Всеволновая антенна бедного радиолюбителя – Всеволновая антенна своими руками: особенности, конструкция и согласование

Всеволновая KB антенна «бедного» радиолюбителя

Всеволновая KB антенна «бедного» радиолюбителя


Число счастливых радиолюбителей — обладателей капитальных и надёжных практически суперантенн, неуклонно растёт, но, как правило, основной капитал (сбережения) тратится на приобретение приличного импортного трансивера, а на покупку фирменной антенны, увы, денег уже не хватает…

 

Что же тогда остаётся делать среднестатистическому отечественному радиолюбителю, у которого на крышу дома своего и доступа-то свободного зачастую практически нет? А ведь работать в радиолюбительском эфире хочется, да ещё желательно не кое-как, а с максимально возможной эффективностью.

 

Вот и изобретаются разные не затратные, альтернативные варианты: оконные и всякие там балконные, магнитные мини-конструкции, антенны «для экстренной работы», «невидимые», «резервные», «одноразовые» — чуть ли не из тонюсенького медного проводка, «на пуговицах».

 

Выбрать оптимально приемлемую антенну, исходя из большого разнообразия форм и параметров, а также конкретных местных условий, не всегда достаточно просто. Все знают девиз, что «хорошая антенна — лучший усилитель». Увы, далеко не все могут позволить себе иметь больше одной антенны, а уж по нескольку на каждый диапазон — вообще мечта!  

 

Кое-кто вынужден отказаться от работы, скажем, на соседнем с 7 МГц диапазоне 3,5 МГц только из-за того, что его «Инвертед» имеет там слишком большой КСВ. Впрочем, к сожалению, бывает и так, что на согласование трансивера с антенной почти не обращается внимания. Известен курьёзный случай, когда один коротковолновик, заменив старенького самодельного UA1FA на импортный аппарат, «прицепил» его к привычной «верёвке», наивно полагая, что «там же есть защита выходных транзисторов».

 

В литературе неоднократно описывались «антенны бедного радиолюбителя», однако являющие собой далеко не самые простые и вовсе не дешёвые конструкции. К сожалению, порой, по недосмотру авторов описаний, бывает, упускаются из виду и отдельные немаловажные детали — например, длина двухпроводной линии или материал мачты, которую иногда недопустимо выполнять металлической. Это затрудняет повторение конструкции неискушенными коллегами.

 

Начинающие радиолюбители используют в основном простейшие антенны — «Delta Loop» диапазона 80 м (к тому же, часто имеющую неудачное расположение и запитанную как было удобнее по месту), пресловутую Inverted V, да четвертьволновый Ground Plane. Для работы на других диапазонах (а желательно бы на всех) может применяться то или иное согласующее устройство. Результаты работы антенны при этом, в зависимости от оптимизации на отдельном диапазоне, варьируются от очень хороших и до очень плохих. Кое-кто из коротковолновиков даже подбирает длину кабеля для «улучшения» КСВ.

Однако все же не стоит забывать о сути, о том, что никакое согласующие устройства, каким бы оно ни было хитроумным, не в состоянии уменьшить КСВ в фидере антенны. С его помощью можно добиться идеального согласования только лишь между нашей радиостанцией и самим согласующим устройством, расположенным на том же самом рабочем столе в шэке. Главный достигнутый эффект здесь в другом — передатчик, как говорится, «удалось обмануть», и выходной каскад выдаст всю возможную мощность. Но потери мощности непосредственно в самом фидере никуда не исчезли.

 

Как не раз отмечалось, обычный диполь с КСВ около 1,0, предназначенный для диапазона 80 м, на частоте 7 МГц (где он является уже волновым вибратором с входным сопротивлением около 4 кОм) будет иметь КСВ порядка 53, а в диапазоне 20 м получаем КСВ = 57.

 

Предположим, что с помощью согласующего устройства (тюнера) удалось получить КСВ между трансивером и СУ и на этих диапазонах также равный 1.0. Но фидер-то всё равно рассогласован с нагрузкой (излучателем). Применив двухпроводную линию, имеющую сравнительно низкие потери, на это можно было бы закрыть глаза, и всё-таки с переменным успехом работать в эфире, но тут сразу возникает другая проблема — а как же конструктивно подвести ту самую открытую двухпроводную линию к столу оператора? Не будешь ведь то и дело выбегать на балкон к установленному там согласующему устройству!

 

Если есть возможность пропустить проводники через окно — это прекрасно. А если нет? Да и стоит ли иметь возле своего рабочего места определенное ВЧ излучение? К тому же, согласующее устройство для симметричного фидера несравнимо сложнее конструктивно и в настройке, чем согласующее устройство для несимметричной нагрузки.

 

Предлагаемый вариант антенной системы на основе разработки Олега Сафиуллина, UA4PA, решает большинство поставленных вопросов. Такая антенна отнюдь не призвана заменить другие, гораздо более эффективные конструкции, но может заинтересовать тех радиолюбителей, которые не имеют достаточных ресурсов, свободной площади и подходящих опор для развешивания полотна антенны.

 

Многих начинающих коротковолновиков в базовом описании антенны UA4PA часто отпугивает необходимость установки на крыше вертикального штыря высотой 11,2 м и проблема расположения на ограниченном пространстве под ним противовесов такой же длины. Между тем, в журнале «Радио», в прежние годы едва ли не единственном источнике нужной для радиолюбителя информации, давно была предложена идея о применении данного способа согласования к диполю, имеющему практически любые размеры плеч. При этом отмечалось, что за счет увеличения эффективной излучающей части такая антенна даже лучше относительно короткого вертикала работает на низкочастотных диапазонах, а также сам диполь может быть с успехом расположен и в виде Inverted Vee.

 

На радиостанции UB5LEW почти 20 лет в качестве надёжного резерва с успехом использовался наклонный луч длиной 35,5 м с питанием с конца, но при помощи соответствующего отрезка кабеля соединённый с согласующим устройством.

 

Сама идея Олега UA4PA активно обсуждалась в радиолюбительских кругах и на соответствующих форумах в Интернете. Главным недостатком подобной антенны её рьяные противники (впрочем, в основном «теоретики», даже не ставившие перед собой задачу практических испытаний конструкции) называли работу коаксиального кабеля в режиме стоячей волны — дескать, всем известные компьютерные программы при анализе потерь просто «приходят в ужас».

Да, по-видимому, для сторонников QRO, любителей «закачать киловатт», эта антенна действительно не подходит — кабель может попросту расплавиться и сгореть. Однако для многих коротковолновиков, довольствующихся стандартной колебательной мощностью импортного аппарата в 100 Вт, потери в кабеле, который функционирует в режиме 100% стоячей волны (в данном случае это же вовсе и не фидер, а часть самого антенного полотна, только лишь почти не излучающая), отнюдь не так страшны, как их представляют.

 

Естественно, потери есть в любом реальном фидере, но их можно в какой-то мере снизить, используя, например, кабель с более высоким волновым сопротивлением или же лучшего качества.

 

Ранее для такой антенны у автора применялся 100-омный кабель РК-100-4-31 диаметром около 8 мм с двойной оплёткой и омеднённой стальной жилой, а теперь — РК-75-7-11. Для того чтобы он, довольно толстый и упругий, не ползал по рабочему столу миниатюрным и лёгким коробком согласующего устройства, короткая часть линии вблизи согласующего устройства — длиной примерно до полуметра — вообще выполнена из тонюсенького RG-58.

 

Неоспоримое достоинство способа согласования, предложенного Олегом UA4PA, — настройка всей антенной системы для работы на любом диапазоне непосредственно на рабочем столе коротковолновика. При этом между трансивером и согласующем устройством (а далее — начинается сама антенна!) легко достигается КСВ=1, т.е. выходной каскад выдаст «на гора» все 100% положенной мощности, а единственный КПЕ позволяет при необходимости мгновенно подстроить антенну поточнее и на краях диапазонов.

 

К недостаткам такого согласующего устройства можно отнести лишь необходимость подбора отводов в катушке колебательного контура, а также ограниченность применения — исключительно с одной данной антенной в её конкретном исполнении и расположении. Любые попытки применить готовое согласующее устройство с какой-либо другой антенной обязательно приведут к появлению определённого рассогласования, и неизбежно потребуется полная перенастройка всего устройства.

 

Отдельные радиолюбители, установив вертикальный излучатель высотой 11,2 метров и подключив его через коаксиальный кабель произвольной длины и согласующее устройство Т-образного типа (например, фирмы MFJ), добились превосходных результатов. Что же, замечательно! Только не следует утверждать, что в данном случае якобы используется «антенна UA4PA», не замечая при этом, что от самой идеи согласования «по Сафиуллину», кроме длины штыря, ничего не осталось…

 

Схема СУ приведена ниже (для упрощения показаны отводы только для одного диапазона) и каких-либо особенностей не имеет — обычный параллельный колебательный контур (как и в оригинале антенны UA4PA) с индикатором протекающего в антенне тока.

Сравнивая предлагаемое согласующее устройство с широко распространёнными Т-образными, Г-образными и П-образными согласователями, легко заметить выигрыш по эргономичности (один переключатель диапазонов и всего одна ручка плавной настройки) и по габаритам. Впрочем, как говорится, и тут возможны варианты, вплоть до применения роликовых вариометров.

 

Сама антенна представляет собой наклонную вниз одним краем, известную конструкцию G5RV с двухпроводной воздушной линией.

 

Размеры вибратора (материал — биметалл медь/сталь диаметром 2 мм) — общей длиной около 31 м — выбраны исходя из имеющихся возможностей размещения на местности. Верхняя часть непосредственно активного полотна представляет собой некое подобие вертикала (к сожалению, в какой-то степени приближенного верхним концом к стене панельного девятиэтажного дома — а куда тут денешься), а вторая половина — соответственно, противовеса. Двухпроводная линия, идущая к балкону, и далее, без каких-либо ухищрений, сам кабель (естественно, с учётом коэффициента укорочения) дополняют длину всей системы до требуемых 42,5 метров.

 

Размеры линии — длина каждого проводника по 10,4 метра, материал — медный провод диаметром 1,8 мм, изоляционные распорки, установленные через каждые 30 см, выполнены из листового фторопласта толщиной 3 мм. Расстояние между проводниками не критично, и для волнового сопротивления 200 — 400 Ом находится в пределах 50 — 150 мм (в моей антенне — 50 мм).

 

При этом:

а) отсутствуют дополнительные потери на участке «балкон — центр полотна» за счет замены коаксиального кабеля воздушной линией, и

б) имеется достаточно комфортное продолжение антенно-фидерного устройства непосредственно по квартире (в моем случае — в следующую от балкона комнату) коаксиальным кабелем.

 

Единственный критичный параметр — это необходимая длина отрезка кабеля от двухпроводной линии до согласующего устройства, которая рассчитывается по формуле:

где: lкаб — длина кабеля, м;

 

lиз — длина излучателя в метрах, которая в данном случае складывается из длины половины примененного диполя (15,5 м) и длины проводника двухпроводной воздушной линии (10,4 м), т.е. общая длина составляет 15,5+10,4=25,9 м;

 

е — коэффициент укорочения, для большинства отечественных кабелей с изоляцией центрального проводника из стабилизированного полиэтилена е =1,51.

 

Таким образом, в этом (для каждого будет свой) случае длина кабеля составляет:

Излишек в любом удобном месте можно свернуть в бухту. Олег UA4PA указывал на желательность применения кабеля с более высоким волновым сопротивлением (для снижения потерь), а также на возможность подстановки в формулу вместо значения 42,5 логически напрашивающихся кратных величин в 85 или же 21,3 м (в последнем случае антенна будет работать только в диапазонах от 40 до 10 м). 

 

Согласующее устройство

 

Размеры примененного мной корпуса согласующего устройства невелики — всего лишь 190x125x70мм, и он весьма гармонично смотрится в комплекте с трансивером Yaesu FT-897. Для достижения желаемой малогабаритности устройства я сознательно отошел от классически принятых канонов, уменьшив расстояние между катушками и стенками корпуса в ущерб некоторой доле эффективности.

 

Конструкция согласующего устройства:

 

Переключатель SA1 (по схеме выше) — обычный ПГК, 11П4Н (11 положений, 4 направления). КПЕ С1 — с максимальной емкостью около 150 пФ. Можно применить КПЕ с большей максимальной емкостью, а то и вообще отказаться от дополнительных конденсаторов и галеты SA1.4, но при этом следует иметь в виду, что настройка контура станет значительно «острее».

 

Кстати, даже при небольшой мощности возбуждения напряжение на колебательном контуре может достигать значительной величины. Дополнительно «пристегиваемые» конденсаторы при подводимои мощности порядка 100 Вт (импортный трансивер либо UW3DI с выходным каскадом на лампе ГУ-29 и т.п.) должны иметь рабочее напряжение не ниже 2 кВ (обычные КСО-3 с напряжением до 500 В «прошивает»). Остальные детали обозначены на принципиальной схеме или видны на фото согласующего устройства и дополнительных пояснений не требуют.

 

Катушки для СУ каждый радиолюбитель свободно подберет из любых имеющихся в наличии с близкими параметрами — они абсолютно не критичны, общее количество витков вполне можно «прикинуть на глаз», исходя из самого низкочастотного требуемого диапазона, а отводы будут подобраны в процессе настройки. В подходе к выбору моточных изделий следует руководствоваться одним — желательно добиться как можно более высокой добротности катушки. Если есть возможность, катушки целесообразно выполнить из посеребренного провода (хотя бы L1).

 

Данные катушек индуктивности: L1 намотана на керамическом ребристом каркасе (а можно и без него) диаметром 32 мм и содержит 8 витков посеребренного провода 02,2 мм, намотка с шагом 5 мм; L2 намотана на керамическом каркасе 060 мм и содержит 23 витка провода ПЭВ-2 диаметром 1,2 мм, намотка с шагом 1,8 мм.

 

Переключаемые по диапазонам отводы от катушек, считая от верхнего (по схеме) вывода (указано их приблизительное положение), а также емкости подключаемых на низкочастотных диапазонах дополнительных конденсаторов приведены в таблице:

 

 

3,5 МГц

7 МГц

10 МГц

14 МГц

18 МГц

21 МГц

24 МГц

28 МГц

SA1.1

От 4-го витка L1

От 6-го

витка L1

От 4-го

витка L1

От 3-го витка L1

От 6-го витка L1

От 4-го витка L1

От 3-го витка L1

От 2-го витка L1

SA1.2

От 4-го витка L2

От 4-го

виткa L2

От 4-го

витка L2

От 4-го витка L1

От 3-го витка L1

От 3-го витка И

От 3-го витка L1

От 3-го витка L1

SA1.3

От 18-го витка L2

От 12-го виткa L2

От 8-го витка L1

От 8-го витка L1

От 6-го витка L1

От 5-го витка L1

От 4-го

витка L1

SA1.4

430 пФ

220 пФ

150 пФ

 

Настройка

 

После заделки разъемов, вооружившись терпением, пинцетом и паяльником, можно приступать к настройке согласующего устройства. На первоначальном этапе с помощью элементарных измерительных приборов — ГСС и лампового вольтметра, либо ГИРа — желательно подобрать отводы контура по диапазонам при среднем положении ротора КПЕ и отключенном от согласующего устройства передатчике. Затем,контролируя КСВ по включенному между трансивером и согласующим устройством КСВ-метру либо посматривая на запрятанный в «буржуйский» аппарат ЖКИ, подбирается согласование 50-омного выхода передатчика с контуром, т.е. отвод делается в той точке, где входное сопротивление будет около 50 Ом. При этом следует учитывать, что, скорее всего, может потребоваться и подбор точки включения в контур кабеля антенны на каждом отдельном диапазоне.

 

Конкретно все налаживание согласующего устройства не составляет особого труда и вполне доступно даже начинающему коротковолновику (в этом случае для простоты и приобретения начального опыта можно ограничиться одним диапазоном — 80 или 40м). А в итоге радиолюбитель получает простую, дешевую, малозаметную и труднодоступную для посторонних людей коротковолновую антенну, позволяющую даже в стесненных городских условиях неплохо работать в эфире на всех любительских KB диапазонах!

 

Кстати, в диапазоне 160м параллельный контур согласующего устройства у меня не используется, т.к. вибратор при имеющейся длине в 42,5 м является полуволновым только для 3,5 МГц. Примерно равный по длине четверти волны на 1,8 МГц, он согласовывается с помощью последовательно включенной небольшой дополнительной катушки (каркас — диаметром 25мм, провод ПЭВ-2 — диаметром 1,5 мм, 18 витков, намотка — виток к витку). Для большей эффективности следует настроить и сам контур СУ на 160 м, при этом либо включить специальную удлинительную индуктивность между контуром и разъемом для кабеля, либо в формуле для расчета длины кабеля применить исходную цифру 85 м. В этом случае методика настройки согласующего устройства на 1,8 МГц будет аналогична другим диапазонам.

 

Результаты

 

В заключение, несколько слов об эффективности антенны. За счет наклонного расположения вибратора, в какой-то степени приближающегося к вертикали, значительная составляющая излучения в диаграмме направленности приходится на прижатый к земле лепесток, что благоприятно для проведения дальних радиосвязей. При установке антенны возможны любые практически осуществимые вариации как с пространственным расположением и длиной элементов в любом конкретном месте, так и с размерами согласующей линии — главное, лишь бы общие габариты вписывались в формулу.

 

Любители компьютерных расчетов могут смоделировать ожидаемые диаграммы направленности, а также посчитать КПД антенны и «недопустимые потери» в кабеле 🙂

 

В процессе настройки согласующего устройства на трансивере FT-897 с выходной мощностью 100 Вт в диапазоне 1,8 МГц были проведены радиосвязи с Oh4XR, UA9KAA, LA3XI; в диапазоне 3,5 МГц — с UA0WB, RKOUT, E7/DK9TN; в диапазоне 7 МГц — с 4S7AB, P40L, VQ9JC; в диапазоне 10 МГц — с 9M6XRO/P, TS7TI, OY6FRA; в диапазоне 14 МГц — с КН6МВ, 9Q500N, WH0DX (с первого вызова!), в диапазоне 18 МГц — с KH0/KT3Q, ZS6X, 9М2ТО, в диапазоне 21 МГц — с BD6JJX; BD1ISI, HS0ZEE; в диапазоне 24 МГц —CVQ9LA, 5Р5Х, EX8MLE; в диапазоне 28 МГц — с 4J9M, OG20YL, IK2SND.

 

Справедливости ради отметим, что все радиосвязи были телеграфные, поскольку из всех других видов излучения предпочтение этому.

 

Антенна в ежедневной практической работе на всех любительских диапазонах полностью оправдала ожидаемые рабочие характеристики и позволяет проводить уверенные радиосвязи со всеми континентами и различными экспедициями, не испытывая особой потребности в дополнительном усилителе мощности. Впрочем, исключив из схемы сравнительно слаботочный тумблер (здесь он применен сознательно, для удобства коммутации заземления антенны) и увеличив электрическую прочность КПЕ и катушек, вполне допустимо увеличить колебательную мощность передатчика до 300 — 500 Вт. Аналогичный вариант конструкции длительное время эксплуатировался автором совместно с разными усилителями на лампах ГУ-50 (от 2 до 4 шт.), при этом сколько-нибудь заметного, а уж тем более, существенного нагрева кабеля, а также помех телевидению совершенно не наблюдалось.

 

При соответствующей настройке данное согласующее устройство можно с успехом применить и с другой антенной (например, Delta Loop) для повышения эффективности ее согласования при работе на всех любительских диапазонах.

UT2LA

См. также  Антенны КВ

Антенна «бедного» радиолюбителя — R3RTambov

Антенна «бедного» радиолюбителя
Всеволновая KB антенна «бедного» радиолюбителя

 

Число счастливых радиолюбителей — обладателей капитальных и надёжных практически суперантенн, неуклонно растёт, но, как правило, основной капитал (сбережения) тратится на приобретение приличного импортного трансивера, а на покупку фирменной антенны, увы, денег уже не хватает…

Что же тогда остаётся делать среднестатистическому отечественному радиолюбителю, у которого на крышу дома своего и доступа-то свободного зачастую практически нет? А ведь работать в радиолюбительском эфире хочется, да ещё желательно не кое-как, а с максимально возможной эффективностью.

Вот и изобретаются разные не затратные, альтернативные варианты: оконные и всякие там балконные, магнитные мини-конструкции, антенны «для экстренной работы», «невидимые», «резервные», «одноразовые» — чуть ли не из тонюсенького медного проводка, «на пуговицах».

Выбрать оптимально приемлемую антенну, исходя из большого разнообразия форм и параметров, а также конкретных местных условий, не всегда достаточно просто. Все знают девиз, что «хорошая антенна — лучший усилитель». Увы, далеко не все могут позволить себе иметь больше одной антенны, а уж по нескольку на каждый диапазон — вообще мечта!

Кое-кто вынужден отказаться от работы, скажем, на соседнем с 7 МГц диапазоне 3,5 МГц только из-за того, что его «Инвертед» имеет там слишком большой КСВ. Впрочем, к сожалению, бывает и так, что на согласование трансивера с антенной почти не обращается внимания. Известен курьёзный случай, когда один коротковолновик, заменив старенького самодельного UA1FA на импортный аппарат, «прицепил» его к привычной «верёвке», наивно полагая, что «там же есть защита выходных транзисторов».

В литературе неоднократно описывались «антенны бедного радиолюбителя», однако являющие собой далеко не самые простые и вовсе не дешёвые конструкции. К сожалению, порой, по недосмотру авторов описаний, бывает, упускаются из виду и отдельные немаловажные детали — например, длина двухпроводной линии или материал мачты, которую иногда недопустимо выполнять металлической. Это затрудняет повторение конструкции неискушенными коллегами.

Начинающие радиолюбители используют в основном простейшие антенны — «Delta Loop» диапазона 80 м (к тому же, часто имеющую неудачное расположение и запитанную как было удобнее по месту), пресловутую Inverted V, да четвертьволновый Ground Plane. Для работы на других диапазонах (а желательно бы на всех) может применяться то или иное согласующее устройство. Результаты работы антенны при этом, в зависимости от оптимизации на отдельном диапазоне, варьируются от очень хороших и до очень плохих. Кое-кто из коротковолновиков даже подбирает длину кабеля для «улучшения» КСВ.

Однако все же не стоит забывать о сути, о том, что никакое согласующие устройства, каким бы оно ни было хитроумным, не в состоянии уменьшить КСВ в фидере антенны. С его помощью можно добиться идеального согласования только лишь между нашей радиостанцией и самим согласующим устройством, расположенным на том же самом рабочем столе в шэке. Главный достигнутый эффект здесь в другом — передатчик, как говорится, «удалось обмануть», и выходной каскад выдаст всю возможную мощность. Но потери мощности непосредственно в самом фидере никуда не исчезли.

Как не раз отмечалось, обычный диполь с КСВ около 1,0, предназначенный для диапазона 80 м, на частоте 7 МГц (где он является уже волновым вибратором с входным сопротивлением около 4 кОм) будет иметь КСВ порядка 53, а в диапазоне 20 м получаем КСВ = 57.

Предположим, что с помощью согласующего устройства (тюнера) удалось получить КСВ между трансивером и СУ и на этих диапазонах также равный 1.0. Но фидер-то всё равно рассогласован с нагрузкой (излучателем). Применив двухпроводную линию, имеющую сравнительно низкие потери, на это можно было бы закрыть глаза, и всё-таки с переменным успехом работать в эфире, но тут сразу возникает другая проблема — а как же конструктивно подвести ту самую открытую двухпроводную линию к столу оператора? Не будешь ведь то и дело выбегать на балкон к установленному там согласующему устройству!

Если есть возможность пропустить проводники через окно — это прекрасно. А если нет? Да и стоит ли иметь возле своего рабочего места определенное ВЧ излучение? К тому же, согласующее устройство для симметричного фидера несравнимо сложнее конструктивно и в настройке, чем согласующее устройство для несимметричной нагрузки.

Предлагаемый вариант антенной системы на основе разработки Олега Сафиуллина, UA4PA, решает большинство поставленных вопросов. Такая антенна отнюдь не призвана заменить другие, гораздо более эффективные конструкции, но может заинтересовать тех радиолюбителей, которые не имеют достаточных ресурсов, свободной площади и подходящих опор для развешивания полотна антенны.

Многих начинающих коротковолновиков в базовом описании антенны UA4PA часто отпугивает необходимость установки на крыше вертикального штыря высотой 11,2 м и проблема расположения на ограниченном пространстве под ним противовесов такой же длины. Между тем, в журнале «Радио», в прежние годы едва ли не единственном источнике нужной для радиолюбителя информации, давно была предложена идея о применении данного способа согласования к диполю, имеющему практически любые размеры плеч. При этом отмечалось, что за счет увеличения эффективной излучающей части такая антенна даже лучше относительно короткого вертикала работает на низкочастотных диапазонах, а также сам диполь может быть с успехом расположен и в виде Inverted Vee.

На радиостанции UB5LEW почти 20 лет в качестве надёжного резерва с успехом использовался наклонный луч длиной 35,5 м с питанием с конца, но при помощи соответствующего отрезка кабеля соединённый с согласующим устройством.

Сама идея Олега UA4PA активно обсуждалась в радиолюбительских кругах и на соответствующих форумах в Интернете. Главным недостатком подобной антенны её рьяные противники (впрочем, в основном «теоретики», даже не ставившие перед собой задачу практических испытаний конструкции) называли работу коаксиального кабеля в режиме стоячей волны — дескать, всем известные компьютерные программы при анализе потерь просто «приходят в ужас».

Да, по-видимому, для сторонников QRO, любителей «закачать киловатт», эта антенна действительно не подходит — кабель может попросту расплавиться и сгореть. Однако для многих коротковолновиков, довольствующихся стандартной колебательной мощностью импортного аппарата в 100 Вт, потери в кабеле, который функционирует в режиме 100% стоячей волны (в данном случае это же вовсе и не фидер, а часть самого антенного полотна, только лишь почти не излучающая), отнюдь не так страшны, как их представляют.

Естественно, потери есть в любом реальном фидере, но их можно в какой-то мере снизить, используя, например, кабель с более высоким волновым сопротивлением или же лучшего качества.

Ранее для такой антенны у автора применялся 100-омный кабель РК-100-4-31 диаметром около 8 мм с двойной оплёткой и омеднённой стальной жилой, а теперь — РК-75-7-11. Для того чтобы он, довольно толстый и упругий, не ползал по рабочему столу миниатюрным и лёгким коробком согласующего устройства, короткая часть линии вблизи согласующего устройства — длиной примерно до полуметра — вообще выполнена из тонюсенького RG-58.

Неоспоримое достоинство способа согласования, предложенного Олегом UA4PA, — настройка всей антенной системы для работы на любом диапазоне непосредственно на рабочем столе коротковолновика. При этом между трансивером и согласующем устройством (а далее — начинается сама антенна!) легко достигается КСВ=1, т.е. выходной каскад выдаст «на гора» все 100% положенной мощности, а единственный КПЕ позволяет при необходимости мгновенно подстроить антенну поточнее и на краях диапазонов.

К недостаткам такого согласующего устройства можно отнести лишь необходимость подбора отводов в катушке колебательного контура, а также ограниченность применения — исключительно с одной данной антенной в её конкретном исполнении и расположении. Любые попытки применить готовое согласующее устройство с какой-либо другой антенной обязательно приведут к появлению определённого рассогласования, и неизбежно потребуется полная перенастройка всего устройства.

Отдельные радиолюбители, установив вертикальный излучатель высотой 11,2 метров и подключив его через коаксиальный кабель произвольной длины и согласующее устройство Т-образного типа (например, фирмы MFJ), добились превосходных результатов. Что же, замечательно! Только не следует утверждать, что в данном случае якобы используется «антенна UA4PA», не замечая при этом, что от самой идеи согласования «по Сафиуллину», кроме длины штыря, ничего не осталось…

Схема СУ приведена ниже (для упрощения показаны отводы только для одного диапазона) и каких-либо особенностей не имеет — обычный параллельный колебательный контур (как и в оригинале антенны UA4PA) с индикатором протекающего в антенне тока.

Сравнивая предлагаемое согласующее устройство с широко распространёнными Т-образными, Г-образными и П-образными согласователями, легко заметить выигрыш по эргономичности (один переключатель диапазонов и всего одна ручка плавной настройки) и по габаритам. Впрочем, как говорится, и тут возможны варианты, вплоть до применения роликовых вариометров.

Сама антенна представляет собой наклонную вниз одним краем, известную конструкцию G5RV с двухпроводной воздушной линией.

Размеры вибратора (материал — биметалл медь/сталь диаметром 2 мм) — общей длиной около 31 м — выбраны исходя из имеющихся возможностей размещения на местности. Верхняя часть непосредственно активного полотна представляет собой некое подобие вертикала (к сожалению, в какой-то степени приближенного верхним концом к стене панельного девятиэтажного дома — а куда тут денешься), а вторая половина — соответственно, противовеса. Двухпроводная линия, идущая к балкону, и далее, без каких-либо ухищрений, сам кабель (естественно, с учётом коэффициента укорочения) дополняют длину всей системы до требуемых 42,5 метров.

Размеры линии — длина каждого проводника по 10,4 метра, материал — медный провод диаметром 1,8 мм, изоляционные распорки, установленные через каждые 30 см, выполнены из листового фторопласта толщиной 3 мм. Расстояние между проводниками не критично, и для волнового сопротивления 200 — 400 Ом находится в пределах 50 — 150 мм (в моей антенне — 50 мм).

 

При этом:

а) отсутствуют дополнительные потери на участке «балкон — центр полотна» за счет замены коаксиального кабеля воздушной линией, и

б) имеется достаточно комфортное продолжение антенно-фидерного устройства непосредственно по квартире (в моем случае — в следующую от балкона комнату) коаксиальным кабелем.

Единственный критичный параметр — это необходимая длина отрезка кабеля от двухпроводной линии до согласующего устройства, которая рассчитывается по формуле:

где: lкаб — длина кабеля, м;

lиз — длина излучателя в метрах, которая в данном случае складывается из длины половины примененного диполя (15,5 м) и длины проводника двухпроводной воздушной линии (10,4 м), т.е. общая длина составляет 15,5+10,4=25,9 м;

е — коэффициент укорочения, для большинства отечественных кабелей с изоляцией центрального проводника из стабилизированного полиэтилена е =1,51.

Таким образом, в этом (для каждого будет свой) случае длина кабеля составляет:

Излишек в любом удобном месте можно свернуть в бухту. Олег UA4PA указывал на желательность применения кабеля с более высоким волновым сопротивлением (для снижения потерь), а также на возможность подстановки в формулу вместо значения 42,5 логически напрашивающихся кратных величин в 85 или же 21,3 м (в последнем случае антенна будет работать только в диапазонах от 40 до 10 м).

 

Согласующее устройство

 

Размеры примененного мной корпуса согласующего устройства невелики — всего лишь 190x125x70мм, и он весьма гармонично смотрится в комплекте с трансивером Yaesu FT-897. Для достижения желаемой малогабаритности устройства я сознательно отошел от классически принятых канонов, уменьшив расстояние между катушками и стенками корпуса в ущерб некоторой доле эффективности.

Конструкция согласующего устройства:

   

Переключатель SA1 (по схеме выше) — обычный ПГК, 11П4Н (11 положений, 4 направления). КПЕ С1 — с максимальной емкостью около 150 пФ. Можно применить КПЕ с большей максимальной емкостью, а то и вообще отказаться от дополнительных конденсаторов и галеты SA1.4, но при этом следует иметь в виду, что настройка контура станет значительно «острее».

Кстати, даже при небольшой мощности возбуждения напряжение на колебательном контуре может достигать значительной величины. Дополнительно «пристегиваемые» конденсаторы при подводимой мощности порядка 100 Вт (импортный трансивер либо UW3DI с выходным каскадом на лампе ГУ-29 и т.п.) должны иметь рабочее напряжение не ниже 2 кВ (обычные КСО-3 с напряжением до 500 В «прошивает»). Остальные детали обозначены на принципиальной схеме или видны на фото согласующего устройства и дополнительных пояснений не требуют.

Катушки для СУ каждый радиолюбитель свободно подберет из любых имеющихся в наличии с близкими параметрами — они абсолютно не критичны, общее количество витков вполне можно «прикинуть на глаз», исходя из самого низкочастотного требуемого диапазона, а отводы будут подобраны в процессе настройки. В подходе к выбору моточных изделий следует руководствоваться одним — желательно добиться как можно более высокой добротности катушки. Если есть возможность, катушки целесообразно выполнить из посеребренного провода (хотя бы L1).

Данные катушек индуктивности: L1 намотана на керамическом ребристом каркасе (а можно и без него) диаметром 32 мм и содержит 8 витков посеребренного провода 02,2 мм, намотка с шагом 5 мм; L2 намотана на керамическом каркасе 060 мм и содержит 23 витка провода ПЭВ-2 диаметром 1,2 мм, намотка с шагом 1,8 мм.

Переключаемые по диапазонам отводы от катушек, считая от верхнего (по схеме) вывода (указано их приблизительное положение), а также емкости подключаемых на низкочастотных диапазонах дополнительных конденсаторов приведены в таблице:

 3,5 МГц7 МГц10 МГц14 МГц18 МГц21 МГц24 МГц28 МГц
SA1.1От 4-го витка L1От 6-го

витка L1

От 4-го

витка L1

От 3-го витка L1От 6-го витка L1От 4-го витка L1От 3-го витка L1От 2-го витка L1
SA1.2От 4-го витка L2От 4-го

виткa L2

От 4-го

витка L2

От 4-го витка L1От 3-го витка L1От 3-го витка ИОт 3-го витка L1От 3-го витка L1
SA1.3От 18-го витка L2От 12-го виткa L2От 8-го витка L1От 8-го витка L1От 6-го витка L1От 5-го витка L1От 4-го

витка L1

SA1.4430 пФ220 пФ150 пФ


Настройка

 

После заделки разъемов, вооружившись терпением, пинцетом и паяльником, можно приступать к настройке согласующего устройства. На первоначальном этапе с помощью элементарных измерительных приборов — ГСС и лампового вольтметра, либо ГИРа — желательно подобрать отводы контура по диапазонам при среднем положении ротора КПЕ и отключенном от согласующего устройства передатчике. Затем,контролируя КСВ по включенному между трансивером и согласующим устройством КСВ-метру либо посматривая на запрятанный в «буржуйский» аппарат ЖКИ, подбирается согласование 50-омного выхода передатчика с контуром, т.е. отвод делается в той точке, где входное сопротивление будет около 50 Ом. При этом следует учитывать, что, скорее всего, может потребоваться и подбор точки включения в контур кабеля антенны на каждом отдельном диапазоне.

Конкретно все налаживание согласующего устройства не составляет особого труда и вполне доступно даже начинающему коротковолновику (в этом случае для простоты и приобретения начального опыта можно ограничиться одним диапазоном — 80 или 40м). А в итоге радиолюбитель получает простую, дешевую, малозаметную и труднодоступную для посторонних людей коротковолновую антенну, позволяющую даже в стесненных городских условиях неплохо работать в эфире на всех любительских KB диапазонах!

Кстати, в диапазоне 160м параллельный контур согласующего устройства у меня не используется, т.к. вибратор при имеющейся длине в 42,5 м является полуволновым только для 3,5 МГц. Примерно равный по длине четверти волны на 1,8 МГц, он согласовывается с помощью последовательно включенной небольшой дополнительной катушки (каркас — диаметром 25мм, провод ПЭВ-2 — диаметром 1,5 мм, 18 витков, намотка — виток к витку). Для большей эффективности следует настроить и сам контур СУ на 160 м, при этом либо включить специальную удлинительную индуктивность между контуром и разъемом для кабеля, либо в формуле для расчета длины кабеля применить исходную цифру 85 м. В этом случае методика настройки согласующего устройства на 1,8 МГц будет аналогична другим диапазонам.

 

Результаты

 

В заключение, несколько слов об эффективности антенны. За счет наклонного расположения вибратора, в какой-то степени приближающегося к вертикали, значительная составляющая излучения в диаграмме направленности приходится на прижатый к земле лепесток, что благоприятно для проведения дальних радиосвязей. При установке антенны возможны любые практически осуществимые вариации как с пространственным расположением и длиной элементов в любом конкретном месте, так и с размерами согласующей линии — главное, лишь бы общие габариты вписывались в формулу.

Любители компьютерных расчетов могут смоделировать ожидаемые диаграммы направленности, а также посчитать КПД антенны и «недопустимые потери» в кабеле 🙂

В процессе настройки согласующего устройства на трансивере FT-897 с выходной мощностью 100 Вт в диапазоне 1,8 МГц были проведены радиосвязи с Oh4XR, UA9KAA, LA3XI; в диапазоне 3,5 МГц — с UA0WB, RKOUT, E7/DK9TN; в диапазоне 7 МГц — с 4S7AB, P40L, VQ9JC; в диапазоне 10 МГц — с 9M6XRO/P, TS7TI, OY6FRA; в диапазоне 14 МГц — с КН6МВ, 9Q500N, WH0DX (с первого вызова!), в диапазоне 18 МГц — с KH0/KT3Q, ZS6X, 9М2ТО, в диапазоне 21 МГц — с BD6JJX; BD1ISI, HS0ZEE; в диапазоне 24 МГц —CVQ9LA, 5Р5Х, EX8MLE; в диапазоне 28 МГц — с 4J9M, OG20YL, IK2SND.

Справедливости ради отметим, что все радиосвязи были телеграфные, поскольку из всех других видов излучения предпочтение этому.

Антенна в ежедневной практической работе на всех любительских диапазонах полностью оправдала ожидаемые рабочие характеристики и позволяет проводить уверенные радиосвязи со всеми континентами и различными экспедициями, не испытывая особой потребности в дополнительном усилителе мощности. Впрочем, исключив из схемы сравнительно слаботочный тумблер (здесь он применен сознательно, для удобства коммутации заземления антенны) и увеличив электрическую прочность КПЕ и катушек, вполне допустимо увеличить колебательную мощность передатчика до 300 — 500 Вт. Аналогичный вариант конструкции длительное время эксплуатировался автором совместно с разными усилителями на лампах ГУ-50 (от 2 до 4 шт.), при этом сколько-нибудь заметного, а уж тем более, существенного нагрева кабеля, а также помех телевидению совершенно не наблюдалось.

При соответствующей настройке данное согласующее устройство можно с успехом применить и с другой антенной (например, Delta Loop) для повышения эффективности ее согласования при работе на всех любительских диапазонах.

UT2LA

73!

Холахуп — приемная антенна на диапазон 160 метров | RUQRZ.COM

Холахуп — антенна (в переводе с английского — обруч, кольцо) предназначена для приема слабых сигналов любительских радиостанций в условиях эфирной обстановки индустриального города на 160 метровом KB диапазоне.

Как известно, простые антенны типа GP, Sloper, LVV, всевозможные рамки и прочие антенны хорошо работают на передачу, но плохо работают на прием, так как в условиях большого города воспринимают всевозможные индустриальные помехи, что, в итоге выражается в большой зашумленности эфира (диапазона).

В таких условиях на низкочастотных диапазонах очень трудно реализовать предельную чувствительность своего приемника или трансивера (обычно 0,5…1,0 мкВ). Реальная чувствительность трансивера на диапазоне 1,8 /МГц в условиях большого города ограничивается 10… 15 мкВ. Для отстройки от помех приходиться включать аттенюаторы, применять направленные антенны, специальные фильтры и т.п. Аналогичная картина, хотя и в меньшей степени, наблюдается и на остальных KB диапазонах. На более высокочастотных диапазонах 14 — 28 МГц помех меньше, но они все равно присутствуют и ухудшают условия приема. В сельской местности (вдали от цивилизации) индустриальных помех почти нет, поэтому возможность реализации максимальной чувствительности своего трансивера больше. При этом не происходит модуляции одной принимаемой радиостанции другой и, используя качественный приемник, на одной частотe можно одновременно слушать две-три станции различая их по тембру звучания.

В целях реализации максимально возможной чувствительности радиоприемного устройства на диапазоне 1,8 МГц предлагаю простую кольцевую антенну (хулахуп), работающую только на прием. Указанная антенна отличается повышенной помехозащищенностью, так как не воспринимает магнитную составляющую электромагнитного поля помехи H, уменьшая на эту величину суммарные помехи на входе трансивера.

Наличие ярко выраженного максимума в диаграмме направленности антенны позволяет в ряде случаев даже ослабить помехи. Кроме того, вращая антенну в различных плоскостях можно дополнительно отстроиться от помехи, идущей с определенного направления.

Изменяя положение антенны в горизонтальной и вертикальной плоскости, можно улучшить качество приема и в том случае, когда сигнал и помеха приходят с одного направления, но под разными углами к горизонту. Более того, благодаря настройки антенны в резонанс повышается избирательность приемника, по зеркальным и другим побочным каналам.

Конструкция антенны довольно простая. Для ее изготовления необходим отрезок коаксиального кабеля (РК-75, РК-50) длиной; 4,0 м и диаметром 7-10 мм, у которого, по середине вырезается внешняя виниловая оболочка и медная оплетка («чулок») на расстоянии 10 мм, рис.1.

После чего, указанный отрезок кабеля сматывается в бухту из 4-х витков. Между витками кабеля прокладывается петля связи (незамкнутое кольцо) из любого тонкого монтажного провода.

В результате получается компактное кольцо (хулахул) диаметром около 32 см, которое для фиксации в нескольких местах обматывают изолентой или скотчем, рис. 2.

К двум концам центральной жилы коаксиального кабеля подключается переменный конденсатор С1 обязательно с воздушным диэлектриком (для повышения добротности) и емкостью около 1000 пф. Подойдет 2-х секционный конденсатор от старых радиовещательных приемников 2х495 пф, обе секции которого включены параллельно.

Вход трансивера или радиоприемника подключается к одному концу витка связи, другой конец витка соединяется с корпусом (общим провод или клемма «земля»), рис. 2.

Для сужения полосы пропускания антенны, и, следовательно, лучшей отстройки от помех последовательно с петлёй связи можно включить конденсатор небольшой емкости С2, от величины которого будет зависит добротность всей антенной системы и полоса пропускания.

Как показали эксперименты без конденсатора С2, полоса перекрываемых частот составляет от 1830 до 1870 кГц. При подключении конденсатора С2 = 20пФ полоса пропускания антенны сужается до: 5-10 кГц в центе DX участка 160 метрового любительского диапазона.

Переменным конденсатором С1 вся антенная система настраивается в резонанс, по максимальной громкости принимаемого сигнала. При этом резонанс отчетливо воспринимается на слух. Диаграмма направленности антенны имеет вид восьмерки с ярко выраженным минимумом и максимумом, рис. 3.

Если чувствительности трансивера недостаточно, то на его входе можно добавить усилитель высокой частоты (УВЧ) с коэффициентом усиления К = 20-30 dB. Однако, не следует увлекаться большим усилением УВЧ, так как в этом случае снижается верхняя граница динамического диапазона приемника.

Электрические схемы УВЧ Неоднократно публиковались в радиолюбительской литературе, например, рис.5 и 6. Здесь трансформатор Т1 наматывается на ферритовом кольце 1000 НМ, диаметром 7-10 мм, скрученным вдвое проводом ПЭВ 0,2 мм. Конец одного провода соединяется с началом другого, образуя среднюю точку. Лучшим из транзисторов, работающих в УВЧ является КТ93ЭА (вместо КТ606А), он наиболее линеен из ранее выпускавшихся. Детали, обозначенные звездочкой, влияют на коэффициент усиления УВЧ и подбираются при настройке. В остальном схема особенностей не имеет. При работе с указанной антенной ее можно вращать в пространстве в различных плоскостях, ориентируясь по наиболее уверенному приему DX станции.

С целью исключения экранирования антенны железобетонными перекрытиями антенну нужно вынести хотя бы на подоконник на балкон, конструкция антенны может быть любой, например, такой как приведено на рис 4.

Холахуп устанавливается сверху металлической коробки (дюраль или двухсторонний стеклотекстолит), в которой размещается конденсатор переменной емкости. Ручка настройки выводится на переднюю панель, коаксиальный разъем для подключения приёмника на заднюю панель. Если будет применяться УВЧ, то необходимо предусмотреть выводы для его питания.

Изменив размеры коаксиального кабеля, антенну можно перестроить и на другие любительские или вещательные диапазоны.

Заключение
Раньше в зимнее время на диапазоне 1,8 МГц, особенно, на восходе и заходе солнца получалось так, что я (US0IZ), работая на CQ (общий вызов) не слышал многих корреспондентов: К, W, PY, VK, J А и других, которые меня вызывали. Теперь же получается наоборот — я слышу даже намного больше, чем мне отвечают. Следовательно, предстоит «новый виток спирали» — совершенствование своего передатчика ТХ и передающих антенн.

Творческий процесс продолжается… и так до бесконечности. Такова уж доля радиолюбителя-коротковолновика.

Что еще почитать по теме:

Всеволновая КВ антенна — Антенны КВ

Когда нет возможности установить отдельные КВ антенны на различные диапазоны, хорошие результаты можно получить с всеволновой КВ антенной.

Она представляет собой несимметричный диполь, который запитывается через согласующий трансформатор коаксиальным кабелем с волновым сопротивлением 75 Ом.

Рис.1

Антенну лучше всего выполнить из биметалла диаметром 2…3 мм — антенный канатик и медный провод со временем вытягиваются, и антенна расстраивается. Согласующий трансформатор Т можно выполнить на кольцевом магнитопроводе сечением 0,5…1 см2 из феррита с начальной магнитной проницаемостью 100…600 (лучше — марки НН).

Можно в принципе использовать и магнитопроводы от ТВС старых телевизоров, которые изготовлены из материала НН600. Трансформатор (он должен иметь коэффициент трансформации 1:4) наматывают в два провода, а выводы обмоток А и В (индексы «н» и «к» обозначают соответственно начало и конец обмотки) соединяют, как показано на рис.1б. Для обмоток трансформатора лучше всего использовать многожильный монтажный провод, но можно применить и обычный ПЭВ-2. Намотку осуществляют сразу двумя проводами, укладывая их плотно, виток к витку, по внутренней поверхности магнитопровода. Перехлеста проводов не допускается. По внешней поверхности кольца витки размещают с равномерным шагом.

Точное число двойных витков несущественно — оно может быть в пределах 8…15. Изготовленный трансформатор помещают в пластмассовый стаканчик соответствующего размера (рис.1в поз.1) и заливают эпоксидной смолой. В незастывшую смолу по центру трансформатора 2 утапливают головкой вниз винт 5 длиной 5…6 мм. Он используется для крепления трансформатора и коаксиального кабеля (с помощью обоймы 4) к текстолитовой пластине 3. Эта пластина длиной 80 мм, шириной 50 мм и толщиной 5…8 мм образует центральный изолятор антенны — к ней крепятся и полотна антенны.

Настраивают антенну на частоту 3550 кГц подбором по минимуму КСВ длины каждого полотна антенны (на рис.1 они указаны с некоторым запасом). Укорачивать плечи надо постепенно примерно на 10…15 см за один прием.

После завершения настройки все соединения тщательно пропаивают, а затем заливают парафином. Обязательно следует покрыть парафином оголенную часть оплетки коаксиального кабеля. Как показала практика, парафин лучше других герметиков защищает детали антенны от воздействия влаги. Покрытие из парафина не стареет на воздухе.

Антенна, изготовленная автором, имела полосу пропускания при КСВ=1,5 на диапазоне 160 м — 25 кГц, на диапазоне 80 м — около 50 кГц, на диапазоне 40 м — примерно 100 кГц, на диапазоне 20 м- около 200 кГц. На диапазоне 15 м КСВ лежал в пределах 2…3,5, а на диапазоне 10 м — в пределах 1,5…2,8.


Поделитесь записью в своих социальных сетях!

При копировании материала обратная ссылка на наш сайт обязательна!


Антенны | RUQRZ.COM — сайт радиолюбителей.

Антенны

Антенны, антенные устройства

На радиолюбительских форумах и по сей день «ломается немало копий» по поводу полуволновых вибраторов, питаемых с конца, и по поводу антенны Фукса, в частности. Принцип работы этих антенн практически не описан в литературе и вызывает множество дискуссий. Описание конструкции часто имеет совсем мало общего с оригиналом, запатентованным в свое время господином Фуксом. Хочу поделиться результатами своих наблюдений и некоторыми соображениями.
Читать далее →

Балун выполнен на ферритовом тороидальном сердечнике FT140-43 (можно использовать ферритовые кольца 400-600НН размером около 35.55×23.0×12.7 мм). На обеих половинках этого сердечника намотаны две обмотки по 12 витков симметричной линией LFL с волновым сопротивлением 100 Ом.

Читать далее →

001

В настоящее время KB антенна «Inverted V» («перевернутая V») достаточно хорошо известна коротковолновикам. Это простая в изготовлении и установке антенна с круговой диаграммой направленности, параметры которой в основном соответствуют параметрам полуволнового диполя. Так, в диапазоне 80 м с такой антенной, установленной на крыше двухэтажного дома, при мощности передатчика около 20 Вт, работая SSB, в районе полуночи, когда стихает шум на диапазоне, удается проводить связи на расстояния до 2500 км. При этом RS достигает 56.

Читать далее →

001В антенной технике широко применяют элементы, которые в радиолюбительской среде принято называть «балун» (BALUN — от английского «balanced-to-unbalanced transformer»). Они позволяют запитывать антенны с балансным (симметричным) входом коаксиальной линией. Известны два типа таких элементов, которые часто называют «BALUN по напряжению» (voltage BALUN) и «токовый BALUN» (current BALUN). Читать далее → 001Показанная на рисунке антенна SLOPER может быть установлена на минимальной площади и с успехом использована в диапазонах 40 и 160 м. Антенна изготавливается фирмой ALPHA DELTA в США. Читать далее →

29-Delta Loop Antenna

На Интернет форумах для формирования излучения с вертикальной поляризацией в основном обсуждается запитка «дельты» в «нижний» (от земли) угол

Рис. 1

Рис. 1

или на расстоянии L/4 от «нижней» точки В, т.е. вблизи земли.

Рис. 2

Рис. 2

На рисунках 1 и 2 в точках Б и Г пучность тока, в точках А и В — пучность напряжения.

Читать далее →

Рис. 2

В любительской практике крайне редко используются антенны, входное сопротивление которых равно волновому сопротивлению фидера, и в свою очередь, выходному сопротивлению передатчика (идеальный вариант согласования). Чаще всего такого соответствия нет и приходится применять специальные согласующие устройства. Антенну, фидер и выход передатчика следует рассматривать как единую систему, в которой передача энергии должна осуществляться без потерь.

Читать далее →

Рис. 2

Одной из самых эффективных антенн для низкочастотного DX-инга является система фазированных вертикалов, то есть два…четыре вертикальных четвертьволновых излучателя (штыря), находящихся на расстоянии 1/8…1/4 длины волны друг от друга с непосредственным возбуждением каждого излучателя отдельной линией питания. Такие антенны при внешней простоте имеют выдающиеся показатели — усиление от 4 до 7 дБ по отношению к полуволновому диполю на высоте в 0,5 длины волны, подавление заднего лепестка до 20…30 дБ, вертикальный угол излучения от 15 до 30 градусов.
Читать далее →

Рис. 2
Простая и эффективная антенна для диапазона 160 м — мечта почти каждого радиолюбителя, тем более, завзятого «охотника за DX». Как без больших технических и материальных затрат начать работать в этом диапазоне? Ведь диапазон 160 м предъявляет повышенные требования как к навыкам работы радиолюбителя в эфире, так и к конструкции антенн. Если антенны для 10, 15 или 20-метрового диапазона имеют малые габариты, то изготовить антенну на диапазон 160 м совсем непросто.

Читать далее →

Всеволновая антенна Levy | RUQRZ.COM

Всеволновая антенна Levy

Под названием «Levy» мы понимаем все антенны с центральной запиткой и двухпроводной линией с любой длиной лучей и проводов линии.

Рассмотрим вначале антенну типа LW (рис.1). Длина луча должна быть не менее четверти длины волны самого низкочастотного из используемых диапазонов. Согласующее устройство поможет настроить его на любую частоту. LW можно представить, как половину антенны Levy.

Но этот вариант неудобен, поскольку токи ВЧ, текущие по лучу и согласующему устройству требуют хорошего заземления всей системы. Необходимо не размещать антенны телевидения в этом огромном «конденсаторе» (луч-земля), что вызывает очевидные трудности.

Антенна «Levy» (Двойная антенна Цепеллина) показана на рис. 2.

До сих пор говорилось, что излучающим проводам вибраторов необходимо иметь резонансные длины 41, 40 м или 20, 40 м. В действительности это условие не столь необходимо. Четверть волны — это минимальная длина, если вы хотите сохранить эффективность антенны, но достаточно хорошие результаты можно получить, используя и более короткие лучи.

Свойства двухпроводной линии допускают отводить ее от полотна антенны не перпендикулярно вниз, как это желательно для коаксиального кабеля. И в этом случае токи ВЧ компенсируются в согласующем устройстве (потенциал ВЧ всегда равен нулю по отношению к земле).

Эта симметрия по отношению к земле делает Levy не влияющей на прием TV. Длину двухпроводной линии выбирают наиболее короткую.

Можно придать антенне форму перевернутого V. Нижние концы антенны должны быть на высоте не менее 3 м , что диктуется соображениями безопасности, т.к. на концах антенны пучность напряжения.

Излучающая часть Levy не определяется лучами. Ее устройство согласования, двухпроводная линия, лучи — это элементы нераздельные.

Линия находится в режиме стоячих волн, и ошибочно будет называть эту линию «фидером». Настоящий фидер в Levy — это отрезок коаксиального кабеля, соединяющего выход трансивера с согласующим устройством антенны и КСВ-метром. Он работает в режиме бегущей волны с КСВ-1, что обеспечивается согласующим устройством. Согласующее устройство компенсирует реактивное сопротивление линии и излучающих проводов, а также трансформирует в 50 Ом полное сопротивление линии.

Антенна Levy возбуждается нечетным числом полуволн, что определяется общей длиной проводной части и реактивными сопротивлениями катушек и конденсаторов согласующего устройства.

Согласующие устройства для антенн Levy

Запитка антенны Levy

Все не апериодические антенны хорошо настраиваются с колебательным контуром, но вибраторная нагрузка может резонировать на многих частотах, тогда как колебательный контур состоящий из катушки и конденсатора — лишь на одной частоте.

Большинство станции имеют устройства согласования, которые компенсируют реактивное сопротивление и трансформируют сопротивления. Рассмотрим несколько схем согласующих устройств. В устройстве, показанном на рис. 1, Balun на входе, имеющем 50 Ом, постоянно согласован с отношением 1:1, он питает двойную L с 50 Ом симметрично. Конденсаторы С1 и С2 одинаковы и вращаются одной ручкой.

Конструкция (рис.2) не требует использования Balun, но необходимо иметь сдвоенный КПК.

Поскольку имеется двойной контур она очень селективна, т.к. имеет острый резонанс. Это позволяет провести настройку антенны при приеме. Считают, что у Levy характеристики лучшие, чем у KB антенн с укорачивающими катушками, с теми же линейными размерами. Однако за добротность, позволяющую получить эти результаты, расплачиваются необходимостью подстройки согласования при QSY на кГц!

В зависимости от конкретного диапазона необходимо питать двухпроводную линию в узле тока или напряжения и переходить с помощью зажимов от последовательного колебательного контура к параллельному.

Схем очень много — наиболее легко выполнима конструкция с автотрансформаторной связью, но она вносит некоторую ассиметрию. Самая простая (рис.3) опубликована F3LG. Автотрансформаторный вариант (рис.4) представлен F9HJ.

Еще один вариант, где выходное сопротивление определяется конденсаторами, показан на рис.5

На всех KB диапазонах Levy, бесспорно, лучшая антенна: она проста и работает в нужных участках коротких волн, излучающее полотно одно и тоже для всех диапазонов. Благодаря симметрии и двухпроводной линии питания, она не дает TVI.

КОЕ-ЧТО ОБ АНТЕННАХ

Предлагаю Вашему вниманию интересные, на мой взгляд, сведения об антеннах и антенных усилителях, полученные из разных источников и в результате экспериментов.

Итак, знаете ли Вы, что:

-самый многоэлементный «волновой канал», описанный в радиолюбительской литературе — 34-элементная антенна на диапазон 1296 МГц, предложенная G8AZM, причем длина траверсы не такая уж и большая — 2м

-первое место по длине траверсы (16 метров!) занимает 24-элементная антенна (на 144 МГц) конструкции DJ40B, которая является и самой «мягкой» из «волновых каналов», так как при транспортировке может сворачиваться в рулон;

-длину траверсы около 10 метровимеет 22-элементный вариант антенны Шпиндлера на 144 МГц [2]. Эта конструкция в рулон не сворачивается!

-в антеннах «волновой канал» с простыми рефлекторами зависимость коэффициента защитного действия Кзд (т.е. отношения излучения «вперед/назад») от количества директоров имеет осциллирующий характер с экстремумами около -10 дБ и — 20 дБ. Наибольший Кзд имеют антенны с 2,5, 8 и т.д. директорами;

-при регулировке «волновых каналов» возможны два варианта: при настройке антенны на максимальное усиление Кзд может уменьшиться на 10 дБ и более, а при настройке на максимальный Кзд усиление снизится в пределах 0,5… 1 дБ;

-в антеннах с т.н. «поглощающим» элементом, расположенным позади основного рефлектора на расстоянии 0,18…0,25 длины волны, удается получать очень большие значения Кзд (свыше 70 дБ!), однако, в довольно узком секторе излучения;

-одной из причин ухудшения ДН как KB, так и УКВ антенн могут быть резонансные явления в несущей конструкции [6]. Устранить их можно разными способами: изоляцией главного элемента от траверсы, одеванием на траверсу ферритовых олец вблизи активного элемента или, проще всего, покрасив траверсу (но не элементы!) краской с добавлением порошка графита;

-при длинном питающем фидере улучшить симметрирование антенны и уменьшить местные помехи можно с помощью двух ферритовых колец. Одно устанавливается на фидер вблизи точек питания антенны, а другое — возле антенного входа/выхода устройства. В некоторых сложных случаях может потребоваться дополнительное размещение несколько ферритовых колец вдоль всего фидера и подбор расстояния между ними экспериментально;

-применив в качестве антенного усилителя (АУ) дифференциальный каскад, можно не только обеспечить широкополосное симметрирование антенны, но и значительно снизить местные помехи, в т.ч. и от автомобилей. В качестве дифференциального ТВ АУ для MB хорошо работает м/с К174ПС1.

-используя некоторые цифровые ЭСЛ м/с серии К500 (К100) в линейном режиме, можно изготовить дифференциальный АУ с полосой пропускания до 160… 180 МГц. Коэффициент усиления (обратно пропорциональный ширине полосы пропускания) такого АУ достигает 40 (!) дБ.

Что еще почитать по теме:

Антенны UA6AGW версий 40.01 и 80.01 | RUQRZ.COM

pic05

С момента написания статьи об антеннах (1,2) конструкции UA6AGW прошло немало времени. Антенны активно эксплуатировались в эфире, антенна для 40-метрового диапазона была продемонстрирована на слете радиолюбителей «Майкоп 2011». Появились первые отклики от радиолюбителей, повторивших конструкцию. Отклики имеют тональность от сдержанно-положительных до удивленно-восторженных. Удивление и восторг вызывают способность антенны работать с очень небольших высот в самых неподходящих условиях.

Радиолюбитель UR4LNJ (Виктор) из г. Харькова одним из первых сообщил об опытах с антенной v.40, выполненной из металлопластиковой водопроводной трубы. На эту антенну, лежащую на полу (только рамка была прислонена к табуретке, и находилась вертикально) комнаты, на первом этаже. Мощностью 18 Ватт, неоднократно, в разное время, были проведены связи с Крымом и получены хорошие рапорты 59, 59+.

О ещё более впечатляющих результатах сообщил радиолюбитель UA6BLX (Николай) из г. Апшеронска. Он, на антенну v.40 (так же выполненную из металлопластиковой трубы) расположенную в комнате, мощностью 30 Ватт, провел связи с весьма удаленными станциями. Находящимися, на востоке в Японии, Индонезии, на западе в Бразилии, Боливии, США и не только с ними.

Все это время, автором этих строк велась активная работа по совершенствованию конструкции антенн. Была проведена масса самых разнообразных опытов. Результаты получены, тоже самые разные. Наметились несколько возможных направлений развития идей заложенных в эту конструкцию.
Проверка параметров конструкции анализатором антенн АА-330М показала у обеих антенн наличие реактивной составляющей имеющей индуктивный характер. Устранению этого недостатка и поиску оптимальной конструкции и была посвящена работа, о которой я хочу рассказать.

Антенна UA6AGW v. 40.01

Для компенсации реактивной составляющей имеющую индуктивный характер достаточно увеличить емкость настроечного конденсатора С-2. Но для сохранения частоты настройки всей антенны придется укорачивать лучи подключенные параллельно этому конденсатору.

Учитывая, что емкость проводника расположенного в пространстве составляет приблизительно 8 пФ. на погонный метр, укорочение составит весьма значительную величину, приблизительно до 4-х метров. В этом случае антенна, очень сильно потеряет в эффективности.

Одним из результатов, опытов проведенных в летний период, является подтверждение, предположения (1) об использовании в этой антенне эффекта открытого В.Т. Поляковым и описанного в (3).

Применительно к этой антенне, названый эффект проявляется следующим образом. Уменьшение длинны лучей, менее 1/8 длинны волны, вызывает сильное снижение эффективности антенны. В эфире это выглядит следующим образом, радиостанции, которые отвечали с первого раза и оценивали сигнал на 59+10-20 дБ, перестают замечать мой сигнал и дозваться, кого-либо становится сложно.

Компенсировать реактивность можно и простым уменьшением размеров рамки (уменьшением индуктивности). Но, по моему глубокому убеждению, эффективность рамочной части, а соответственно и её размеры должны находиться в определенной пропорции с лучевой частью. В противном случае следует ожидать снижения КПД антенны.
Поэтому было принято решение лишь слегка уменьшить диаметр рамочной части и немного увеличить ёмкость настроечного конденсатора, как следствие, при этом лучи тоже стали несколько короче.

Укорочение лучей вызвало повышение напряжения на конденсаторах и при мощности порядка 100 Ватт, настроечный С2 (двухсекционный КПЕ 12…495 пФ.) стало пробивать. Для исключения пробоев в будущем и для упрощения конструкции, я принял решение применить высоковольтные конденсаторы постоянной емкости типа К-15 У-1, предназначенные для работы в резонансных схемах с высокой реактивностью и высоким напряжением. А настройку антенны производить, изменением длинны лучей.

Конструкция

Электрическая схема и основные размеры антенны:

Рис. 1

В данный момент длина мачты антенны равняется 7 метрам. Применены 3-х и 4-х метровые пластиковые радиально-диагонально армированные трубы, соединенные с помощью отрезка 48-ми мм. трубы. Излучающая рамка покрыта лаком «ХВ», но поскольку антенна подвергалась перевозке, а в дальнейшем предполагалась для установки на длительную эксплуатацию, то для защиты рамочной части антенны применена гофрированная диэлектрическая труба, применяемая в электротехнике. Она легко выдерживает механические и погодные воздействия и стоит очень недорого. Вариант монтажа:

Рис. 2

Как ни странно, у некоторой части радиолюбителей вызывает затруднение изготовление петли связи. Поэтому, несмотря на то, что здесь применяется та же петля связи, что и в предыдущей версии антенны, видимо, нужно подробнее рассказать об изготовлении и монтаже петли связи. Изготавливается она из коаксиального кабеля с таким волновым сопротивлением, на который рассчитан выходной каскад применяемого передатчика.

Конструкцию петли связи и способ её изготовления:

Рис. 4

Монтаж петли тоже требует выполнения некоторых правил.

ВАЖНО. Точка симметрии излучающей рамки (обозначена красной изолентой) и точка симметрии петли связи, (обозначена желтой изолентой) должны совпадать.

Рис. 5

Верхушка мачты и точки симметрии рамки и петли совпадают и крепятся, как показано на следующем рисунке.

ВАЖНО. На одинаковом расстоянии влево и вправо от точек симметрии (ориентировочно 7-8 см), петля связи с помощью кабельных стяжек крепиться к излучающей рамке.

pic6

Симметрия в этом месте важна, она позволяет избежать появления токов на оплетке питающего кабеля и работать без заземления. Выполнение всех этих рекомендаций, гарантирует технические характеристики антенны, описанные в статье (1).

Форма петли связи:

Рис. 7

Настройка антенны осуществляется регулировкой длины лучей.

Длинна лучей (от изолятора до изолятора, без учета заделки) на рисунке №1 указанна с некоторым запасом и обеспечит настройку антенны на частоту приблизительно 6900 кГц. Настройка легко выполняется подгибанием концов лучей, по минимуму КСВ на середине диапазона. Единственное требование при этом, укорачивать нужно симметрично с двух сторон.

Материалы в описываемой антенне применены такие же, как и в предыдущей версии.

Излучающая рамка может быть выполнена и из более тонкого кабеля с наружным диаметром оплетки (трубы) 15 мм. Антенна в этом случае становится более узкополосной. Но даже в этом случае ширина рабочей полосы по уровню КСВ-2,0 составляет лишь немногим меньше 200 кГц.

Антенна UA6AGW v. 80.01

В этой антенне, также имелась необходимость компенсировать реактивную составляющую. Исходя из того, что рамка 80-ти метровой антенны была изначально несколько коротковата, а связано это с тем, что кусок кабеля, примененный в ней, был немного короче необходимого, скомпенсировать реактивную составляющую удалось совсем небольшим укорочением рамки, некоторым увеличением ёмкости С-2 и укорочением лучей.

Антенна 80-ти метрового диапазона, по КСВ= 2,0 имеет вдвое меньшую полосу пропускания по сравнению с антенной на 40 метров. Притом, что и сам диапазон 80 метров несколько шире. Поэтому для того, что бы обеспечить работу антенны во всем частотном диапазоне, была разработана конструкция, позволяющая производить подстройку антенны в ходе эксплуатации. У меня антенны установлены непосредственно на земле, в пределах доступности, поэтому дистанционный привод я не изготавливал. В случае применения дистанционного привода эту операцию можно осуществлять прямо с места оператора.

Конструкция

Электрическая схема и основные размеры антенны:

Рис. 1

В этой антенне так же как в предыдущей в роли С1, используются конденсаторы типа К-15 У-1. В общем виде монтаж остался прежним.

pic02

Как видно из электрической схемы диаметр излучающей рамки в два раза больше чем у антенны 40-ка метрового диапазона. Во столько же раз больше и емкость конденсаторов. Для настройки антенны на частоту 3670, требуемая ёмкость конденсатора С-2 составляет около 112 пф.

Как показано в (1) Конденсатор С-2 находится в той части антенны, где значительные токи уже не текут, а высокие напряжения еще не появились. Таким образом опасаться серьезного излучения проводов идущих на С-2 не стоит. Но, тем не менее, было принято решение, это снижение изготовить в виде симметричной линии, у которой потери и способность излучать сведены к минимуму. Самая доступная и недорогая симметричная линия, как известно – «провод телефонный ТРП» («телефонная лапша»). Конечно, можно применить и, что ни будь более прочное, например ПРППМ. Но и «лапша» с успехом работает в этом месте.

Емкость одного погонного метра ТРП составляет 13-14 пФ. Если принять, что высота мачты этой антенны равняется 11 метрам, то понятно, что коробка с конденсаторами будет находиться на высоте примерно 8 метров. Если коробку с подстроечным конденсатором разместить на высоте 1,5 метров, то длина ТРП (со всеми издержками) получается около 7 метров. Отсюда 7х13(14)= 91(98)пф.+20 пФ. (подстроечный конденсатор)= 111(118)пФ. Ёмкости подстроечного конденсатора 20-30 пФ. достаточно настройки антенны на любой участок диапазона с КСВ=1,0

pic03

Петля связи, осталась прежней и не претерпела ни каких изменений.

pic04

Общий вид антенны:

pic05

Все основные материалы в описываемой антенне применены такие же, как и в предыдущей версии (2) антенны 80-ти метрового диапазона.

Заключение.

В заключении, хотелось бы остановиться на некоторых моментах, общих для обеих антенн.

Первое. Суть используемого в этой антенне (видимо впервые в мире) эффекта, открытого В.Т. Поляковым и описанного в (3) заключается, в возникновении в окрестностях магнитной антенны, пучности электрической составляющей электромагнитной волны. Возникающей в результате сложения электрической составляющей падающей волны и электрической составляющей собственного поля антенны. Такие же явления происходят и с магнитной составляющей но только в окрестностях электрических антенн (диполи, штыри…).

Второе. Антенны подвергшиеся модернизации (V.40.01 и V.80,01) утратили, хоть и не ярко выраженную, но все же имеющую место быть направленность. Проведены многократные сравнения модернизированных антенн, расположенных под углом 90 градусов по отношению друг к другу. Во всех случаях, при любом направлении на корреспондента, ни по приему, ни по передаче, не было обнаружено сколь ни будь заметной разницы. Другими словами, в горизонтальной плоскости, модернизированные антенны имеют близкую к круговой диаграмму направленности.

Третье. Проведены многократные опыты по сравнению эффективности антенн установленных на высоте 5,5 м. и 7,5 м. (имеется ввиду — высота верхней точки рамки). Не смотря на то, что разница в высоте установки составила почти 1,5 раза, во всех случаях, при любом направлении на корреспондента, ни по приему, ни по передаче не было обнаружено сколь ни будь заметной разницы. Другими словами, подтверждается первоначальный вывод о том, что для эффективной работы антенны, достаточно высоты установки равной 1/8 длины волны.

Четвертое. В ходе модернизации антенны стали миниатюрнее.

Антенна v.40.01 стала почти на 2 метра короче, а антенна v.80.01 более чем на 7 метров.
Пятое и последнее. Проведены многократные опыты по сравнению эффективности антенн прежней и новой конструкции. Во всех случаях, сколько-нибудь заметной разницы не обнаружено.

В целом антенны получились простыми и весьма эффективными.

UA6AGW, Грачёв Александр
г. Краснодар

ЛИТЕРАТУРА:
1. Грачёв А.В. Антенна UA6AGW v.40.-
Радио 2011, №2, с.59-61.
2. Грачёв А.В. Антенна UA6AGW v.80.-
Радио 2011, №8, с.60-61.
3. В.Т. Поляков О ближнем поле приемной
Антенны. Схемотехника 2006 №3 №4.

Что еще почитать по теме:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *