодержателю, контактного электрода в виде тонкой вольфрамо­вой проволочки и стеклянного баллона. Размеры кристалла состав­ляют 1х1х0,2 мм. Радиус области соприкосновения проволочки с германием обычно не превышает 5‒7 мкм.

Для получения р-п перехода диод в процессе изготовления под­вергают токовой формовке. С этой целью через него в прямом направлении пропускается кратковременный импульс тока вели­чиной до 400 мА. В результате формовки тонкий слой полупровод­ника, примыкающий к острию, приобретает дырочную проводи­мость, а на границе между этим слоем и основной массой пластин­ки возникает р-п переход. Такая конструкция диода обеспечивает небольшую величину емкости р-п перехода (не более 1 пФ), что позволяет эффективно использовать диод на высоких частотах. Однако малая площадь контакта между частями полупроводника с проводимостью типа п и р не позволяет рассеивать в области р-п перехода значительные мощности. Поэтому точечные диоды менее мощные, чем плоскостные, и не используются в выпрямите­лях, рассчитанных на большие напряжения и токи. Они приме­няются, главным образом, в схемах радиоприемной и измеритель­ной аппаратуры, работающей на высоких частотах, а также в вы­прямителях на напряжения не выше нескольких десятков вольт при токе порядка десятков миллиампер.

Включение высокочастотных точечных диодов в схему прин­ципиально не отличается от включения плоскостных выпрямитель­ных диодов. Аналогичен и принцип работы точечного диода, осно­ванный на свойстве односторонней проводимости р-п перехода.

Типичная вольтамперная характеристика точечного диода по­казана на рис. 6.9,а. Обратная ветвь характеристики точечного диода значительно отличается от соответствующей ветви характеристики плоскостного диода.

Ввиду малой площади pn перехода обратный ток диода мал, участок насыщения невелик и не так резко выражен. При увеличении обратного напряжения обратный ток возрастает почти равномерно. Влияние температуры на величину обратного тока сказывается слабее, чем в плоскостных диодах, ‒ удвоение обратного тока происходит при приращении температуры на 15‒20°С (рис. 6.9,б). Напомним (параграф 6.1), что в плоскостных р-п переходах обратный ток возрастает примерно в 2‒2,5 раза при повышении температуры на каждые 10°С.

Свойства высокочастотных диодов характеризуют параметры, аналогичные указанным в параграфе 6.1. Существенное значение для оценки свойств высокочастотных диодов имеют:

Общая емкость диода СД ‒ емкость, измеренная между выво­дами диода при заданных напряжении смещения и частоте.

Дифференциальное сопротивление rдиф ‒ отношение прираще­ния напряжения на диоде к вызвавшему его малому приращению тока.

Диапазон частотf ‒ разность предельных значений частот, при которых средний выпрямленный ток диода не менее заданной доли его значения на низшей частоте.

Высокочастотные точечные диоды могут быть использованы в схемах детектирования, в качестве ограничителей, нелинейных сопротивлений, коммутационных элементов и т. п.

В последние годы все большее применение находят диоды, осно­ванные на выпрямляющем действии контакта металл ‒ полупро­водник ‒ так называемые диоды Шоттки. В отличие от обычных точечных диодов, у которых контакт осуществляется прижимом металлической иглы, у диодов Шоттки контакт представляет собой тонкую пленку металла (золото, никель, алюминий, платина, вольфрам, молибден, ванадий и др.). Как было показано выше (параграф 3.8), приборы, использующие контакт металл ‒ полу­проводник, работают на основных носителях заряда, что позволяет существенно уменьшить их инерционность, а, следовательно, по­высить быстродействие. Время переключения диодов Шоттки из запертого состояния в открытое и наоборот определяется малой величиной барьерной емкости, которая обычно не превышает 0,01 пФ.

Основное преимущество диодов Шоттки по сравнению с диодами на р-п переходах ‒ возможность получения меньших значений прямого сопротивления контакта, так как металлический слой по этим свойствам превосходит любой, даже сильно легированный слой полупроводника.

Малое прямое сопротивление и небольшая емкость барьера Шоттки позволяет диодам работать на сверхвысоких частотах. Типичный диапазон рабочих частот составляет 5—250 ГГц, а время переключения — менее 0,1 нс. Обратные токи диодов Шоттки малы и составляют несколько микроампер. Обратные напряжения лежат в интервале 10…1000 В.

Следует отметить, что диоды Шоттки получили распространение сравнительно недавно (в начале 70-х годов), хотя их теория насчи­тывает более 50 лет. Это объясняется тем, что лишь в последние годы, благодаря совершенствованию технологии производства по­лупроводниковых приборов и интегральных микросхем, удалось получить барьеры Шоттки с характеристиками и параметрами, близкими к идеальным.

Импульсные диоды

Импульсные диоды предназначены для работы в быстродейству­ющих импульсных схемах с временем переключения 1 мкс и менее. При столь коротких рабочих импульсах приходится учитывать инерционность процессов включения и выключения диодов и при­нимать конструктивно-технологические меры, направленные на снижение барьерной емкости и сокращение времени жизни нерав­новесных носителей заряда в области р-п перехода.

По способу изготовления р-п перехода импульсные диоды подразделя­ются на точечные, сплавные, сварные и диффузионные (меза и планарные). Устройство диодов указанных групп показана на рис. 6.10.

Конструкция точечных импульсных диодов (рис. 6.10,а) практически не отличается от конструкции обычных высокочастотных диодов. В некоторых случаях для улучшения характеристик диода на острие контактной иглы наносят примесь (обычно индий или алюминий), образующую акцепторные центру в германии и кремнии n-типа. В процессе электроформовки приконтактная область полупроводника сильно нагревается и непосредственно под острием иглы образуется небольшая по размерам р-область.

В сплавных диодах (рис. 6.10, б) р−п переход получают вплавлением в кристалл полупроводника электронной проводимости кусочка сплава, содержащего атомы акцепторной примеси. Граница между исходным монокристаллом и сильно легированным р-слоем представляет собой р−п переход. Обычно такой метод используется при изготовлении кремниевых импульсных диодов. При создании аналогичных германиевых диодов вместо метода сплавления используют метод импульсной сварки (рис. 6.10, в). В этом случае к кристаллу германия подводится тонкая золотая (с присадкой галлия) игла и через полученный контакт пропускается импульс тока большой амплитуды, в результате чего конец золотой иглы сваривается с германием.

Наиболее быстродействующие импульсные диоды получают методом диффузии донорных или акцепторных примесей в твердый полупроводник.

Проникая на некоторую глубину полупроводника, диффундирующие атомы меняют тип проводимости этой части кристалла, вследствие чего возникает рп переход. После получения диффузионной структуры осуществляют химиче­ской травление поверхности полупроводника, после которого рп переход сохраняется только внутри небольшой области, которая возвышается над остальной поверхностью в виде столика (меза). Такой вид кристалла называют мезаструктурой (рис. 6.10, г). Емкость рп переходов мезадиодов ниже, а напряжение пробоя выше, чем у сплавных или сварных диодов. Время переключения мезадиодов не превышает 10 пс.

Весьма перспективными являются диоды, полученные при помощи планарно-эпитаксиальной технологии (рис. 6.10, д). При их изготовлении примесь вводится в полупроводник (обычно кремний) локально через «окна» в защитной окисной пленке SiO2. Получающиеся при этом рп переходы отличаются высокой стабильностью параметров и надежностью.

Простейшая схема включения импульсного диода приведена на рис. 6.11, а. Под воздействием входного импульса положитель­ной полярности (рис. 6.11, б) через диод протекает прямой ток, величина которого определяется амплитудой импульса, сопротив­лением нагрузки и сопротивлением открытого диода. Если на диод, через который протекает прямой ток, подать обратное на­пряжение так, чтобы его запереть, то диод запирается не мгновен­но (рис. 6.11, в).

Рис. 6.11. Схема включения (а) и осциллограммы

входного напряжения (б) и тока (в) импульсного диода

В первый момент наблюдается резкое увеличение обратного тока I1 через диод и лишь постепенно с течением времени он уменьшается и достигает установившегося значения Iобр. Ука­занное явление связано со спецификой работы рп перехода и пред­ставляет собой проявление так называемого эффекта накопления. Сущность этого эффекта состоит в следующем. Во время протека­ния прямого тока через рп переход осуществляется инжекция носителей. В результате инжекции в непосредственной близости к переходу создается концентрация неосновных неравновесных но­сителей, которая во много раз превышает концентрацию равновес­ных неосновных носителей в области рп перехода: чем больше кон­центрация неосновных носителей, тем больше обратный ток. Время жизни неравновесных носителей ограничено постепенно их кон­центрация уменьшается как за счет рекомбинации, так и за счет ухода через рп переход. Поэтому через некоторое время (τв на рис. 6.11,в) неравновесные неосновные носители исчезнут; обратный ток восстановится до нормального значения Iобр.

Основной характеристикой импульсных диодов является их переходная характеристика. Она отражает процесс восстановле­ния обратного тока и обратного сопротивления диода при воздей­ствии на него импульсного напряжения обратной полярности (см. рис. 6.11, в).

Основные параметры импульсных диодов:

Время восстановления обратного сопротивления τв интервал времени от момента прохождения тока через нуль после переключе­ния диода с заданного прямого тока в состояние заданного обрат­ного напряжения до момента достижения обратным током задан­ного низкого значения.

Заряд переключения Qпк часть накопленного заряда, выте­кающая во внешнюю цепь при изменении направления тока с пря­мого на обратное.

Общая емкость СД емкость, измеренная между выводами диода при заданных напряжении смещения и частоте.

Импульсное прямое напряжение Uпр.и пиковое значение пря­мого напряжения на диоде при заданном импульсе прямого тока.

Импульсный прямой ток Iпр.и пиковое значение импульса прямого тока при заданной длительности, скважности и форме.

Для импульсных диодов указывают также величину постоянного прямого напряжения Uпр при протекании постоянного тока Iпр и величину обратного тока Iобр при заданной величине обратного напряжения Uобр. Предельные режимы определяются величиной максимально допустимого постоянного обратного напряжения Uобр.max, максимально допустимой величиной импульсного обрат­ного напряжения Uобр.и.max, а также величинами максимально допустимого постоянного прямого тока Iпр.max и максимально до­пустимого импульсного прямого тока Iпр.и.max.

Импульсные диоды широко применяются в импульсных схемах самого различного назначения, например в логических схемах электронных цифровых вычислительных машин.

Варикапы

Варикапами называют полупроводниковые диоды, у которых используется барьерная емкость запертого р-п перехода, зависящая от величины приложенного к диоду обратного напряжения. Кон­струкция варикапа показана на рис. 6.12. В кристалл кремния 5 с одной его стороны вплавлен в вакууме алюминиевый столбик 4 для получения р-п перехода, а с другой стороны − сплав золото − сурьма для получения омического контакта 6. Эта структура вплав­ляется в вакууме в коваровый золоченый кристаллодержатель 7. К алюминиевому столбику прикреплен внутренний вывод 2. Соеди­нение кристаллодержателя с баллоном 3 и выводом 1 осуществляет­ся сплавлением в водороде.

Для использования свойств варикапа к нему необходимо под­вести обратное напряжение (рис. 6.13).

Как известно, при отсутствии внешнего напряжения между p и n− областями существуют контактная разность потенциалов (потенциальный барьер) и внутреннее электрическое поле. Если к диоду приложить обратное напряжение Uобр (рис. 6.14, а), то высота, потенциального барьера между p и n− областями возрастет на величину приложенного напряжения (рис. 6.14, б), возрастет и напряженность электрического поля в р-п переходе. Внешнее обратное напряжение отталкивает электроны глубже внутрь nоб­ласти, а дырки − внутрь р-области. В результате происходит рас­ширение области р-п перехода и тем больше, чем выше напряжение Uобр (на рис. 6.14, б и в).

Таким образом, изменение обратного напряжения, приложен­ного к р-п переходу, приводит к изменению барьерной емкости между p и n− областями. Величина барьерной емкости диода С может быть определена из формулы

где е − относительная диэлектрическая проницаемость полупроводника;

S − площадь р-п перехода; d − ширина р-п перехода.

Формула (6.3) аналогична формуле для емкости плоского кон­денсатора. Однако, несмотря на сходство этих формул, между барьерной емкостью и емкостью конденсатора имеется принци­пиальное различие. В обычном конденсаторе расстояние между его пластинами, а следовательно, и его емкость не зависят от на­пряжения, приложенного к конденсатору. Ширина же р-п пере­хода зависит от величины приложенного к нему напряжения, сле­довательно, барьерная емкость зависит от напряжения: при воз­растании запирающего напряжения ширина р-п перехода увеличи­вается, а его барьерная емкость уменьшается.

Основной характеристикой варикапа является зависимость его емкости от величины обратного напряжения (вольтфарадная ха­рактеристика). Типичная характеристика С = f (Uобр) пока­зана на рис. 6.15. В зависимости от назначения величина номиналь­ной емкости варикапов может быть в пределах от нескольких пикофарад до сотен пикофарад. Зависимость емкости варикапа от при­ложенного напряжения определяется технологией изготовления р-п перехода.

Параметры варикапов:

Номинальная емкость Сном − емкость между выводами вари­капа при номинальном напряжении смещения (обычно UCM = 4 В).

Максимальная емкость Сmax − емкость варикапа при заданном напряжении смещения.

Минимальная емкость Сmin − емкость варикапа при заданном максимальном напряжении смещения.

тельных контуров

Коэффициент перекрытия Кo − отношение максимальной емкости диода к минимальной.

Добротность Q − отношение реактивного сопротивления ва­рикапа к полному сопротивлению потерь, измеренное на номиналь­ной частоте при температуре 20OС.

Максимально допустимое напряжение Umax − максимальное мгновенное значение переменного напряжения, обеспечивающее заданную надежность при длительной работе.

Температурный коэффициент емкости (ТКЕ) − отношение от­носительного изменения емкости при заданном напряжении к вы­звавшему его абсолютному изменению температуры окружающей среды.

Максимально допустимая мощность Рmax − максимальное зна­чение мощности, рассеиваемой на варикапе, при котором обеспе­чивается заданная надежность при длительной работе.

Основное применение варикапа − электронная настройка коле­бательных контуров. На рис. 6.16, а приведена схема включения варикапа в колебательный контур. Контур образован индуктив­ностью L и емкостью варикапа СB. Разделительный конденсатор Ср служит для того, чтобы индуктивность L не закорачивала ва­рикап по постоянному току. Емкость конденсатора Ср должна быть в несколько десятков раз больше емкости варикапа.

Управляющее постоянное напряжение U подается на варикап с потенциометра R2 через высокоомный резистор R1. Перестройка контура осуществляется перемещением движка потенциомет­ра R2.

Данная схема имеет существенный недостаток − напряжение высокой частоты влияет на варикап, изменяя его емкость. Это ве­дет к расстройке контура. Включение варикапов по схеме, показан­ной на рис. 6.16, б, позволяет значительно уменьшить расстройку контура при действии переменного напряжения. Здесь варикапы включены по высокой частоте последовательно навстречу друг другу. Поэтому при любом изменении напряжения на контуре ем­кость одного варикапа увеличивается, а другого уменьшается. По постоянному напряжению варикапы включены параллельно.

9

Краткие характеристики импортных полупроводниковых диодов

Высокочастотные диоды входят в группу полупроводниковых диодов, которые предназначены для обработки ВЧ сигналов на частотах до 1000 МГц.
На таких частотах могут работать только диоды с малой ёмкостью перехода (не более 1-2 пФ). Поэтому в качестве высокочастотных в большинстве случаев используют точечные диоды. Поскольку высокочастотные диоды могут хорошо работать и на низких частотах, т.е. в широком диапазоне частот, их называют также универсальными.
Существуют 2 разновидности высокочастотных диодов:
1 – детекторные ВЧ диоды, которые выделяют НЧ сигнал из модулированного.
2 – смесительные ВЧ диоды, которые предназначены для перемножения двух ВЧ сигналов.

Условные обозначения электрических параметров высокочастотных диодов:

Uоб / Uимп — максимально допустимое постоянное (Uоб) или импульсное (Uимп) обратное напряжение на диоде.
Iпр / Iимп — максимально допустимый постоянный (Iпр) или импульсный (Iимп) прямой ток через диод.
Uпр / Iпр — максимальное падение напряжения (Uпр) на диоде при заданном прямом токе (Iпр) через него.
Cд / Uд — ёмкость диода (Cд) и напряжение на диоде (Uд), при котором она измеряется.
Io(25) / Ioм — обратный ток диода при предельном обратном напряжении. Приводится для температуры +25 (Iо(25)) и максимальной рабочей температуры (Iом).
Fmax — максимальная рабочая частота диода.

  Диод  Uоб/Uимп
   В/В
 Iпр/Iимп
  мА/мА
 Uпр/Iпр
   В/мА
 Cд/Uд
  пф/В
Io(25)/Ioм
 мкА/мкА
Fmax
 МГц
Кор-
пус
2Д401А
2Д401Б
2Д401В
  75/
  75/
 100/
  30/90
  30/90
  30/90
 1.0/5
 1.0/5
 1.2/5
1.0/5
1.0/5
1.0/5
   5/100
   5/100
   5/100
 100
 100
 100
 23
 23
 23
ГД402А
ГД402Б
  15/
  15/
  30/100
  30/100
0.45/15
 —
0.8/5
0.5/5
 100/
 100/
    1
  1
ГД403А    5/    5/          23
ГД404АР    3/   20/  0.4/10        24
КД407А   24/24   50/500  1.0/50 1.0/5  0.5/10     1
2ДС408А1
2ДС408Б1
2ДС408В1
2ДС408Г1
  12/12
  12/12
  12/12
  12/12
  10/100
  10/100
  10/100
  10/100
0.83/0.1
0.83/0.1
0.83/0.1
0.83/0.1
1.3/.5
1.3/.5
1.3/.5
1.3/.5
0.01/
0.01/
0.01/
 0.1/
   12
 12
 12
 12
КД409А
КД409Б
КД409В
КД409А9
КД409Б9
  24/
  40/
  24/
  40/40
  40/40
  50/500
  50/500
  50/500
 100/500
  50/500
 1.0/50
 1.0/50
 1.0/50
 1.0/50
 1.0/50
  2/15
1.5/20
  2/15
1.5/20
1.5/15
 0.5/10
 0.5/10
 0.5/10
 0.5/10
 0.5/10
 —
1000
1000
 —
1000
 30
 30
 30
 55
 55
КД410А
КД410Б
    /1000
    /600
  50/
  50/
 2.0/50
 2.0/50
  3 мА/5 мА
3 мА/5 мА
0.02
0.02
 31
 31
КД411АМ
КД411БМ
КД411ВМ
КД411ГМ
КД411ДМ
КД411ЕМ
КД411НМ
    /700
    /750
    /600
    /500
    /550
    /300
    /800
  2А/100А
  2А/100А
  2А/100А
  2А/100А
  2А/
  2А/
  2А/
 1.4/1 А
 1.4/1 А
 1.4/1 А
 2.0/1 А
 1.4/1 А
 1.4/1 А
 1.4/1 А
   300/700
 300/700
 300/700
 300/700
  10/
  10/
   1/
    5
  5
  5
  5
  5
  5
  5
КД412А
КД412Б
КД412В
КД412Г
1000/1000
 800/800
 600/600
 400/
 10А/20А
 10А/20А
 10А/20А
 10А/20А
 2.0/10 А
 2.0/10 А
 2.0/10 А
 2.0/10 А
   100/2000
 100/2000
 100/2000
 100/
    8
  8
  8
  8
КД413А
КД413Б
  24/
  24/
  20/20
  20/20
 1.0/20
 1.0/20
0.7/0
0.7/0
     13
 13
КДС414А1
КДС414Б1
КДС414В1
  20/30
  20/30
  20/30
  10/20
  10/20
  10/20
0.75/1
0.75/1
0.75/1
  3/0
  3/0
  3/0
0.01/

   
КДС415А1
КДС415Б1
КДС415В1
  20/30
  20/30
  20/30
  10/20
  10/20
  10/20
0.75/1
0.75/1
0.75/1
  3/0
  3/0
  3/0
0.01/

   
КД416А
КД416Б
 400/400
 200/200
 0.3/15 А
 0.3/15 А
   3/15А
 25/400
 25/400
 500/
 500/
    5
  5
КД417А   24/   20/    1/20 0.4/1      
2Д419А
2Д419Б
2Д419В
2Д419Г
2Д419Д
  15/
  30/
  50/
  15/
  10/
  10/
  10/
  10/
  10/
  10/
0.15/0.1
 0.4/1
 0.4/1
 0.5/1
 0.4/1
1.5/0
1.5/0
1.5/0
  2/0
1.5/0
  10/
  10/
  10/
  10/
  10/
 400
 400
 400
 400
 400
 13
 13
 13
 13
 13
2Д420А   24/35   50/500  1.0/50 1.0/0    1/     1
КД421А      5/ 0.65/1 0.4/0      56
2Д422А
2Д422Б
 1.5/
 1.5/
   5/
   5/
0.35/5
0.35/5
    70/
  70/
   
2Д423А
2Д423Б
1000/2000
 800/1600
    /400
    /400
   3/20
   3/20
  1500/
1500/
   48
 48
КД424А
КД424В
КД424Г
 250/250
 200/200
 150/150
 350/2000
 350/2000
 350/2000
 1.1/300
 1.1/300
 1.1/300
 10/0
 10/0
 10/0
 0.1/10
 0.1/10
 0.1/10
   33
 33
 33
АД425А
АД425Б
 600/600
 400/400
     2/2000
   2/2000
  2000
2000
    8
  8
КД427А
КД427Б
КД427В
КД427Г
КД427Д
    /750
    /650
    /550
    /350
    /150
1000/8000
1000/8000
1000/8000
1000/8000
1000/8000
 1.4/1000
 1.4/1000
 1.4/1000
 1.4/1000
 1.4/1000
      30
  30
  30
  30
  30
  1
  1
  1
  1
  1

§2. Высокочастотные диоды.

Высокочастотные диоды предназначены для работы на частотах до 1000 МГц. На таких частотах могут работать только диоды с малой емкостью перехода (не более 1-2 пФ). Поэтому в качестве высокочастотных в большинстве случаев используют точечные диоды. Поскольку высокочастотные диоды могут хорошо работать и на низких частотах, т.е. в широком диапазоне частот, их называют также универсальными.

Из-за малой площади перехода максимально допустимый Iпр.у высокочастотных диодов обычно не превышает несколько десятков мА. Максимально допустимоеUобр. также невелико – десятки В.

Т.к. высокочастотные диоды могут применятся в преобразователях частоты и в других нелинейных устройствах, важным параметром для них является дифференциальное Rпр.или сопротивление переменному току, представляющее собой отношение малого приращенияUпр.к вызванному этим приращением приростуIпр.:

rдиф.=dUпр./dIпр.≈ ΔUпр./ΔIпр

Дифференциальное сопротивление следует отличать от сопротивления диода постоянному току, которое определяется, как было отмечено ранее, отношением UкIв заданной точке характеристики:

Rстат.=Uпр./Iпр.

Из рис. 4 видно, что Rдиф.диода, определяемое наклоном касательной 1 в данной точке А характеристики, всегда меньше сопротивления постоянному току, определяемого наклоном прямой 2, проходящей через начало координат и эту же точку:

Rдиф.<Rст.

Rдиф.точечных диодов имеет порядок единиц – десятков Ом, аRст.десятков – сотен Ом. ПосколькуR диф.диодов в сильной мере зависит отIпр., при котором оно определяется, в справочниках обычно приводят зависимостиRдиф.отIпр..

§ 3. Импульсные диоды.

Импульснымназывается диод с малой длительностью переходных процессов и предназначенный для применения в импульсных режимах работы.

Импульсные диоды работают в различных электронных схемах в качестве электронного ключа (рис. 5).

На диод, соединенный последовательно с нагрузкой, подается импульсное напряжение. При положительном импульсе диод находится под прямым напряжением, его сопротивление мало (ключ замкнут), через нагрузку протекает ток. При отрицательном импульсе к VDприложеноUобр., его сопротивление велико (ключ разомкнут), тока в нагрузке нет. Длительность импульсов может быть очень мала. Тогда для нормальной работы схемы, диод должен очень быстро переходить из одного состояния в другое. Однако это затруднено инерционностью диода, т.к. при смене полярности, с прямой на обратную, сопротивление диода не может мгновенно измениться отRпр. доRобр., требуется определенное время.

Интервал времени от момента переключения диода с прямого напряжения на обратное, в течение которого Rобр.перехода полупроводникового диода восстановится до постоянного значения, называется временем восстановления обратного сопротивления и обозначается τвосст.

На импульс Iобр.оказывает также влияние емкость диода Сд. При переходе наUобр.эта емкость заряжается и ток заряда повышает импульсIобр.. Понижение τвосст. в импульсных диодах достигается в основном путем ускорения процесса рекомбинации в базе (примесьAuв базе), а также понижением емкости диода (применение микросплавных переходов). Значительное понижение τвосст.дает использование диода с контактом металл — полупроводник (диоды Шотки). Эти диоды работают без инжекции не основных носителей в базу, а значит, у них нет накопления и рассасывания этих носителей в базе. Инерционность диодов Шотки обусловлена лишь их емкостью.

Высокочастотный диод — Карта знаний

  • Высокочасто́тный дио́д — полупроводниковый диод с p-n переходом, имеющий малую собственную конструктивную и барьерную ёмкости и малое время восстановления обратного сопротивления.

    Применяется в схемах смесителей и для выпрямления (детектирования) высокочастотных сигналов. Условно к высокочастотным диодам относят диоды предназначенные для работы на частотах до 600 МГц. сверхвысокочастотные диоды (СВЧ диоды) — до нескольких десятков ГГц.

    При изготовлении высокочастотных диодов принимают меры для снижения ёмкостей и снижения времени обратного восстановления, для чего уменьшают площадь перехода, например, это достигается в точечных диодах и легируют кремний золотом, поэтому такие диоды имеют невысокие предельно-допустимые параметры по прямому току и обратному напряжению — до десятков миллиампер и десятков вольт.

    Основные существенные для применения параметры высокочастотных диодов это его ёмкость и предельная частота, на которой диод сохраняет свои выпрямительные свойства. Также в спецификациях на такие диоды часто указывают время обратного восстановления при заданном прямом токе или заряд восстановления — заряд неосновных носителей накопленный в базе диода при прохождении прямого тока.

Источник: Википедия

Связанные понятия

И́мпульсный дио́д — диод, предназначенный для работы в высокочастотных импульсных схемах. Дио́д (от др.-греч. δις — два и -од — от окончания -од термина электрод; букв. «двухэлектродный»; корень -од происходит от др.-греч. ὁδός «путь») — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. Обращённый дио́д — полупроводниковый диод, вольт-амперная характеристика которого обусловлена туннельным эффектом в области p-n-перехода. Драйвер лазерного диода в самом простом варианте представляет собой источник постоянного тока, который является током инжекции лазерного диода. Так как для полупроводниковых излучателей выходная оптическая мощность прямо пропорциональна току, то в итоге установка рабочей точки для источника тока определяет оптический сигнал. В отличие от источника напряжения, который иногда используется для управления диодами, источник тока позволяет линейно управлять оптической мощностью (после преодоления порога… Диод Шоттки — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки. Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора. Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью…

Подробнее: Стабилитрон

Дио́д Га́нна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, в полупроводниковой структуре не имеет p-n-переходов и используется для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц. Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния… Варика́п (акроним от англ. vari(able) — «переменный», и cap(acitance) — « ёмкость») — электронный прибор, полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Одноперехо́дный транзи́стор (двухбазовый диод, ОПТ) — полупроводниковый прибор с тремя электродами и одним p-n переходом. Однопереходный транзистор принадлежит к семейству полупроводниковых приборов с вольт-амперной характеристикой, имеющей участок с отрицательным дифференциальным сопротивлением. Умножи́тель напряже́ния ба́за-эми́ттер (умножитель Vбэ) — двухвыводной электронный источник опорного напряжения, пропорционального напряжению на прямо смещённом эмиттерном переходе биполярного транзистора (Vбэ). Простейший умножитель Vбэ состоит из резистивного делителя напряжения, задающего коэффициент умножения, и управляемого им биполярного транзистора. При подключении умножителя Vбэ к источнику тока падение напряжения на умножителе, как и само Vбэ, комплементарно абсолютной температуре: с ростом… Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др. Пенто́д (от др.-греч. πέντε пять, по числу электродов) — вакуумная электронная лампа с экранирующей сеткой, в которой между экранирующей сеткой и анодом размещена третья (защитная или антидинатронная) сетка, подавляющая динатронный эффект. Как правило, в лампах прямого накала третья сетка соединяется со средней точкой катода, в лампах косвенного накала — с любой точкой катода. В большинстве пентодов третья сетка и катод соединены внутри баллона, поэтому у них всего четыре сигнальных вывода. В исторической… Мультивибратор Ройера или генератор Ройера (Встречается написание Роера), как правило транзисторный релаксационный генератор колебаний с формой импульсов близкой к прямоугольной, использующий трансформатор или индуктивность с насыщающимся сердечником. Схема изобретена в 1954 году Джоржем Роером (George H. Royer). Запатентована в 1957 году (US2783384). Умножи́тель напряже́ния (или каска́дный генера́тор) — устройство для преобразования низкого переменного(пульсирующего) напряжения в высоковольтное постоянное напряжение. В отдельных каскадах переменное напряжение выпрямляется, а выпрямленные напряжения включаются последовательно и суммируются. Связь каскадов с источниками питания осуществляется через ёмкости или посредством взаимной индукции. Питание каскадов может быть как последовательным, так и параллельным. Генера́тор Ко́крофта — Уо́лтона — один из типов умножителя напряжения, устройство для преобразования относительно низкого переменного напряжения или пульсирующего напряжения в высоковольтное постоянное напряжение. МОП-структура — полупроводниковая структура, применяемая при производстве микросхем и дискретных полевых транзисторов. Полупроводниковые приборы на основе этой структуры называют МОП-транзисторами (от слов «металл-оксид-полупроводник», англ. metal-oxide-semiconductor field effect transistor, сокращенно «MOSFET»), МДП-транзисторами (от слов «металл-диэлектрик-полупроводник») или транзисторами с изолированным затвором (так как у таких транзисторов затвор отделён от канала тонким слоем диэлектрика).В… Тетро́д — электронная лампа, имеющая четыре электрода: термоэлектронный катод (прямого или косвенного накала), две сетки (управляющую и экранирующую) и анод. Изобретён Вальтером Шоттки в 1919 году. Приёмо-усилительные тетроды применялись в радиоприёмных трактах до массового распространения пентодов. Генераторные и модуляторные тетроды применяются по сей день в силовых каскадах радиопередатчиков. Лучевые тетроды нашли применение в выходных каскадах усилителей низкой частоты (УНЧ) и до сих пор широко… Вторичный источник электропитания — устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи… Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения. Дио́дный мо́ст — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный). Такое выпрямление называется двухполупериодным. Сетевой фильтр — варисторный фильтр для подавления импульсных помех и LC-фильтр (индуктивно-емкостной) для подавления высокочастотных помех. Так же часто называют содержащий такой компонент электрический удлинитель. Время восстановления обратного сопротивления базы диода — это переходный процесс, возникающий при переключении диода из проводящего состояния (прямого) в закрытое.

Подробнее: Обратное восстановление

Полево́й (униполя́рный) транзи́стор — полупроводниковый прибор, принцип действия которого основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением. Лучево́й тетро́д — четырёхэлектродная экранированная лампа, в которой для подавления динатронного эффекта создаётся пространственный заряд высокой плотности. Благодаря особой конструкции сеток и специальных лучеобразующих электродов поток электронов в лучевом тетроде формируется в узкие пучки (лучи). Высокая плотность пространственного заряда создаёт вблизи анода лампы потенциальный барьер, препятствующий оттоку вторичных электронов с анода на экранирующую сетку. Симистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако… Генера́тор Ма́ркса — генератор импульсного высокого напряжения, принцип действия которого основан на зарядке электрическим током соединённых параллельно (через резисторы) конденсаторов, соединяющихся после зарядки последовательно при помощи различных коммутирующих устройств (например, газовых разрядников или тригатронов). Таким образом выходное напряжение увеличивается пропорционально количеству соединённых конденсаторов. Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра). Драйвер полупроводникового излучателя — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является регулирование тока инжекции, а также, в некоторых случаях, температуры полупроводниковых излучателей. Кенотро́н (от др.-греч. kenos — пустой и (elec)tron) — электронная лампа, предназначенная для выпрямления переменного тока. Является разновидностью электровакуумного диода. Используется в схемах выпрямителей переменного тока высоких напряжений, ранее широко применялся в схемах выходных каскадов строчной развертки ламповых телевизоров и в рентгеновских установках. Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток. «Мальчи́ш» — радиоконструктор, разработанный и производившийся опытно-экспериментальным школьным заводом «Чайка» c 1973 по начало 1990-х годов. В комплект набора входили корпус радиоприёмника, гетинаксовая или текстолитовая плата для навесного монтажа с отверстиями для столбиков из медной проволоки, набор радиоэлементов, инструкция по сборке. И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается. Механотро́н — электровакуумный или газоразрядный прибор, в котором силой электронного или ионного тока можно управлять изменяя положение внутренних частей (электродов) механическим воздействием снаружи. Механотрон является одним из видов электронно-механических преобразователей. Предназначен для прецизионного измерения линейных перемещений, углов, сил и вибрации в контрольно-измерительных устройствах. Как правило, это разновидность диода. Управляющая сетка — один из электродов электронной лампы, обычно ближайший к катоду, чаще всего выполняется в виде спирали вокруг катода, поддерживаемой двумя параллельными опорами. Гальвани́ческая развя́зка — передача энергии или информационного сигнала между электрическими цепями, не имеющими непосредственного электрического контакта между ними. Ква́рцевый резона́тор (жарг. «кварц») — электронный прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы. Бандга́п (англ. bandgap, запрещённая зона) — стабильный транзисторный источник опорного напряжения (ИОН), величина которого определяется шириной запрещённой зоны используемого полупроводника. Для легированного монокристаллического кремния, имеющего при Т=0 К ширину запрещённой зоны Eg=1,143 эВ, напряжение VREF на выходе бандгапа обычно составляет от 1,18 до 1,25 В или кратно этой величине, а его предельное отклонение от нормы во всём диапазоне рабочих температур и токов составляет не более 3 %. Бандгапы… Вари́стор (лат. vari(able) — переменный (resi)stor — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается… Клистро́н — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ-поля. Конденса́тор (от лат. condensare — «уплотнять», «сгущать» или от лат. condensatio — «накопление») — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Лави́нный дио́д — электронный прибор, полупроводниковый диод, разновидность стабилитрона, обычно изготавливаемый из кремния, работа которого основана на обратимом лавинном пробое p-n перехода при обратном включении, то есть при подаче на слой полупроводника с p-типом проводимости (анода) отрицательного относительно n-слоя (катода) напряжения. Баре́ттер (англ. barretter, iron-hydrogen resistor) — электронный газонаполненный прибор, двухполюсник — стабилизатор тока. Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *