Время токовые характеристики предохранителей – ГОСТ 31196.4-2012 (IEC 60269-4:1986) Низковольтные плавкие предохранители. Часть 4. Дополнительные требования к плавким предохранителям для защиты полупроводниковых устройств

Содержание

Время токовая характеристика для предохранителей и выключателей

Здравствуйте, дорогие читатели! Сегодня узнаем, что такое время токовая характеристика (ВТХ), рассмотрим ВТХ на примере предохранителей и выключателей. И так…

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и автоматических выключателей.

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

  1. величина протекающего тока нагрузки
  2. продолжительность его воздействия

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

   Автоматический выключатель. Внутреннее устройство, характеристики.

   Виды предохранителей. Тип, устройство и конструкция.

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Время токовая характеристика (ВТХ) выражает графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

  • технические возможности
  • условия проверок
  • назначение

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

  1. рабочую область, в которой плавкая вставка остается целой и надежно обеспечивает протекание тока по защищаемой схеме
  2. зону протекания токов предельного отключения, в которой происходит разрыв электрической цепи

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

 Время токовая характеристика 
   Защитная характеристика плавкой вставки предохранителя 

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

  1. номинальным, который она способна выдерживать практически неограниченное время
  2. минимальным испытательным, под действием которого может проработать более одного часа
  3. максимальным испытательным, которое вызывает ее перегорание менее чем за один час

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

  1. перегрузов повышенными нагрузками, которые отключаются с задержкой
  2. коротких замыканий — КЗ, требующих максимально быстрой ликвидации

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

  • величину рабочего напряжения схемы, в которой должен работать предохранитель
  • предельный отключаемый ток у плавкой вставки, способный ее разорвать (отключить)
  • значение номинального тока предохранителя с учетом коэффициентов его нагрузки и отстройки от перегрузок.

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Как работает время токовая характеристика у автоматического выключателя

На выбор время токовой характеристики оказывают влияние:

  • конструктивные особенности встроенных защит
  • конфигурация выбранного графика

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

  1. тепловой нагрузки
  2. электромагнитного воздействия

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

 Время токовая характеристика
   Принцип работы теплового расцепителя

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

 Время токовая характеристика
   Принцип работы электромагнитного расцепителя

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Время токовая характеристика
  Время токовая характеристика автоматического выключателя

Время токовая характеристика, основные параметры графика

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

  1. верхней, учитывающей срабатывание защит непосредственно из холодного состояния +30О С
  2. нижней, созданной после повторного включения, когда конструкция автомата не успела остыть

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время токовой характеристики для выделения эксплуатационных областей:

  • внутри первой должно обеспечиваться надежное протекание рабочих токов
  • а во второй — происходить отключения аварийных режимов

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

 Время токовая характеристика
  Время токовая характеристика автоматического выключателя

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Время токовая характеристика
  Время токовая характеристика автоматического выключателя

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

  • меньшее, чем 1 час, если его номинал до 63 ампер
  • не дольше двух часов, когда номинальный ток превышает эту величину в 63 ампера

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Практическое применение параметров ВТХ

Анализ использования время токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.

Время токовая характеристика
   Таблица выбора автоматических выключателей по номинальному току и сечению жил кабельной линии

Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Типы время токовых характеристик автоматических выключателей

Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования. Автоматические выключатели выпускаются для бытового или промышленного использования.

Время токовая характеристика
   Виды время токовых характеристик автоматических выключателей

Бытовые автоматы классифицируют тремя группами В, С и D:

  1. класс В предназначен для защиты протяженных линий и систем освещения. Кратность токов для его срабатывания лежит в пределах 3÷5 Iном
  2. класс С защищает розеточные группы или оборудование, создающее умеренные пусковые токи. Кратность токов 5÷10 Iном
  3. класс D применяют для защиты потребителей, обладающих повышенными пусковыми токами, например, трансформаторов или станков с мощными асинхронными электродвигателями. Кратность токов 10÷20 Iном

Автоматические выключатели типа В являются более чувствительными. Ими принято защищать оконечные потребители внутри квартир и домов. А в качестве вводного автомата лучше устанавливать те, которые относятся к типу С.

Качество состояния электропроводки и величина сопротивления петли фаза-ноль может влиять на выбор автоматического выключателя. Старая изоляция с высоким содержанием токов утечек и завышенными показателями петли способны ухудшить условия срабатывании автомата типа С или привезти к его отказу. В таких ситуациях применяют класс В.

Промышленные автоматы классифицируют тремя группами:

  1. класс L — более 8 Iном
  2. класс Z — более 4 Iном
  3. класс K — более 12 Iном

Среди производителей стран Европы встречаются модели автоматов с классом А, который имеет границу кратности токов 2÷3 Iном.

Все эти особенности необходимо учитывать при выборе конструкции автоматического выключателя и его проверках. Автоматы, обозначенные одним и тем же номиналом, в зависимости от типа время токовой характеристики, обладают разными временами срабатывания.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

 

 

 

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

Назначение

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

— времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

— время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

— характеристики предохранителя должны быть стабильными;

— в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

— замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

IвсIпд/К,

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

— отключаются при понижении или полном исчезновении напряжения;

— остаются включенными;

— повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

Iвс ≥ ∑Iпд/К,

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2


Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность


Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

10

20

50

100 и более

30

40

50

80

120

40

50

60

100

120

50

60

80

120

120

60

80

100

120

120

80

100

120

120

150

100

120

120

150

150

120

150

150

250

250

150

200

200

250

250

200

250

250

300

300

250

300

300

400

более 600

300

400

400

более 600

400

500

более 600

Примечание. — ток короткого замыкания в начале защищаемого участка сети.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей, в основу которого положен принцип сопоставления сечений плавких вставок по формуле:

,

где а — коэфициент селективности; F1 — сечение плавкой вставки, расположенной ближе к источнику питания; F2 — сечение плавкой вставки, расположенной дальше от источника питания, т. е. ближе к нагрузке.

Полученное значение а сравнивают с данными табл. 3, где приведены наименьшие значения а, при которых обеспечивается селективность. Селективность защиты будет обеспечена, если расчетное значение а равно табличному или больше него.

Наименьшие значения а, при которых обеспечивается селективность защиты Таблица 3


Металл плавкой вставки предохранителя, расположенного ближе к источнику питания (для любого типа предохранителя)

отношение а сечений плавких вставок смежных предохранителей, если предохранитель, расположенный ближе к нагрузке, изготовлен

с заполнителем при плавкой вставке из

без заполнителя при плавкой вставке из

меди

серебра

цинка

свинца

меди

серебра

цинка

свинца

Медь

1,55

1,33

0,55

0,2

1,15

1,03

0,4

0,15

Серебро

1,72

1,55

0,62

0,23

1,33

1,15

0,46

0,17

Цинк

4,5

3,95

1,65

0,6

3,5

3,06

1,2

0,44

Свинец

12,4

10,8

4,5

1,65

9,5

8,4

3,3

1,2

Выбор плавких предохранителей для защиты цепей управления

Выбор плавких вставок для цепи управления с напряжением Uн можно произвести по формуле

Iн.вст. ≥ (∑Pр + 0,1∑Pв)/Uн,

где ∑Pр — наибольшая суммарная мощность, потребляемая катушками электрических аппаратов (электромагнитными пускателями, промежуточными реле, реле времени, исполнительными электромагнитами) и сигнальными лампами и т. д. при одновременной работе, ВА или Вт;

Pв — наибольшая суммарная мощность, потребляемая при включении катушек одновременно включаемых аппаратов (пусковая мощность), ВА или Вт.

Если известны не мощности, а токи, то это формула может быть записана в виде

Iн.вст. ≥ ∑Iр + 0,1∑Iв

Глава 5. Элементы защитного оборудования Предохранители. Общие сведения

Предохранители — это электрические аппараты, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство

К предохранителям предъявляются следующие требования.

  1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.

  2. Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением (§ 4.3).

  3. При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.

4. Характеристики предохранителя должны быть стабильными, а технологический разброс их параметров не должен нарушать надежность защиты.

  1. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.

  2. Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

Нагрев плавкой вставки при длительной нагрузке

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зависимость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рисунке 5.1) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рисунке 5.1). Однако реальная характеристика предохранителя (кривая 3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается больше номинального тока нагрузки. При этом кривые 2 и 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (1,5 — 2) IН0М нагрев предохранителя протекает медленно. Большая часть тепла отдается окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая вставка сгорает при достижении ею установившейся температуры, называется пограничным током Iпогр..

Рисунок 5.1. Согласование характеристик предохранителя и защищаемого объекта

Для того чтобы предохранитель не срабатывал при номинальном токе Iном, необходимо Iпогр Iном, н. С другой стороны, для лучшей защиты значение Iпогр должно быть возможно ближе к номинальному. При токах, близких к пограничному, температура плавкой вставки должна приближаться к температуре плавления.

В связи с тем, что время плавления вставки при пограничном токе велико (более 1 ч) и температура плавления ее материала составляет много сотен градусов Цельсия, все детали предохранителя нагреваются до высоких температур. Происходит тепловое старение плавкой вставки.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы. Материалы плавких вставок и их свойства даны в таблице 5.1.

Таблица 5.1

Металл

Удельное

Температура,

А’,

А»,

А’+А»

вставки

сопротивление

с

0С

А -с/мм

А2-с/мм2

ρ0,

θдоп

θпл

мкОмм

Медь

0,0153

250

1083

80000

11600

91600

Серебро

0,0147

961

62000

8000

70000

Цинк

0,06

200

419

9000

3000

12000

Свинец

0,21

150

327

1200

400

1600

Примечание: θдоп — допустимая температура плавкой вставки при длительном протекании тока; θпл — температура плавления вставки; А’ и А» — коэффициенты, определяющие время плавления при КЗ. Время нагрева плавкой вставки от начальной температуры до полного ее разрушения определяется суммой коэффициентов А’ + А».

Наименьшую температуру плавления имеет свинец. Но удельное сопротивление свинца в 12 раз выше, чем у меди, Для того чтобы при прохождении данного тока вставка нагрелась до допустимой температуры (150°С), ее сечение должно быть значительно больше, чем сечение вставки из меди.

При плавлении вставки пары металла ионизируются в возникающей дуге благодаря высокой температуре. Из-за большого объема вставки ко­личество паров металла в дуге велико, что затрудняет ее гашение и умень­шает предельный ток, отключаемый предохранителем. Из-за этих особен­ностей вставок из легкоплавких металлов широкое распространение полу­чили медные и серебряные плавкие вставки с металлургическим эффектом, который объясняется ниже. На тонкую медную проволоку (диаметром ме­нее 0,001 м) наносится шарик из олова. При нагреве вставки сначала пла­вится олово, имеющее низкую температуру плавления (232°С). В месте контакта олова с проволокой начинается растворение меди и уменьшение ее сечения. Это вызывает увеличение сопротивления и повышение потерь в этой точке. Процесс длится до тех пор, пока медная проволока не распла­вится в точке расположения оловянного шарика. Возникшая при этом дуга расплавляет проволоку на всей длине. Применение оловянного шарика снижает среднюю температуру плавления вставки до 280°С.

Отношение Iпогр / Iном уменьшается до 1,2, что дает улучшение время-токовой характеристики.

Стабильность времятоковой характеристики в значительной степени зависит от окисления плавкой вставки, Свинец и цинк образуют на воздухе пленку оксида, которая предохраняет вставку от изменения сечения. Мед­ная вставка при длительной работе и высокой температуре интенсивно окисляется. Пленка оксида при изменении температурного режима отслаи­вается, и сечение вставки постепенно уменьшается. В результате плавкая вставка перегорает при номинальном токе, если ее температура при токе, близком к пограничному, выбрана высокой. В таблице 5.1 приведены ре­комендуемые допустимые температуры Oдоп вставок при номинальном то­ке. Температура медной вставки при токе, близком к номинальному, долж­на быть значительно ниже температуры плавления. Поэтому приходится завышать сечение вставки и тем самым увеличивать отношение Iпогр / Iном примерно до 1,8, что ухудшает защитные свойства предохранителя.

Серебряные плавкие вставки не подвержены тепловому старению, и для них отношение Iпогр / Iном определяется только нагревом.

У вставок из легкоплавких материалов эксплуатационная температура ближе к температуре плавления, что позволяет снизить отношение Iпогр / Iном до 1,2—1,4.

В настоящее время в качестве материала плавкой вставки начали применять алюминий. Пленка оксида на поверхности вставки защищает алюминий от коррозии и делает характеристику предохранителя стабильной. Большее удельное сопротивление материала компенсируется увеличением сечения вставки. Алюминий имеет температуру плавления ниже, чем у меди (658 против 1083 °С).

Времятоковые характеристики предохранителей со вставками постоянного сечения из легкоплавкого металла хорошо согласуются с характеристиками силовых трансформаторов и других подобных объектов. Это объясняется низкой температурой плавления, стойкостью против коррозии и малой теплопроводностью материала таких вставок.

Медная вставка из-за высокой теплопроводности, высокой температуры плавления и большого отношения Iпогр / Iном в области малых перегрузок не обеспечивает защиту объекта (область А, рис. 5.1).

Нагрев плавкой вставки при коротком замыкании

Если ток, проходящий через вставку, в 3—4 раза больше номиналь­ного, то практически процесс нагрева идет адиабатически, т.е. все тепло, выделяемое плавкой вставкой, идет на ее нагрев.

Время нагрева вставки до температуры плавления

где А’ — постоянная, определяемая только свойствами материала и от размера вставки не зависящая; q — поперечное сечение вставки; Iк — ток, протекающий по вставке при КЗ защищаемой цепи; Jк — плотность тока во вставке.

После того как температура плавкой вставки достигла температуры плавления, для перехода вставки из твердого состояния в жидкое ей необ­ходимо сообщить тепло, равное скрытой теплоте плавления.

Где р1, — удельное сопротивление материала вставки при темпера­туре плавления; р2 — удельное сопротивление материала вставки в жид-

По мере того как часть плавкой вставки из твердого состояния пере­йдет в жидкое, ее удельное сопротивление резко увеличится (в десятки раз). Время перехода из твердого состояния в жидкое

ком состоянии; γ — плотность материала вставки; L — скрытая теплота плавления на единицу массы материала вставки.

Значения постоянных A’и A» для наиболее часто применяемых мета­ллов даны в табл. 5.1. В действительности процесс плавления идет более сложно. Как только появится жидкий участок вставки, электродинамичес­кие силы, сжимающие проводник , образуют суженные участки. В этих участках возрастает плотность тока и повышается температура. Уменьше­ние сечения вставки создает разрывающие усилия, аналогичные силам в контактах при КЗ. Таким образом, как правило, дуга загорается раньше, чем вставка полностью перейдет в жидкое состояние.

Основным параметром предохранителя при КЗ является предельный ток отключения — ток, который он может отключить при возвращающемся напряжении, равном наибольшему рабочему напряжению.

Время существования дуги зависит от конструкции предохранителя. Полное время отключения цепи предохранителем

*пр = 41 л «I ^nepei «Т» ‘дугп-Для предохранителя со вставкой, находящейся в воздухе,

где коэффициенты n = 3 учитывает преждевременное разрушение вставки, а k0= 1,2-1,3 учитывает длительность горения дуги.

В предохранителях с наполнителем (закрытого типа) разрушение вставки до полного ее плавления менее вероятно. Время отключения цепи предохранителем

Коэффициент kд= 1,7-2 учитывает длительность горения дуги.

Плавление вставки переменного сечения происходит в перешейках с наименьшим сечением. Процесс нагрева перешейка протекает так быстро, что тепло почти не успевает отводиться на участки повышенного сечения. Наличие перешейков уменьшенного сечения позволяет резко снизить время с момента начала КЗ до появления дуги. Процесс гашения дуги начинается до момента достижения током КЗ установившегося или даже амплитудного значения. Дуга образуется через время t1 после начала КЗ, когда ток в цепи значительно меньше установившегося значения Iк, уст.

Средства дугогашения позволяют погасить дугу за миллисекунды. При этом проявляется эффект токоограничения, показанный на рисунке 5.2. При отключении поврежденной цепи с токоограничением облегчается

гашение дуги, так как отключается не установившийся ток КЗ, а ток, опре­деляемый временем плавления вставки.

Рисунок 5.2. Отключение постоянного и переменного тока предохранителем с токоограничением.

С ростом номинального тока возрастает, естественно и минимальное сечение вставки. Увеличение этого сечения приводит к возрастанию длительности плавления вставки и уменьшению эффекта токоограничения. Интенсивный отвод тепла от вставки при номинальном режиме позволяет выбрать уменьшенное сечение вставки и повысить эффект токоограничения.

Конструкция предохранителей низкого напряжения

Предохранители с гашением дуги в закрытом объеме.

Предохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4 колпачком 5, который является выходным контактом (рисунок 5.3, а). Плавкая вставка 1 штампуется из цинка, являющегося легкоплавким и стойким к коррозии материалом. Указанная форма вставки позволяет получить благоприятную времятоковую (защитную) характеристику. В предохранителях на токи более 60 А плавкая вставка 1 присоединяется к контактным ножам 2 с помощью болтов (рисунок 5.3, б).

Вставка располагается в герметичном трубчатом патроне, который состоит из фибрового цилиндра 3, латунной обоймы 4 и латунного колпачка 5.

При отключении сгорают суженные перешейки плавкой вставки, после чего возникает дуга. Под действием температуры дуги фибровые стенки патрона выделяют газ, в результате чего давление в патроне за доли полупериода поднимается до 4—8 МПа. За счет увеличения давления поднимается вольт-амперная характеристика дуги, что способствует ее быстрому гашению.

Плавкая вставка может иметь от одного до четырех сужений (рисунок 5.3, в) в зависимости от номинального напряжения. Суженные участки вставки способствуют быстрому ее плавлению при КЗ и создают эффект токоограничения.

Рис. 5.3. Предохранитель типа ПР-2

Поскольку гашение дуги происходит очень быстро (0,002 с), можно считать, что уширенные части вставки в процессе гашения остаются неподвижными. Рассмотрим вставку с четырьмя перешейками. После их перегорания образуются четыре разрыва. На каждом катоде разрыва восстанавливается электрическая прочность около 200 В, а суммарная прочность предохранителей достигает 800 В. Это явление наряду с высоким давлением позволяет надежно гасить дугу при напряжении источника до 500 В.

Давление внутри патрона пропорционально квадрату тока в момент плавления вставки и может достигать больших значений. Поэтому фибровый цилиндр должен обладать высокой механической прочностью, для чего на его концах установлены латунные обоймы 4. Диски 6, жестко связанные с контактными ножами 2, крепятся к обойме патрона 4 с помощью колпачков 5.

Предохранители работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстоянии друг от друга.

Предохранители выпускаются двух осевых размеров — короткие и длинные. Короткие предназначены для работы на переменном напряжении, не выше 380 В. Они имеют меньшую отключающую способность, чем длинные, рассчитанные на работу в сети с напряжением до 500 В.

В зависимости от номинального тока выпускается шесть габаритов патронов различных диаметров. В патроне каждого габарита могут устанавливаться вставки на различные номинальные токи. Так, в патроне на номинальный ток 15 А могут быть установлены вставки на ток 6, 10 и 15 А.

В таблице 5.2 приведены значения испытательных токов для предохранителя типа ПР-2.

Таблица 5.2

Номинальный

Длительность про-

Кратность испытательного тока

ток вставки, А

хождения испыта-

по отношению к

: номинальному

тельного тока, ч

Нижнее значение

Верхнее значе-

ние

6,10

1

1,5

2,1

15, 20, 25

1

1,4

1,75

35-350

1

1,3

1,6

430-1000

2

1,3

1,6

Различают нижнее и верхнее значения испытательного тока. Нижнее значение испытательного тока — это максимальный ток, который, протекая в течение 1 ч, не приводит к перегоранию предохранителя. Верхнее значение испытательного тока — это минимальный ток, который, проходя в течение 1 ч, плавит вставку предохранителя. С достаточной точностью можно принять пограничный ток равным среднеарифметическому испытательных токов.

Предохранители типа ПР-2 обладают токоограничением. Так, в цепи с током КЗ 50 000 А плавкая вставка на номинальный ток 6 А перегорает при токе всего 400 А. Однако чем больше номинальный ток, тем меньше эффект токоограничения. При номинальном токе 600 А токоограничение отсутствует, так как дуга горит весь полупериод.

Предохранители с мелкозернистым наполнителем.

Рисунок 5.4. Предохранитель типа ПН-2.

Эти предохранители более совершенны, чем предохранители ПР-2. Корпус квадратного сечения 1 предохранителя типа ПН-2 (рисунок 5.4) изготавливается из прочного фарфора или стеатита. Внутри корпуса расположены ленточные плавкие вставки 2 ц наполнитель — кварцевый песок 3, Плавкие вставки привариваются к диску 4, который крепится к пластинам 5, связанным с ножевыми контактами 9. Пластины 5 крепятся к корпусу винтами.

В качестве наполнителя используется кварцевый песок с содержанием SiO2 не менее 98 %, с зернами размером (0,2-0,4) • 10-3 м и влажностьюне выше 3 %. Перед засыпкой песок тщательно просушивается при температуре 120—180 °С. Зерна кварцевого песка имеют высокую теплопроводность и хорошо развитую охлаждающую поверхность.

Плавкая вставка выполняется из медной ленты толщиной 0,1— 0,2мм. Для получения токоограничения вставка имеет суженные сечения 8.Плавкая вставка разделена на три параллельных ветви для более полного использования наполнителя. Применение тонкой ленты, эффективный теплоотвод от суженных участков позволяют выбрать небольшое минимальное сечение вставки для данного номинального тока, что обеспечивает высокую токоограничивающую способность. Соединение нескольких суженных участков последовательно способствует замедлению роста тока после плавления вставки, так как возрастает напряжение на дуге предохранителя. Для снижения температуры плавления на вставки наносятся оловянные полоски 7 (металлургический эффект).

При КЗ плавкая вставка сгорает и дуга горит в канале, образованном зернами наполнителя. Из-за горения в узкой щели при токах выше 100 А дуга имеет возрастающую вольт-амперную характеристику. Градиент напряжения на дуге очень высок н достигает (2-6) • 104 В/м. Этим обеспечивается гашение дуги за несколько миллисекунд.

После срабатывания предохранителя плавкие вставки вместе с диском 4 заменяются, после чего патрон засыпается песком. Для герметизации патрона под пластины 5 кладется асбестовая прокладка 6, что предохраняет песок от увлажнения. При номинальном токе 40 А и ниже предохранитель имеет более простую конструкцию.

Предохранители ПН-2 выпускаются на номинальный ток до 630 А. Предельный отключаемый ток КЗ, который может отключаться предохранителем, достигает 50 кА (действующее значение тока металлического КЗ сети, в которой устанавливается предохранитель).

Малые габариты, незначительная затрата дефицитных материалов, высокая токоограничивающая способность являются достоинствами этого предохранителя.

В малогабаритных распределительных устройствах применяются резьбовые предохранители типа ПРС (рисунок 5.5, а). Один конец цепи подводится к контакту 1, который связан с контактной гильзой 2, соединенной резьбой с контактом съемной головки 3. Плавкая вставка 4 располагается в фарфоровом цилиндре 5, заполненном кварцевым песком. На торцах цилиндра 5 укреплены контактные колпачки, с которыми соединена плавкая вставка 4. Второй конец цепи через контакт 7 соединяется с контактным винтом 8. Предохранитель имеет указатель срабатывания. При сгорании плавкой вставки освобождается специальная пружина, которая выбрасывает глазок в застекленное отверстие 6. После срабатывания предохранителя заменяется цилиндр 5 со сгоревшей плавкой вставкой и сигнализирующим устройством.

Рисунок 5.5. Предохранитель типа ПРС (а), жидкометаллический предохранитель (б).

Предохранители этого типа выпускаются на токи до 100 А, напряжение до 440 В постоянного тока и до 500 В переменного тока частотой 50 Гц. Предельно отключаемый ток составляет 60 кА.

Эти предохранители более сложны в производстве и более дороги, чем предохранители ПН-2. Поэтому их применение целесообразно при малых габаритах распределительного устройства и ограниченном времени обслуживания (после сгорания плавкой вставки).

Предохранители с жидкометаллическим контактом.

В таком предохранителе (рис. 5.5, б) электроизоляционная трубка имеет капилляр, заполненный жидким металлом 2. Капилляр с жидким металлом герметично закрыт электродами 3, 4 и корпусом 5 с уплотнением 6 и имеет специальное демпфирующее устройство 7, 8. При протекании большого тока жидкий металл в нем испаряется, образуется паровая пробка и электрическая цепь размыкается. После определенного времени пары металла конденсируются и контакт восстанавливается. Предельный отключаемый ток таких предохранителей достигает 250 кА при напряжении 450 В переменного тока. Предохранители работают многократно с большим токоограничением.

Быстродействующие предохранители для защиты полупроводниковых приборов.

Малая тепловая инерция, быстрый прогрев полупроводникового перехода крайне затрудняют защиту мощных диодов, тиристоров и транзисторов при токовых перегрузках. Обычные типы предохранителей и автоматических выключателей из-за относительно большого времени срабатывания не обеспечивают защиту полупроводниковых приборов при КЗ. Для выполнения этой задачи разработаны специальные быстродействующие предохранители.

При времени протекания тока t<0,02с можно считать, что процесс нагрева прибора протекает по адиабатическому закону. Для удобства согласования характеристик прибора и предохранителя вводится понятие интеграла Джоуля, где t — длительность протекания тока через

прибор.

Для эффективной защиты необходимо, чтобы полный джоулев инте­грал предохранителя был меньше джоулева интеграла защищаемого при­бора. Джоулев интеграл предохранителя состоит из джоулева интеграла нагрева до температуры плавления вставки G^ и джоулева интеграла га­шения образовавшейся дуги Gгаш. С целью сокращения первой составляю­щей предохранитель должен работать с большим токоограничением. Для достижения этой цели плавкая вставка выполняется из серебра, имеет перешеек с минимальным сечением и охлаждается кварцевым наполнителем.

С целью улучшения охлаждения при больших номинальных токах плавкая вставка выполняется из ленты толщиной 0,05—0,2 мм. При больших точках вставка имеет несколько параллельных ветвей. Помогает также заполнение кварцевым песком под большим давлением. В некоторых случаях для дальнейшего уменьшения перешейка предохранитель имеет искусственное водяное охлаждение.

Для уменьшения времени горения дуги плавкая вставка имеет большое число перешейков. После плавления вставки образуется ряд последовательно включенных дуг, благодаря чему вольт-амперная характеристика предохранителя поднимается. Число перешейков ограничивается перенапряжением, которое возникает при отключении цепи.

При постоянном токе гашение дуги осложняется тем, что ток не проходит через нуль и вся электромагнитная энергия отключаемой цепи рассеивается в предохранителе. Решающим фактором при постоянном токе является постоянная времени цепи Т=L/R.. С увеличением постоянной времени Т условия работы предохранителя утяжеляются. Необходимо выбирать предохранитель на более высокое номинальное напряжение, чем при переменном токе. Время плавления вставки при постоянном токе

при переменном токе

где Б — постоянная, зависящая от удельной теплоты плавления и ис­парения материала. Для серебра Б=8 ·104 А2·с/мм4, для меди Б=105 А2·с/мм4, для алюминия Б=3,4 ·104 А2·с/мм4, q0 —сечение перешейка, мм2; Т — постоянная времени цепи, с; Iк, уст — установившееся значение тока КЗ цепи.

При ƒ≥50 Гц и T≥2 мс время плавления на постоянном токе больше, чем на переменном. Максимальный пропускаемый предохранителем по­стоянный ток

Обычно предохранители рассчитывают для работы в цепях с постоянной времени T≤35 мс.

Конструктивно быстродействующий предохранитель представляет собой корпус из прочного фарфора, внутри которого расположены плавкие вставки и кварцевый песок. Контакты укрепляются к корпусу винтами и могут иметь различное исполнение.

В современных преобразовательных установках каждый полупроводниковый прибор имеет предохранитель. Токи, протекающие через предохранитель, могут достигать 100—200 кА. При разрушении предохранителя может произойти авария преобразовательной установки. В связи с этим быстродействующие предохранители должны иметь большую механическую прочность и обладать высокой надежностью.

В СССР Выпускается серия быстродействующих предохранителей ПП-57 на номинальные токи 40—800 А и готовится к выпуску серия ПП-59 на номинальные токи 250—2000 А. Номинальные напряжения составляют до 1250В переменного и до 1050В постоянного тока. Предохранитель ПП-59 на ток 400 А и напряжение 660 В имеет джоулев интеграл отключения 320·103 А2-с.

Быстродействующие предохранители предназначены только для защиты от КЗ. Защита от перегрузок должна выполняться другими аппаратами.

Электробезопасность — Измерение цепи фаза-нуль


ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЦЕПИ ФАЗА-НУЛЬ, ПОЛНОГО СОПРОТИВЛЕНИЯ, ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ И ЗАЩИТНОГО ОТКЛЮЧЕНИЯ


Петлёй «ФАЗА-НУЛЬ» принято называть цепь, состоящую из фазы трансформатора и проводников — нулевого и фазного.
По измеренному полному сопротивлению петли «ФАЗА-НУЛЬ» производится расчет тока однофазного короткого замыкания. Основной целью является проверка временных параметров срабатывания аппаратов защиты от cверхтоков при замыкании фазы на корпус. Данная проверка так же подверждает непрерывность PE цепи. Время срабатывания аппаратов защиты должно удовлетворять требованиям п.1.7.79 ПУЭ.
Надёжность срабатывания защиты от сверхтоков является одним из основных требований как при проектировании, так и при монтаже и требует расчетной и натурной проверки.

Поскольку речь идёт о замыкании на корпус, то под нулевым проводником мы понимаем совокупность защитных (PE) и защитно-рабочих (PEN) проводников от «корпуса» до трансформатора. Таким образом, проверка петли «ФАЗА-НУЛЬ» позволяет оценить и качество защитной цепи.


ИЗМЕРЕНИЯ

Существует несколько методик измерения сопротивления петли «ФАЗА-НУЛЬ» и токов короткого замыкания, как с отключением напряжения линии, так и без.
В настоящее время в основном применяются современные микропроцессорные измерительные приборы, реализующие методику измерения полного сопротивления петли «ФАЗА-НУЛЬ» без отключения напряжения, и автоматического расчета тока короткого замыкания на основании значения сопротивления петли. Применение данных приборов упрощает процесс испытаний. Кроме того, испытания оказываются более щадящими по отношению к испытываемым линиям и аппаратам защиты. Некоторые из этих приборов позволяют проводить измерения без искючения из испытываемой линии УЗО и не вызывают их срабатывания, что представляется достаточно важным и удобным, поскольку измерения проводятся между фазным проводником и нулевым защитным проводником. Измерения проводятся на концах проводников, защищаемых аппаратами защиты от сверхтока.

Результаты измерений оформляются протоколом установленного образца.

Перед проведением измерений петли «ФАЗА-НУЛЬ» рекомендуется провести измерение сопротивлений защитных проводников, проверку их непрерывности (проверка металлосвязи, проверка заземления).


УСТРАНЕНИЕ ДЕФЕКТОВ

Если при проведении измерений петли «ФАЗА-НУЛЬ» в действующей электроустановке получены неудовлетворительные результаты, то требуется срочное устранение дефекта. Как правило, бывает достаточно заменить аппарат защиты от сверхтоков на другой, с более подходящими характеристиками. Но иногда требуется замена существующего кабеля на кабель с другим сечением жил. Подобные случаи, как правило, сложнее с точки зрения монтажа.


РАСЧЁТ ПЕТЛИ «ФАЗА-НУЛЬ»

С целью своевременного согласования параметров кабельных линий и аппаратов защиты от сверхтоков необходимо производить расчёты петли «ФАЗА-НУЛЬ» на стадии проектных работ. Подобные расчеты удобно проводить в комплексе: мощность нагрузки; cos φ; длина кабельной линии; сечение жилы; вид монтажа; падение напряжения на линии; расчетное полное сопротивление петли; прогнозируемый ток короткого замыкания; номинальный ток аппарата защиты; характеристика аппарата защиты. Расчет петли «ФАЗА-НУЛЬ» является одним из наиболее сложных, поскольку требует принятия во внимание ряда трудно учитываемых параметров.

 


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5., говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

B — от 3·In до 5·In
C — от 5·In до 10·In
D — от 10·In до 20·In (встречаются от 10·In до 50·In)
In – номинальный ток автоматического выключателя.

Рассмотрим каждый вид характеристики на примере модульного автоматического выключателя ВА47-29.


Время-токовая характеристика типа В

На графике (кривой) показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

График разделен двумя линиями, которые и определяют разброс времени срабатывания тепловой и электромагнитной защит автомата. Нижняя линия — это горячее состояние автомата (после срабатывания), а верхняя линия — это холодное состояние.

 

Характеристики практически всех автоматов изображаются при температуре +30°С. 

На представленных время-токовых характеристиках (сокращенно, ВТХ) пунктирная линия — это верхняя граница (предел) для автоматов с номинальным током меньше 32 (А).

По графику видно:

1. Если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 35 секунд в холодном состоянии (для автоматов менее 32А) и до 80 секунд в холодном состоянии 

2. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,04 секунды в холодном.(для автоматов более 32А). 

Автоматы с характеристикой В применяются в основном для защиты потребителей с преимущественно активной нагрузкой, например, электрические печи, электрические обогреватели, цепи освещения.

Правда, в магазинах их количество почему то всегда ограничено, т.к. распространенным видом является характеристика С. И кто так решил? Вполне целесообразно на автоматы групповых линий для освещения и розеток ставить именно тип В, а на вводной автомат — тип С. Так будет соблюдена селективность, и при коротком замыкании где нибудь в линии не будет отключаться вводной автомат и «гасить» всю квартиру.


Время-токовая характеристика типа С

Вот ее график:

1. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 11 секунд в холодном состоянии (для автоматов менее 32А) и до 25 секунд в холодном состоянии (для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,03 секунды в холодном.

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.


Время-токовая характеристика типа D

График:

1. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 3 секунд в холодном состоянии (для автоматов менее 32А) и до 7 секунд в холодном состоянии (для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за 0,009 секунд в горячем состоянии или за 0,02 секунды в холодном.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).


ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ

Плавкие предохранители — это электрические аппараты, защищающие установки от перегрузок и токов короткого замыкания.
Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство, гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

  1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.
  2. При коротком замыкании предохранители должны работать селективно.
  3. Время срабатывания предохранителя при коротком замыкании должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением.
  4. Характеристики предохранителя должны быть стабильными. Разброс параметров из-за производственных отклонений не должен нарушать защитные свойства предохранителя.
  5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.
  6. Замена сгоревшего предохранителя или плавкой вставки не должна требовать много времени.

В промышленности наибольшее распространение получили предохранители типа и ПН-2.


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ ПРЕДОХРАНИТЕЛЕЙ СЕРИИ ПН2


Устройство предохранителей ПН-2

Эти предохранители более совершенны, чем предохранители ПР-2. Корпус квадратного сечения №1 предохранителя типа ПН-2 изготавливается из прочного фарфора или стеатита. Внутри корпуса расположены ленточные плавкие вставки №2 и наполнитель — кварцевый песок №3. Плавкие вставки привариваются к диску №4, который крепится к пластинам №5, связанным с ножевыми контактами №9. Пластины №5 крепятся к корпусу винтами.

В качестве наполнителя в предохранителях ПН-2 используется кварцевый песок с содержанием SiO2 не менее 98 %, с зернами размером (0,2—0,4)10-3 м и влажностью не выше 3 %. Перед засыпкой песок тщательно просушивается при температуре 120—180 °С. Зерна кварцевого песка имеют высокую теплопроводность и хорошо развитую охлаждающую поверхность.

Плавкая вставка предохранителей ПН-2 выполняется из медной ленты толщиной 0,1— 0,2 мм. Для получения токоограничения вставка имеет суженные сечения №8. Плавкая вставка разделена на три параллельных ветви для более полного использования наполнителя. Применение тонкой ленты, эффективный теплоотвод от суженных участков позволяют выбрать небольшое минимальное сечение вставки для данного номинального тока, что обеспечивает высокую токоограничивающую способность. Соединение нескольких суженных участков по-следовательно способствует замедлению роста тока после плавления вставки, так как возрастает напряжение на дуге предохранителя. Для снижения температуры плавления на вставки наносятся оловянные полоски №7 (металлургический эффект).


Принцип действия предохранителя ПН-2

При коротком замыкании плавкая вставка предохранителя ПН-2 сгорает и дуга горит в канале, образованном зернами наполнителя. Из-за горения в узкой щели при токах выше 100 А дуга имеет возрастающую вольт-амперную характеристику. Градиент напряжения на дуге очень высок и достигает (2—6)104 В/м. Этим обеспечивается гашение дуги за несколько миллисекунд.

После срабатывания предохранителя плавкие вставки вместе с диском №4 заменяются, после чего патрон засыпается песком. Для герметизации патрона под пластины №5 кладется асбестовая прокладка №6 что предохраняет песок от увлажнения. При номинальном токе 40 А и ниже предохранитель имеет более простую конструкцию.


Технические характеристики предохранителей ПН-2

Предохранители ПН-2 выполняются на номинальный ток до 630 А. Предельный отключаемый ток короткого замыкания, который может отключаться предохранителем, достигает 50 кА (действующее значение тока металлического короткого замыкания сети, в которой устанавливается предохранитель).
Малые габариты, незначительная затрата дефицитных материалов, высокая токоограничивающая способность являются достоинствами плавкого предохранителя ПН-2.


Материал плавких вставок предохранителей

Плавкие вставки изготовляются из меди, цинка, свинца или серебра.

В современных наиболее совершенных предохранителях отдают предпочтение медным вставкам с оловянным растворителем. Широко распространены также цинковые вставки.
Медные вставки для предохранителей наиболее удобны, просты и дешевы. Улучшение их характеристик достигается наплавлением оловянного шарика в определенном месте, примерно в середине вставки. Такие вставки применяются, например, в упомянутой серии насыпных предохранителей ПН2. Олово плавится при температуре 232°, значительно меньшей, чем температура плавления меди, и растворяет медь вставки в месте соприкосновения с нею. Появляющаяся при этом дуга уже расплавляет всю вставку и гасится. Цепь тока оказывается отключенной.
Таким образом, наплавление оловянного шарика приводит к следующему.
Во-первых, медные вставки начинают реагировать с выдержкой времени на столь малые перегрузки, на которые они при отсутствии растворителя вовсе не реагировали бы. Например, медная проволока диаметром 0,25 мм с .растворителем расплавилась при температуре 280° за 120 мин.

Во-вторых, при одной и той же достаточно большой температуре (т. е. при одинаковой нагрузке) вставки с растворителем реагируют много быстрее, чем вставки без растворителя.
Например, медная проволока диаметром 0,25 мм без растворителя при средней температуре 1 000° расплавилась за 120 мин, а такая же проволока, но с растворителем при средней температуре только 650°, расплавилась всего за 4 мин.

Применение оловянного растворителя позволяет иметь надежные и дешевые медные вставки, работающие при сравнительно низкой эксплуатационной температуре, имеющие относительно малый объем и вес металла (что благоприятствует коммутационной способности предохранителя) и в то же время обладающие большим быстродействием при больших перегрузках и реагирующие с выдержкой времени на относительно малые перегрузки.

Цинк часто используется для изготовления плавких вставок. В частности, такие вставки применяются в упомянутой серии предохранителей ПР-2.
Вставки из цинка более устойчивы против коррозии. Поэтому, несмотря на относительно малую температуру плавления, для них, вообще говоря, можно было бы допустить такую же предельную эксплуатационную температуру, как для меди (250°), и конструировать вставки с меньшим сечением. Однако электрическое сопротивление цинка примерно в 3,4 раза больше, чем у меди.
Чтобы сохранить ту же температуру, надо уменьшить потери энергии в ней, соответственно увеличив ее сечение. Вставка получается значительно более массивной. Это при прочих равных условиях приводит к понижению коммутационной способности предохранителя. Кроме того, при массивной вставке с температурой 250° не удалось бы в тех же габаритах удержать на допустимом уровне температуру патрона и контактов.
Все это заставляет снизить предельную температуру цинковых вставок до 200°, а для этого — еще больше увеличивать сечение вставки. В итоге предохранители с цинковыми вставками при тех же размерах обладают значительно меньшей устойчивостью к токам короткого замыкания, чем предохранители с медными вставками и оловянными растворителями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *