Выключатель коридорный – Беспроводной проходной выключатель — схема подключения, настройка, дистанционное управление светом из 2-х и 3-х мест

Схема освещения с двумя выключателями (проходной выключатель).

Схема освещения с двумя выключателями (проходной выключатель).

Подробности
Создано 28.09.2014 05:56

Вы приходите к себе домой, включаете освещение в коридоре, разуваетесь, снимаете верхнюю одежду, выключаете свет в коридоре, и в темноте, стараясь ничего не задеть проходите в комнату. Хорошо если у вас короткий и широкий коридор, и на пути нет препятствий. Согласитесь, что намного удобнее было бы не выключать свет, а пройти до конца коридора и выключить его там, то есть иметь освещение с двумя выключателями.

В случае с коридором, светильник с двумя выключателями не такая уж острая необходимость. Но как быть если приходится в темное время суток подниматься по лестнице своего дома на второй этаж, тут разводка люстры на два выключателя была бы гораздо полезнее. Хотя для многих второй выключатель люстры возле кровати — вещь очень удобная. Лег в постель, как водится, почитал или пожмакал планшет, и не вставая выключил светдо утра. Сделать это не так уж и сложно. Не потребуется никакое хитрое устройство. Схема освещения с двумя выключателями потребует только отрезок трехжильного кабеля и два трехпозиционных выключателя.

Речь идет о так называемом проходном выключателе(переключателе), он же двухдиапозонный или двухполюсный выключатель. В схемах его изображают по-разному, но суть от этого не меняется. Любой из двух выключателей в схеме может, в не зависимости от положения другого выключателя, как выключить, так и включить нужную нагрузку. Ниже приведены несколько вариантов, которые помогут понять как это устроено.

Схема подключения светильника к двум выключателям

 

Разводка светильника к двум выключателям

 

Одноклавишный проходной выключатель с индикатором

Как уже говорилось ранее, проходной выключатель очень удобен в протяженных пространствах, когда требуется управлять освещением из двух мест. Это может быть и подключение люстры на два выключателя в комнате, особенно в новомодных квартирах студиях, и применение в коридорах, на лестницах, и даже для освещения дорожки от калитки к дому на дачном участке.

Коридорный выключатель

В электропроводке освещения длинных коридоров, лестничных маршев, подъездов, длинных ангаров и в других местах где необходимо включать и выключать свет из двух (вход и выход, начало и конец коридора) и более мест, обычно применяют так называемые коридорные переключатели. Устанавливают их в разных концах коридора. Схема известна любому электрику, а для изменения состояния освещения (включено, выключено) переключатель нужно переключать в противоположное бывшему положению. Такая схема требует прокладки к выключателям трех проводов вместо двух, и это только если управлять освещением нужно из двух мест. Если мест управления должно быть больше — три, четыре, то не только проводка усложняется в геометрической профессии, но и усложняется сам процесс управления, так как уже нужно выбирать не из двух, а из трех, четырех положений ручки переключателя.

В этом случае хорошим выходом из положения может быть электронный выключатель на основе D-триггера, состояние которого можно изменять кнопкой без фиксации. Причем число кнопок совершенно неограниченно. Кнопки подключаются параллельно к одной маломощной двухпроводной линии, в любом ее месте и в любом количестве. Нажатие любой из этих кнопок приводит к изменению состояния освещения (включено, выключено).

На рисунке 1 показана схема первого варианта коридорного выключателя — с одной лампой.

Коридорный выключатель

Рис. 1

Напряжение от сети поступает на схему. При включении питания (например, включении рубильника в щитке) на ИМС D1 поступает напряжение питания, равное 12 В. Это напряжение вырабатывается с помощью простейшего бестрансформаторного источника постоянного тока. Напряжение от сети выпрямляется диодом VD4 и одним из диодов выпрямительного моста VD5…VD8. Резистор R5 со стабилитроном VD1 образует параметрический стабилизатор, понижающий и стабилизирующий напряжение на уровне12 В. Конденсатор С3 сглаживает пульсации. При поступлении питания зарядка С1 через R2 создает импульс, устанавливающий триггер в нулевое состояние. Напряжение, поступающее на затвор VT1, равно нулю, сам транзистор закрыт и лампа Н1 не горит.

Чтобы включить лампу нужно изменить состояние D-триггера на противоположное. Для этого нажимаем и отпускаем кнопку S1 (или любую из числа S1-SN). Так создаем на входе. С импульс, который устанавливает триггер в то состояние, которое есть на его входе D. Так как D соединен с инверсным выходом, на нем уровень противоположный тому, что подается на затвор полевого транзистора. В результате уровень на прям выходе D1 меняется с каждым нажатием кнопки. Когда на прямом выходе D1 единица транзистор VT1 открывается и включает лампу.

Триггер на микросхеме срабатывает очень быстро, а любая кнопка хоть сколько-то, но дребезжит. Поэтому, при нажатии кнопки триггер может установиться в любое случайное положение, так как одно нажатие дает не только один основной импульс, но и массу коротких импульсов от дребезга. Так вот чтобы подавить сбои от дребезга введена цепочка C2-R3. Она не позволяет состоянию на входе D триггера меняться слишком быстро. Поэтому, сколько бы паразитных импульсов не сгенерировала дребезжащая кнопка, но если они короче постоянной времени этой цепи, изменение состояния будет только одно. Резистор R4 разгружает выход триггера от влияния тока зарядки емкости затвора мощного полевого транзистора. Диоды VD2 и VD3 ускоряют разрядку емкости затвора и подавляют выбросы напряжения которые могут быть на емкости затвора.

Схема по рисунку 1 управляет толькоодной лампой (или одной цепью освещения, состоящей из нескольких ламп). Это не всегда удобно, в случаях с очень большой длинойпомещения желательно сделать две группы ламп, которыми можно было бы управлять из любой точки помещения, соответственно установив кнопки в этих точках

На рисунке 2 показана схема коридорного выключателя, работающего с двумялампами (или двумя цепями освещения, состоящими из нескольких ламп). Здесь используется второй триггер микросхемы К561ТМ2, который в первой схеме не задействован. Он включается последовательно первому триггеру образуя двухразрядный двоичный счетчик, отличающийся от «типового» только наличием цепи задержки R3-C2 в первом триггерном звене. Теперь состояние выходов триггеров будет меняться соответственно двоичному коду.

Коридорный выключатель

Рис. 2

При включении питания оба триггера устанавливаются в нулевое состояние, чтобы это происходило вход R второго триггера соединен с таким же входом первого. Теперь цепь C1-R2 действует на оба триггера, обнуляя их при подаче питания.

С первым нажатием кнопки в единичное состояние устанавливается триггер D1.1 -включается лампа Н1. Если еще раз нажать кнопку состояние триггера D1.1 изменится, и лампа h2 погаснет, но вместе с этим произойдет изменение состояния второго триггера D1.2 — на его прямом выходе установится логическая единица и откроется транзистор VT2, который включит лампу Н2.

С третьим нажатием кнопки двоичный счетчик перейдет в состояние «3», единицы будут на прямых выходах обоих триггеров и гореть будут обе лампы. А с четвертым нажатием обе лампы погаснут.

Больше отличий в схеме нет.

С использованием транзисторов IRF840 и диодов 1N4007 в выпрямительных мостах мощность каждой лампы или каждой цепиосвещения, если она состоит из нескольких ламп, не должна превышать 200 Вт. Если нагрузки более мощные, это потребует замены диодов 1N4007 в мостах на диоды соответствующей нагрузке мощности. Плюс, полевые транзисторы нужно будет поставить на радиаторы. Вообще, IRF840 в этой схеме могут управлять нагрузками мощностью до 2000 Вт, но только с радиаторами, а при мощности нагрузки до 200W вследствие низкого сопротивления в открытом состоянии на самих транзисторах падает мощность весьма незначительная, поэтому и радиаторы при работе с нагрузками до 200 Вт им не требуются.

Диоды 1N4148 можно заменить практически любыми диодами, например, КД521, КД522 КД102, КД103.

Диоды 1N4007 можно заменить любыми выпрямительными диодами, на напряжение не ниже 400 В и по току соответственно мощности нагрузки. Например, при нагрузке не более 120 ватт можно использовать диоды КД209.

Стабилитрон Д814Д можно заменить любым стабилитроном на 11…13 В. Желательно использовать стабилитрон средней мощности или в металлическом корпусе. Вообще нужно учесть что при обрыве стабилитрона 220 В пойдет на всю схему (микросхему, затворы транзисторов), что ее практически полностью уничтожит, поэтому надежность стабилитрона имеет большое значение.

Автор:Саньков Е.М.

Электронный коридорный переключатель — Меандр — занимательная электроника

Обычная проводка для освещения состоит из выключателя и лампочки, включенных последовательно в электро­сеть. Сложнее дело, когда нужно организовать управление одной лампочкой из двух мест, например, если это освещение коридора, потому что нужно сделать два выключателя, чтобы входя в коридор свет включать выключа­телем расположенным в одном конце коридора, а выходя выключать свет выключателем на другом конце коридора. В советское время для этого выпускали так называемые коридорные переключа­тели. На рисунке 1 показана схема управ­ления лампой из двух мест с помощью коридорных переключателей.

Рис. 1

К сожалению, сейчас купить коридорные переключатели практически невозможно. Создается впечатление, что их вообще не выпускают. Конечно, при острой необ­ходимости, проблему можно решить, сделав коридорные переключатели самостоятельно, например, из приборных тумблеров, установив их в подходящие корпуса. Проблема будет решена технически, но о какой-либо эстетике говорить не придется.

Есть и второе решение — сделать электронный выключатель, управляемый по квазисенсорному принципу, то есть, кнопками без фиксации. В этом случае каждая кнопка будет находиться в замк­нутом положении только в момент выпол­нения управления. Далее она будет в разомкнутом состоянии. Это позволит параллельно одной кнопке включить практически неограниченное количество других кнопок, каждой из которых можно будет управлять выключателем. То есть, уже можно сделать не два места управления, а неограниченное количество мест управления, хоть сотню, если это необходимо.

В радиотехнической литературе часто публи­ковались описания самодельных электронных выключателей с практически неограниченным количеством мест управления. Но практически все они были построены на основе RS-триггеров или D-тигеров, что требует применения опреде­ленных микросхем. Но как быть, если в распоряжении есть только обычный набор инверторов, например, микросхема К561ЛН2? Конечно, сейчас есть уйма интернет-магазинов, где можно найти практически любую микросхему, но это нужно заказывать и ждать. А поскольку «творческое настроение» было только в эти конкретные выходные, было решено делать из того, что есть.

А были звонковые кнопки в неограничен­ном количестве, микросхема К561ЛН2, «полевик» КП707В2 (аналог «легендар­ного» IRF840), и кучка других компо­нентов. То, что получилось, показано на рисунке 2. А именно, вполне работоспо­собная схема.

Рис. 2

Без триггера все же обойтись не удалось, но он был собран на инверторах, конкретно на D1.1 и D1.2. Практически это триггер Шмитта, который, как и любой другой триггер имеет свойство устанавливаться в двух фиксированных состояниях.

При нажатии кнопки S1 на вход элемента D1.1 подается логи­ческая единица от источника питания. На выходе D1.1 при этом, ноль, а на выходе D1.2, — единица. Но единица с выхода D1.2 через резистор R2 посту­пает на вход D1.1. Поэтому, когда кнопку S1 отпускаем схема на D1.1-D1.2 остается в поло­жении — единица на выходе D1.2.

Если нажать на кнопку S2 на вход элемента D1.1 поступает напряжение логического нуля. На его выходе будет при этом логическая единица, а на выходе D1.2 опять нуль. Этот нуль пойдет через R2 на вход D1.1. Отпус­каем кнопку, и состояние остается в положении — ноль на выходе D1.2.

Таким образом, кнопками S1 и S2 можно менять устойчивые состояния триггера Шмитта на инверторах D1.1 и D1.2. Но, так как кнопки замыкаются только на время нажатия, параллель­ной каждой из них можно подключить любое n-ное количество кнопок, действие которых будет равноценным.

С выхода триггера Шмитта на D1.1 и D1.2 логический уровень поступает на буферную схему на оставшихся четырех инверторах. Как известно, затвор МДП-ключевого транзистора

обладает существенной емкостью, что влечет за собой образование короткого, но значительного по току импульса в момент изменения логического уровня на его затворе. Это неблагоприятно действу­ет на выходы логических элементов. По­этому, выход умощнен путем параллель­ного соединения четырех инверторов D1.3-D1.6 и включением разгрузочного резистора R3, ограничивающего макси­мальный ток зарядки затвора VT1. Диоды VD2 и VD3 устраняют выбросы напря­жения при коммутации и способствуют ускорению разряда емкости затвора VT1.

Таким образом, после нажатия S1 на выходе триггера Шмитта D1.1-D1.2 уста­навливается логическая единица, на соединенных вместе выходах D1.3-D1.6 — логический ноль. Транзистор VT1 будет в этом случае закрыт, лампа Н1 не горит. После нажатия S2 — на выходе триггера Шмитта D1.1-D1.2 устанавливается логический ноль, на соединенных вместе выходах D1.3-D1.6 — единица. Транзистор VT1 открывается, лампа Н1 горит.

S1 (и все подключенные параллельно ей S1n) отвечает за выключение, S2 (и все подключенные параллельно ей S2n) отвечает за включение.

Так как транзистор VT1 может работать только на постоянном токе, ток на лампу поступает через выпрямитель на диоде VD4. В результате лампа питается только одним полупериодом сетевого напря­жения. Если по какой-то причине это недопустимо можно сделать мостовой выпрямитель (фрагмент схемы с мосто­вым выпрямителем показан на рисунке 3). В этом случае будут работать обе полуволны сетевой синусоиды. Выпрями­тельный мост должен быть рассчитан на напряжение не ниже 400V и ток не ниже 1А. Можно применить как мост-сборку, так и собрать мост на отдельных диодах, например, на четырех 1N4007.

Рис. 3

Микросхема D1 и затворная цепь транзистора VT1 питаются от источника тока, состоящего из параметрического стабили­затора на R4 и VD1 и сглаживающей пульсации емкостью С2.

Монтаж варианта по схеме на рис.2. выполнен на печатной плате с одно­сторонним расположением печатных дорожек. Разводка платы и монтажная схема показаны на рисунке 4 в натураль­ную величину.

Рис. 4

Транзистор VT1 работает без радиатора. При мощности лампы до 200W ему радиа­тор не требуется.

Транзистор КП707В2 можно заменить зарубежными аналогами, — IRF840 или BUZ90. Либо подобрать другие аналоги по справочникам.

Диоды КД522 можно заменить любыми импульсными диодами, таким как КД521, 1N4148 или другими.

Диод 1N4007 — любой выпрямительный диод на напряжение не ниже 400V и ток не ниже 1А.

Стабилитрон Д814Г можно заменить любым стабилитроном на напряжение 10- 12V и мощность не ниже 0,5W. Есть много подходящих импортных стабилитронов, например, 1N4699, 1N5927, 1N5242 и другие аналогичные.

На рисунке 5 показан вариант схемы, в котором управление осуществляется только одной кнопкой. После её нажатия лампа горит столько времени, сколько нужно на зарядку С1 через R1. Затем гаснет.

Автор: Светин О.Д.

Коридорный выключатель — Конструкции простой сложности — Схемы для начинающих

Известная многим ситуация: длинный темный коридор, выключатель света у его одного конца. Свет включен, но чтобы его выключить, нужно пройти к тому концу коридора, у которого расположен выключатель, а затем возвращаться к выходу в темноте. Или большой склад на предприятии. Входим в одну дверь, включаем свет, в конце рабочего дня нужно выключить свет на этом складе и выйти (или выехать) через ворота, закрыв их за собой. Приходится выключать свет в одном месте, а затем идти в темноте через весь склад к машине. В обеих случаях, лет тридцать тому назад, обычно применяли коридорные переключатели, но в последнее время их в продаже практически нет, да и работают они не надежно. Предлагается универсальный выключатель, который может управляться, практически, любым числом кнопок, расположенных в разных местах помещения. Принципиальная схема варианта с двумя кнопками показана на рисунке 1.

В основе лежит принцип действия D-триггера, у которого вход D соединен с инверсным выходом. Как известно, такой триггер будет менять свое состояние на противоположное установившемуся каждый раз, когда на его вход С будет поступать полный импульс. На триггере D1.1 построен подавитель дребезга контактов кнопок. При нажатии и отпускании на любую их кнопок S1 или S2, на его выходе формируется полный импульс. Этот импульс поступает на вход С триггера D1.2, включенного по схеме делителя на два. В результате от каждого нажатия его состояние меняется на противоположное. Уровень с выхода D1.2 поступает на выключатель лампы HL1, построенный на транзисторе VT1 и тиристоре VS1. Питание на микросхему поступает от параметрического стабилизатора на VD1 R4. Работает схема так. Допустим, S1 установлена в начале коридора, а S2 в его конце. Исходно свет выключен. Вы находитесь в начале коридора, нажимаете и отпускаете, кнопку S1. Свет включается. Проходите по коридору до конца и нажимаете и отпускаете кнопку S2. Свет выключается. Теперь идете обратно, снова нажимаете и отпускаете S2 — свет включен. Проходите по коридору к его началу, нажмете и отпускаете S1 — свет выключен. Число кнопок можно увеличивать бесконечно.


На рисунке 2. показан фрагмент схемы с тремя кнопками. Мощность лампы должна быть не более 200 Вт.

Радиоконструктор №10 2000г стр. 26

Коридорный выключатель CAVR.ru

Рассказать в:
Известная многим ситуация: длинный темный коридор, выключатель света у его одного конца. Свет включен, но чтобы его выключить, нужно пройти к тому концу коридора, у которого расположен выключатель, а затем возвращаться к выходу в темноте. Или большой склад на предприятии. Входим в одну дверь, включаем свет, в конце рабочего дня нужно выключить свет на этом складе и выйти (или выехать) через ворота, закрыв их за собой. Приходится выключать свет в одном месте, а затем идти в темноте через весь склад к машине. В обеих случаях, лет тридцать тому назад, обычно применяли коридорные переключатели, но в последнее время их в продаже практически нет, да и работают они не надежно. Предлагается универсальный выключатель, который может управляться, практически, любым числом кнопок, расположенных в разных местах помещения. Принципиальная схема варианта с двумя кнопками показана на рисунке 1.

В основе лежит принцип действия D-триггера, у которого вход D соединен с инверсным выходом. Как известно, такой триггер будет менять свое состояние на противоположное установившемуся каждый раз, когда на его вход С будет поступать полный импульс. На триггере D1.1 построен подавитель дребезга контактов кнопок. При нажатии и отпускании на любую их кнопок S1 или S2, на его выходе формируется полный импульс. Этот импульс поступает на вход С триггера D1.2, включенного по схеме делителя на два. В результате от каждого нажатия его состояние меняется на противоположное. Уровень с выхода D1.2 поступает на выключатель лампы HL1, построенный на транзисторе VT1 и тиристоре VS1. Питание на микросхему поступает от параметрического стабилизатора на VD1 R4. Работает схема так. Допустим, S1 установлена в начале коридора, а S2 в его конце. Исходно свет выключен. Вы находитесь в начале коридора, нажимаете и отпускаете, кнопку S1. Свет включается. Проходите по коридору до конца и нажимаете и отпускаете кнопку S2. Свет выключается. Теперь идете обратно, снова нажимаете и отпускаете S2 — свет включен. Проходите по коридору к его началу, нажмете и отпускаете S1 — свет выключен. Число кнопок можно увеличивать бесконечно.


На рисунке 2. показан фрагмент схемы с тремя кнопками. Мощность лампы должна быть не более 200 Вт.

Радиоконструктор №10 2000г стр. 26


Раздел: [Конструкции простой сложности]
Сохрани статью в:
Оставь свой комментарий или вопрос:

ЭлектроВести — Электронный проходной выключатель

Коридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Коридорный выключатель с двумя переключателями

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Коридорный выключатель с тремя переключателями

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент — переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения. Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными, а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали — свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства — триггера.

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме — с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Проходной выключатель на триггере К561ТМ2

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C — вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R — вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS — входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Источник питания

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Бестрансформаторный источник питания

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

Борис Аладышкин

Читайте самые интересные истории ЭлектроВестей в Telegram и Viber

Управление освещением в проходном коридоре

В этой теме хочу рассмотреть один из самых сложных вариантов управления освещением в коридоре. Чем больше к помещению предъявляется требований, тем сложнее реализовать схему управления освещением, чтобы она была удобна при эксплуатации и соответствовала всем требованиям.

В последнее время мне часто попадаются в проектах большие коридоры сложной формы. Такие коридоры, как правило, проходные и имеют несколько входов и выходов. Соответственно возле каждого входа/выхода должен быть установлен выключатель освещения.

Вдобавок ко всему, чаще всего, в коридорах приходится предусматривать и эвакуационное освещение.

Одно из требований эвакуационного освещения – оно должно включаться при пожаре.

Исходя из этих условий, я разработал схему, которая позволяет управлять освещением в коридорах при неограниченном количестве входов/выходов.

Схема управления освещением в коридоре:

Управление освещением в проходном коридоре

Для реализации данной схемы необходимы проходные выключатели, контактор, светильники, автоматические выключатели, кабели.

В качестве светильников эвакуационного освещения применены светильники с модулем аварийного питания. Следовательно, данные светильники можно включать в сеть рабочего освещения.

Данная схема предусматривает местное и автоматическое управление рабочим и эвакуационным освещением. Работа светильников эвакуационного освещения осуществляется совместно со светильниками рабочего освещения.

При управлении из двух мест светильниками в коридорах выключатель SF2.1 из схемы необходимо исключить, а при управлении из четырех и более мест — количество выключателей типа SF2.1 увеличивается на нужное количество.

Схема является типовой для любого количества светильников. Количество светильников на схеме показано условно. Один контактор можно задействовать для управления эвакуационными светильниками в случае пожара в трех разных коридорах.

Советую почитать:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *