Выпрямительные диоды – Выпрямительные диоды. Классификация. Влияние материала, степени легирования и температуры на ВАХ выпрямительных диодов. Основные параметры. Особенности применения

параметры и схема :: SYL.ru

Выпрямительный диод — это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

выпрямительный диод

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой — выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности — от 300 mA до 10 А;
  • большой — более 10 А.

Германий или кремний

выпрямительные диоды средней мощности

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

характеристики выпрямительных диодов

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые – только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления

мощные выпрямительные диоды

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция

полупроводниковые выпрямительные диодв

Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max – прямой ток, который максимально допустим, А.
  • U обрат max – обратное напряжение, которое максимально допустимо, В.
  • I обрат – обратный ток постоянный, мкА.
  • U прям – прямое напряжение постоянное, В.
  • Рабочая частота, кГц.
  • Температура работы, С.
  • Р max – рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока

параметры выпрямительных диодов

Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост

схема выпрямительный диод

Диодный мост – это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~», указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

Выпрямительный диод — это… Что такое Выпрямительный диод?

Аналогия между работой обратного клапана и диода Эффект односторонней проводимости показан в зависимости от полярности подключения диода на схеме

Выпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.[источник не указан 406 дней]

Электрические параметры

Основные параметры выпрямительных диодов:

  • среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;
  • средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;
  • допустимое амплитудное значение обратного напряжения Uобр.макс.;
  • средний прямой ток Iпр.ср.;
  • частота без снижения режимов.

Частотный диапазон выпрямительных диодов невелик. При преобразовании промышленного переменного тока рабочая частота составляет 50 Гц, предельная частота выпрямительных диодов не превышает 20 кГц.

По максимально допустимому среднему прямому току диоды делятся на три группы: диоды малой мощности (Iпр.ср. ≤ 0,3 А), диоды средней мощности (0,3 А < Iпр.ср. < 10 А) и мощные (силовые) диоды (Iпр.ср. ≥ 10 А).

В состав параметров диодов входят диапазон температур окружающей среды (для кремниевых диодов обычно от -60 до +125 °С) и максимальная температура корпуса.

Среди выпрямительных диодов следует особо выделить диоды Шотки, создаваемые на базе контакта металл-полупроводник и отличающиеся более высокой рабочей частотой (для 1 МГц и более), низким прямым падением напряжения (менее 0,6 В).

Мостовая схема включения диодов

Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.

См. также

Примечания

Ссылки

ИМПУЛЬСНЫЕ ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ

Для импульсных источников питания наиболее подходят диоды с оптимизированными собственными ёмкостью и временем, требующимся на то, чтобы обратное сопротивление восстановилось. Достижение необходимого показателя по первому параметру происходит при уменьшении длины и ширины p-n — перехода, это соответственно сказывается и на уменьшении допустимых мощностей рассеивания.

ВАХ импульсного диода

Величина барьерной ёмкости у диода импульсного типа в большинстве случаев составляет меньше 1 пФ. Время жизни неосновных носителей не превышает 4 нс. Для диодов данного типа характерна способность к пропусканию импульсов продолжительностью не более микросекунды при токах с широкой амплитудой. Обычные диоды или вообще не работают с ИБП, или сильно перегреваются и резко ухудшают свои параметры, поэтому нужны специальные высокочастотные элементы — они же «фаст диоды». Далее приводятся их основные типы, наименования и характеристики, достаточные для радиолюбительской практики.

Справочник импортным по импульсным диодам

Диоды Шоттки в импульсных БП

Диоды Шоттки в импульсных БП

Высокоэффективные выпрямительные диоды

Высокоэффективные выпрямительные диоды

Другие диоды Шоттки

Диоды Шоттки

Кремниевые импульсные диоды

Кремниевые импульсные диоды

Быстровосстанавливающиеся диоды

Быстровосстанавливающиеся диоды

Быстродействующие выпрямительные диоды

Быстродействующие выпрямительные диоды

Типы корпусов диодов

Типы корпусов диодов

Все эти диоды предназначены для частот в несколько десятков килогерц и используются в выпрямителях импульсных блоков питания. Естественно их можно ставить в обычные трансформаторные БП на 50 Гц.

   Форум и справочная информация

   Обсудить статью ИМПУЛЬСНЫЕ ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ


Основные параметры выпрямительных диодов

  1. постоянное прямое напряжение на диоде при заданном значении прямого тока через диод

  2. постоянный прямой ток

  3. величина обратного тока при заданном значении обратного напряжения

  4. максимальное обратное напряжение

  5. рабочий диапазон температур

  6. максимальная частота, на которой еще не происходит ухудшение основных параметров

  7. тепловое сопротивление переход-корпус, переход-среда

  8. максимальная емкость диода

  9. внутреннее или диф-ное сопротивление диода в рабочей точке

  10. сопротивление постоянного тока

коэффициент выпрямления

Вопрос 15

Стабилитрон – это прибор, предназначенный для стабилизации напряжения на присоединенной параллельно ему нагрузке в случае изменения ее сопротивления или величины напряжения питания

При работе стабилитрона используется участок пробоя на обратной ветви ВАХ, где значительному изменению тока соответствует очень малое изменение напряжения.

Напряжение стабилизации зависит от толщины p-nперехода, а толщина от величины удельного сопротивления материала

Рис 28 ВАХ стабилитрона

Рис 29 параметрический стабилизатор напряжения; 1 – нагрузка; 2 – для уменьшения пульсации вешается конденсатор.

При изменении температуры напряжение стабилизации изменяется неоднозначно. В слаболегированных полупроводниках (используются в высоковольтных стабилитронах) с ростом температуры длина свободного пробега носителей уменьшается. Для того, чтобы при меньшей длине свободного пробега носители могли приобрести энергию, достаточную для ионизации валентных связей, требуется большая величина напряженности электрического поля.

Напряжение пробоя с ростом температуры должно увеличиваться. В сильнолегированных полупроводниках при росте температуры ширина запрещенной зоны падает, вероятность тунеллирования носителей увеличивается, а напряжение пробоя уменьшается. Следовательно, высоковольтные и низковольтные стабилитроны должны иметь противоположные изменения величины стабилизации при изменении температуры

Основные параметры стабилитрона:

  1. напряжение стабилизации

  2. минимальный и максимальный токи стабилизации

  3. температурный коэффициент напряжения стабилизации

  4. дифференциальное сопротивление в рабочей точке

  5. статическое сопротивление в рабочей точке

  6. коэффициент качества

Стабисторы

Для стабилизации небольших напряжений (меньше 1В) используют прямую ветвь ВАХ. Предназначенные для этого полупроводниковые диоды называют стабисторами.

Кремниевые стабисторы имеют напряжение стабилизации около 0,7В. Для получения малого сопротивления базы диода и меньшего прямого дифф. сопротивления используют кремний с повышенной концентрацией примеси. Стабисторы могут выполняться на основе других полупроводниковых материалов.

1 .Проводники, изоляторы, полупроводники. Их зонные энергетические диаграммы.

2. Собственная электропроводность полупроводников.

3. Электронная электропроводность полупроводников.

4. Дырочная электропроводность полупроводников.

5. Электронно-дырочный переход. Виды пробоя электронно-дырочного перехода.

6. Механизм туннельного пробоя электронно-дырочного перехода.

7. Прямое и обратное включение р-п-перехода.

8. Переход металл-полупроводник.

9. ВАХ р-n-перехода и перехода металл-полупроводник.

10. Ширина и емкость электронно-дырочного перехода.

11. Эквивалентная схема р-п-перехода.

12. Переходные процессы в pn-переходе.

13. Основные виды диодов и технологии их производства.

14. Выпрямительные диоды.

15. Стабилитроны и стабисторы.

16. Высокочастотные и импульсные диоды.

17. Диоды с накоплением заряда.

18. Туннельные и обращенные диоды.

19. Диоды сверхвысокочастотные.

20. Устройство, конструктивно-технологические особенности, схемы включения биполяр­ных транзисторов.

21. Режимы работы биполярных транзисторов, статические параметры, физические процессы.

22. Модель Эберса — Молла.

23. Статические характеристики в схеме с общим эмиттером.

24. Устройство и основные виды полевых транзисторов. Полевые транзисторы с управляющим переходом.

25. Устройство и основные виды полевых транзисторов. Полевые транзисторы с изолированным затвором.

ВОПРОС 16

высокочастотные диоды предназначены для детектирования колебаний высокой частоты и используются в радиоприемной, телевизионной и другой аппаратуре.

Они могут быть точечными, дифф-ными, сплавными или иметь мезаструктуру.

Рис 31 конструкция ВЧ диода. 1 – внешние выводы; 2 – кристалл; 3 – стеклянный корпус; 4 – вольфрамовый электрод

Рис 32 а) эквивалентная схема pn перехода; б) ВАХ точечного германиевого диода

Эквивалентная схема кроме сопротивления перехода и емкости перехода содержит сопротивление растекания. Его величина определяется геометрическими размерами и конфигурацией точечного перехода. Если предположить, что контакт имеет полусферическую форму, то величина сопротивления растекания приближенно может быть определена: , где— удельное объемное сопротивление полупроводника;— радиус закругления контакта.

Барьерная емкость точечных диодов не превышает 1пФ, их рабочая частота достигает 150МГц.

Высокочастотные кремниевые диоды в конструктивном отношении не отличаются от германиевых. ВАХ кремниевых микросплавных диодов близки к теоретическим, если эксплуатация диодов соответствует паспортным режимам.

Импульсные диоды

Импульсные диоды предназначены для работы в устройствах импульсной техники. Особенностью их работы является значительное проявление эффектов накопления и рассеивания носителей при больших уровнях мощность переключающего сигнала.

Переходы импульсных диодов изготавливаются такими же методами, как и высокочастотные.

Рис 33 конструкция импульсных диодов. 1 – кристаллодержатель; 2 – стеклянный корпус; 3 – коваровая трубка; 4 – внешние выводы; 5 – контактная пружина; 6 – кристалл; 7 – припой.

Основные параметры высокочастотных и импульсных диодов

  1. постоянное прямое напряжение при заданном прямом токе

  2. максимальная величина обратного тока при максимальной величине обратного напряжения

  3. емкость диода при заданной величине обратного напряжения

  4. время восстановления обратного сопротивления

  5. постоянное и импульсное обратные напряжения

  6. средний выпрямленный ток

  7. импульсный прямой ток

  8. частота без снижения параметров, соответствующих паспортному режиму

  9. диапазоны рабочих температур.

Отправить ответ

avatar
  Подписаться  
Уведомление о