Внутреннее сопротивление батарейки: Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора

Содержание

Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора

По существующим нормам, основными критериями технического состояния аккумуляторов являются ее фактическая емкость и величина напряжения на элементе всей группы батарей при протекании токов нагрузки. Дело в том, что измерение емкости аккумуляторов требует больших затрат времени и приводит к снижению надежности системы постоянного тока во время проведения испытаний, особенно на тех объектах, на которых нет резервной аккумуляторной батареи и отключение группы батарей от оборудования питания чревато обесточиванием непрерывно работающего дорогостоящего оборудования. Измерение величины снижения напряжения на аккумуляторах при протекании тока требует меньших затрат времени, но не обеспечено необходимым, серийно выпускаемым измерительным оборудованием.

По сути, величина снижения напряжения на элементах аккумуляторной батареи при протекании токов, определяется внутренним сопротивлением элементов.

Полное сопротивление свинцово-кислотного аккумулятора – это сумма таких величин, как сопротивление поляризации и омическое сопротивление. Омическое сопротивление является суммой сопротивлений сепараторов аккумулятора, электродов, положительного и отрицательного выводов, мостовых сварных соединений между элементами и электролита.

На сопротивление электродов оказывает влияние их конструкция, пористость, геометрия, конструкция решётки, состояние активного вещества, наличие легирующих компонентов, качество электрического контакта решёток и обмазки активной массы.

При этом, как известно, у аккумуляторов большей емкости больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.

Кроме того, внутреннее сопротивление аккумуляторов зависит и от токов нагрузки. Например, внутреннее сопротивление аккумулятора при больших токах нагрузки в несколько раз меньше, чем внутреннее сопротивление того же аккумулятора при малых токах.

В процессе разряда свинцово-кислотного аккумулятора на поверхности электродов выделяется сульфат свинца (PbSO4). Это плохой проводник, который существенно увеличивает сопротивление электродных пластин. Кроме того, сульфат свинца откладывается в порах активной массы пластин и существенно уменьшает диффузию серной кислоты из электролита в них.

Существенное влияние на сопротивление свинцово-кислотного аккумулятора оказывает и величина сопротивления электролита. Эта величина, в свою очередь, сильно зависит от концентрации и температуры электролита. Так, при уменьшении температуры сопротивление электролита растет и достигает бесконечности при его замерзании. И, наоборот, при высокой температуре скорость диффузии ионов электролита выше и внутреннее сопротивление аккумулятора ниже.

Наиболее оптимальным значением является установленная производителем плотность электролита при температуре 20-25°С, при которой внутреннее сопротивление принимает минимальное значение. При уменьшении или увеличении плотности электролита его сопротивление увеличивается, а, следовательно, растет и внутреннее сопротивление аккумулятора.

Поскольку емкость аккумуляторной батареи связана с ее внутренним сопротивлением и, получив опытным путем значение внутреннего сопротивления, можно оценить и емкость самой аккумуляторной батареи. Так, если внутреннее сопротивление аккумуляторной батареи увеличилось в 2 раза, то можно предположить, что емкость аккумуляторной батареи уменьшилась примерно в 2 раза.

Другими словами, внутреннее сопротивление батареи определяет ее способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома. При низком значении внутреннего сопротивления батарея способна отдавать в нагрузку большой пиковый ток (без существенного уменьшения напряжения на ее выводах), а значит, и большую пиковую мощность, в то время как высокое значение внутреннего сопротивления приводит к резкому уменьшению напряжения на выводах батареи при резком увеличении тока нагрузки. Это приводит к тому, что внешне хороший аккумулятор не может полностью отдать запасенную в нем энергию в нагрузку.

Регулярность измерений внутреннего сопротивления обеспечивает возможность прогнозирования выработки ресурса аккумуляторной батареи, и планировать ее замену заблаговременно.

Считается, что за 1 год сопротивление аккумуляторной батареи, при правильной эксплуатации, должно возрастать, исходя из срока службы, например, в 15 лет, не более, чем на 6-7%. Если скорость увеличения сопротивления элементов превышает ожидаемую, то анализируются условия эксплуатации аккумуляторной батареи, нагрузка, процесс подзаряда и другие. Элементы аккумуляторной батареи, сопротивление которых отличается от среднего, вычисляемого для всех элементов, более чем на 10% подвергаются тренировочному заряду, а, если он не дает нужного эффекта, считаются неисправными и нуждающимися в замене. Тренировочный заряд проводится не всех элементах аккумуляторной батареи от штатного зарядно-подзарядного устройства, а индивидуально, только тех элементов, которые в этом нуждаются, от переносного зарядного устройства.

При обследовании аккумуляторной батареи кроме внутреннего сопротивления ее элементов измеряются сопротивления и межэлементных соединений. Это позволяет своевременно выявлять характерные дефекты, обусловленные коррозией токовыводов аккумуляторов.

Государственный стандарт ГОСТ Р МЭК 60896-2-99 «Свинцово-кислотные стационарные батареи. Общие требования и методы испытаний», соответствующий рекомендациям МЭК, предусматривает определение внутреннего сопротивления аккумуляторов по двум значениям разрядного тока и напряжения. При этом разрядный ток первой ступени выбирается в зависимости от тока десятичасового режима разряда и равен (4–6) I10, напряжение регистрируется на 20 секунде разряда. Ток второй ступени выбирается из расчета (20–40) I10, напряжение регистрируется на 5 секунде разряда. Далее линейной экстраполяцией определяются расчетная ЭДС и ток короткого замыкания аккумулятора. По полученным данным определяют внутреннее сопротивление аккумулятора.

По этой методике проводят испытания многие отечественные аккредитованные специализированные испытательные центры и лаборатории, у которых оборудование позволяет провести это опытным путем.

Обычному пользователю при наличии специального оборудования достаточно измерить внутреннее сопротивление для оценки состояния аккумуляторной батареи в целом. В то же время на сегодняшний день самым объективным способом оценки состояния аккумуляторных батарей является их контрольный 20- или 10-часовой разряд в соответствии с данными тока разряда и конечного напряжения разряда разрядных таблиц завода-изготовителя.

Таким образом, внутреннее сопротивление аккумуляторных батарей является условной величиной. Свинцово-кислотный аккумулятор представляет собой нелинейное устройство, внутреннее сопротивление которого не остается постоянным, а меняется в зависимости от температуры, величины нагрузки, степени заряженности, концентрации электролита и прочих вышеперечисленных параметров. Поэтому для проведения точных расчётов аккумулятора желательно все-таки использовать разрядные кривые, а не величину внутреннего сопротивления.

Внутреннее сопротивление аккумулятора

Как зависит сопротивление аккумулятора от температуры?

Сопротивление, оказываемое аккумулятором протекающему внутри него току (зарядному или разрядному), называется внутренним сопротивлением.

Полное внутреннее сопротивление аккумулятора складывается из сопротивления электродов, электролита, сепараторов, вспомогательных токоведущих деталей и сопротивления поляризации, которая появляется вследствие изменения электродных потенциалов при прохождении электрического тока.

Внутреннее сопротивление аккумулятора зависит от ряда факторов и изменяется в довольно широком диапазоне значений. Важную роль играют здесь конструктивные особенности АКБ, а также: ёмкость аккумулятора; степень его заряженности; концентрация электролита; количество и качество электролита; наличие сульфатации пластин; ток, при котором работает аккумулятор; внутренние обрывы… и, конечно же, температура.

При разряде аккумулятора сопротивление электродов и электролита возрастает. Во время разряда аккумулятора, количество активной массы на пластинах аккумулятора уменьшается, что приводит к уменьшению активной поверхности пластин, поэтому внутреннее сопротивление заряженного аккумулятора меньше, чем внутреннее сопротивление разряженного аккумулятора. В разряженном состоянии сопротивление аккумулятора более чем в два раза превышает значение сопротивления у полностью заряженного аккумулятора.

Внутреннее сопротивление аккумуляторов большой ёмкости меньше, чем внутреннее сопротивление аккумуляторов меньшей ёмкости. Как известно, аккумуляторы большой ёмкости крупнее и массивнее аккумуляторов малой ёмкости – у них больше рабочая поверхность пластин и больше пространства для диффузии ионов электролита внутри аккумулятора. Однако… это вовсе не обозначает, что чем тяжелее и крупнее аккумулятор, тем он лучшеНеобходимо учитывать технологию изготовления аккумулятора. В мировом производстве аккумуляторов активно используются для изготовления токоотводов (решёток) три основные технологии:традиционное литьё, непрерывное литьё и экспандинг (эта технология заключается в перфорации заготовочной ленты, а затем растяжке полученной решётки – технология, позволяющая увеличить рабочую поверхность пластин). Соответственно, аккумуляторная батарея, изготовленная по технологии экспандинга, будет гораздо легче аккумулятора, изготовленного по технологии традиционного литья, но будет обладать лучшей токопроводимостью и меньшими внутренними напряжениями, что позволяет получить высокие характеристики АКБ.

 

Легенды об аккумуляторах в недобросовестной рекламе

 

По мере старения аккумуляторов их внутреннее сопротивление увеличивается. У нового аккумулятора внутреннее сопротивление самое маленькое. В основном оно определяется конструкцией токонесущих элементов и их сопротивлением. Но в процессе эксплуатации аккумулятора начинают накапливаться необратимые изменения – уменьшается активная поверхность пластин, появляется сульфатация, изменяются свойства электролита… и, как следствие внутреннее сопротивление аккумулятора начинает возрастать.

 

Существенное влияние на сопротивление аккумулятора оказывает температура.

При высокой температуре скорость диффузии ионов электролита выше, чем при низкой. Эта зависимость имеет линейный характер. С понижением температуры удельное сопротивление электролита возрастает и при температуре –40°C становится, примерно, в 8 раз больше, чем при температуре –30°C. Сопротивление сепараторов так же резко возрастает с понижением температуры и в том же интервале увеличивается, примерно, в 4 раза.

При низких температурах значительно ухудшаются условия пуска двигателя. Помимо того, что ухудшаются характеристики аккумуляторной батареи (увеличивается внутреннее сопротивление аккумулятора), увеличивается и момент сопротивления вращению коленчатого вала двигателя (из-за повышения вязкости масла).

В связи с этим в холодное время года аккумуляторные батареи должны иметь более высокую степень заряженности и иметь достаточное утепление.

 

Сеть магазинов «Орбита» предлагают вашему вниманию:
защитные термочехлы для аккумуляторных батарей SHUBATM
Термочехол SHUBATM надёжно защищает аккумулятор от негативного воздействия экстремальных температур и продлевает жизнь Вашего аккумулятора!

ПОДАРИТЕ СВОЕМУ АККУМУЛЯТОРУ «ШУБУ»
и получите дополнительную уверенность в надёжности аккумулятора
в момент запуска двигателя автомобиля вне зависимости от сезона:
и в жару и в холод

 

 

 

.

 

Более подробную информацию Вы можете получить у продавцов-консультантов
в наших магазинах или по телефону: 8 800 700-6339

 

Как измерить внутреннее сопротивление аккумулятора

Если замкнуть плюс и минус аккумулятора, то получим ток короткого замыкания Ie = U / Re , как будто внутри есть сопротивление Re . Внутреннее сопротивление зависит от электрохимических процессов внутри элемента, в том числе и от тока.

При слишком большом токе аккумулятор испортится, и даже может взорваться. Поэтому не замыкайте плюс и минус. Достаточно мысленного эксперимента.

Величину Re можно оценить косвенно по изменению тока и напряжения на нагрузке Ra . При небольшом уменьшении сопротивления нагрузки Ra до Ra‑dR ток увеличивается от Ia до Ia+dI. Напряжение на выходе элемента Ua=Ra×Ia при этом уменьшается на величину dU = Re × dI . Внутреннее сопротивление определяется по формуле Re = dU / dI

Для оценки внутреннего сопротивления аккумулятора или батарейки я добавил в схему измерителя ёмкости резистор 12ом и тумблер (ниже на схеме показана кнопка), чтобы изменять ток на величину dI = 1. 2 V / 12 Ohm = 0.1 А . Одновременно нужно измерять напряжение на аккумуляторе или на резисторе R .

Можно сделать простую схему только для измерения внутреннего сопротивления по образцу, показанному на рисунке внизу. Но всё же лучше сначала немного разрядить аккумулятор, и после этого измерить внутреннее сопротивление. В середине разрядная характеристика более пологая, и измерение будет более точным. Получится «среднее» значение внутреннего сопротивления, которое остаётся стабильным достаточно большое время.

 

Пример определения внутреннего сопротивления

Подключаем аккумулятор и вольтметр. Вольтметр показывает 1.227V . Нажимаем кнопку: вольтметр показывает 1.200V .
dU = 1.227V — 1.200V = 0.027V
Re = dU / dI = 0.027V / 0.1A = 0.27 Ohm
Это внутреннее сопротивление элемента при токе разряда 0.

Тестер показывает не dU, а просто U. Чтобы не ошибиться в устном счёте, я делаю так.
(1) Нажимаю кнопку. Аккумулятор начинает разряжаться, и напряжение U начинает уменьшаться.
(2) В момент, когда напряжение U достигнет круглой величины, например 1.200V, я отжимаю кнопку, и сразу вижу величину U+dU, например 1.227V
(3) Новые цифры 0.027V — и есть нужная разница dU.

По мере старения аккумуляторов их внутреннее сопротивление увеличивается. В какой-то момент вы обнаружите, что ёмкость даже свежезаряженного аккумулятора невозможно измерить, так как при нажатии кнопки Start реле не включается и часы не запускаются. Это получается потому, что напряжение на аккумуляторе сразу снижается до 1.2V и менее. Например, при внутреннем сопротивлении 0.6 ом и токе 0.5 А падение напряжения составит 0.6×0.5=0.3 вольта. Такой аккумулятор не может работать при токе разряда 0.5А, который требуется, например, для кольцевой светодиодной лампы. Этот аккумулятор можно использовать при меньшем токе — для питания часов или беспроводной мышки. Именно по большой величине внутреннего сопротивления современные зарядные устройства, вроде MH-C9000, определяют, что аккумулятор неисправен.

Внутреннее сопротивление автомобильного аккумулятора

Для оценки внутреннего сопротивления АКБ можно использовать лампу от фары. Это должна быть лампа накаливания, например, галогеновая, но не светодиодная. Лампа 60вт потребляет ток 5А.

При токе 100А на внутреннем сопротивлении АКБ не должно теряться более 1 Вольта. Соответственно, при токе 5А не должно теряться более 0.05 Вольта (1В * 5А / 100А). То есть, внутреннее сопротивление не должно превышать 0. 05В / 5А = 0.01 Ома.

Подключите параллельно аккумулятору вольтметр и лампу. Запомните величину напряжения. Отключите лампу. Обратите внимание, насколько увеличилось напряжение. Если, допустим, напряжение возросло на 0.2 Вольта (Re = 0.04 Ома), то аккумулятор испорчен, а если на 0.02 Вольта (Re = 0.004 Ома), то он исправен. При токе 100А потеря напряжения будет всего 0.02В * 100А / 5А = 0.4В

С помощью лампочки можно также оценить ёмкость автомобильной батареи .

 

Что такое внутреннее сопротивление аккумулятора? — Все о квадрокоптерах

Любой аккумулятор имеет внутреннее сопротивление, независимо от его типа, объема и других данных. Но само сопротивление зависит от емкости аккумулятора, его размеров, возраста, температуры, его химических свойств, был ли критический разряд, а также от тока разряда.

Чем выше температура окружающей среды, тем меньше внутреннее сопротивление. Именно по этой причине, зимой получается летать немного меньше, да и токоотдача меньше, поэтому, аккумулятор перед использованием рекомендуется немного нагреть (до температуры вашего тела, а не в печке какой-нибудь).

Почему важно измерять внутреннее сопротивление LiPo аккумуляторов?

Если вы будете знать внутреннее сопротивление, вы сможете примерно знать текущее состояние аккумулятора и примерный срок жизни. У Lipo аккумуляторов внутреннее сопротивление не зависит от того, до какого предела заряжен или разряжен аккумулятор, но зависит от возраста батареи. Чем меньше сопротивление — тем новее аккумулятор.

Если на одной из банок (секций) аккумулятора начало расти сопротивление, то аккумулятор начнет выдавать меньший ток, а также, будет нагреваться и скоро эта секция выйдет из строя первой.

Помните о рейтинге С? Так вот, внутреннее сопротивление и рейтинг С — это прямая зависимость показателей. Чем выше рейтинг, тем ниже сопротивление и больше токоотдача.

Читайте также: Как выбрать LiPo аккумуляторы для квадрокоптера

Как измерить внутреннее сопротивление аккумулятора?

Вам потребуется зарядное устройство, у которого будет функция измерения внутреннего сопротивления аккумулятора. Такая функция есть в оригинальном iMax B6, ToolkitRC M8 , M6 , M600 и в других зарядных устройствах. Они измеряют сопротивление не в процессе зарядки. ISDT Q6 Lite , Q6 , Q8 — умеют измерять внутреннее сопротивление в процессе зарядки.

Читайте также: Как выбрать зарядное устройство LiPo для квадрокоптера? Советы и примеры

ISDT Q6iMax B6ToolkitRC M6

Из-за чего может повыситься внутреннее сопротивление?

Причинами повышения сопротивления LiPo и других аккумуляторов может быть следующее:

  • Множество циклов зарядки-разрядки неизбежно приводят к повышению внутреннего сопротивления.
  • Возраст аккумулятора. Чем он выше, тем больше сопротивление. К тому же, аккумулятор разряжается, даже если вы его не используете.
  • Хранение аккумулятора в полностью разряженном и полностью заряженном состоянии приводит к быстрому повышению внутреннего сопротивления.
  • Глубокая разрядка или сильная перезарядка сильно повышает сопротивление аккумулятора, будьте с этим осторожны.
  • Перегрев. Если аккумулятор перегреется, это приведет к химическим изменениям внутри него, а это уже в свою очередь приведет к вздутию и повышению сопротивления.

Что еще нужно знать о внутреннем сопротивлении аккумулятора?

  • Значение внутреннего сопротивления должно быть одинаковым, либо близким по значению для всех банок (секций) аккумулятора. Если хотя бы секция будет с увеличенным значением сопротивления, производительность всего аккумулятора будет уменьшаться.
  • Чем выше внутреннее сопротивление, тем меньший ток выдаст аккумулятор.
  • Чем выше внутреннее сопротивление, тем сильнее аккумулятор будет греться при том же энергопотреблении квадрокоптера или другой модели.
  • Запишите значения внутреннего сопротивления нового аккумулятора, чтобы в будущем понимать в каком состоянии аккумулятор и не пора ли его менять.
  • Для аккумулятора с высоким внутренним сопротивлением потребуется больше времени для полной зарядки.
  • Аккумулятор с низким внутренним сопротивлением можно заряжать более высокими токами (2C — 5C).

Внутреннее сопротивление аккумулятора

Полное сопротивление свинцово-кислотного аккумулятора – это сумма таких величин, как сопротивление поляризации и омическое сопротивление. Омическое сопротивление является суммой сопротивлений сепараторов АКБ, электродов, положительного и отрицательного выводов, соединений между элементами и электролита.

 

Содержание статьи

Что представляет собой внутреннее сопротивление и от чего оно зависит?

На сопротивление электродов оказывает влияние их конструкция, пористость, геометрия, конструкция решётки, состояние активного вещества, наличие легирующих компонентов, качество электрического контакта решёток и обмазки. Величины сопротивления решёток отрицательных электродов и губчатого свинца (Pb) на них примерно одинаковы. В то же время сопротивление перекиси свинца (PbO2), который нанесён на решётку положительного электрода, больше в 10 тысяч раз.



В процессе разряда свинцово-кислотного аккумулятора на поверхности электродов выделяется сульфат свинца (PbSO4). Это плохой проводник, который существенно увеличивает сопротивление электродных пластин. Кроме того, сульфат свинца откладывается в порах обмазки пластин и существенно уменьшает диффузию серной кислоты из электролита в них. В результате к концу цикла разряда свинцово-кислотного аккумулятора его сопротивление возрастает в 2─3 раза. В процессе зарядки идёт растворение сульфата свинца, и сопротивление АКБ возвращается к первоначальной величине.

Существенное влияние на сопротивление свинцово-кислотного аккумулятора оказывает величина сопротивления электролита. Эта величина, в свою очередь, сильно зависит от концентрации и температуры электролита. При уменьшении температуры сопротивление электролита растёт, и достигает бесконечности при его замерзании.


При плотности электролита 1,225 гр/см3 и температуре +15 С он имеет минимальное значение сопротивления. При уменьшении или увеличении плотности сопротивление увеличивается, а значит, растёт и внутреннее сопротивление аккумулятора.

Сопротивление сепараторов меняется в зависимости от изменения их толщины и пористости. Величина тока, которая протекает через аккумулятор, оказывает влияние на сопротивление поляризации. Пару слов о поляризации, и причинах, по которым она возникает. Первая причина заключается в том, что в электролите и на поверхности электродов (двойной электрический слой) изменяются электродные потенциалы. Вторая причина в том, что при прохождении тока, концентрация электролита меняется в непосредственной близости от электродов. Это приводит к изменению электродных потенциалов. Когда цепь размыкается и ток исчезает, электродные потенциалы возвращаются к своим первоначальным значениям.

К особенностям свинцово-кислотных аккумуляторов стоит отнести небольшое внутреннее сопротивление по сравнению с другими типами аккумуляторных батарей. Благодаря этому они могут за небольшое время отдавать большой ток (до 2 тысяч ампер). Поэтому их основная область применения – стартерные аккумуляторные батареи на автомобилях с двигателями внутреннего сгорания.


Стоит также отметить, что внутреннее сопротивление АКБ при переменном или постоянном токе сильно зависит от его частоты. Есть ряд исследований, авторы которых наблюдали внутреннее сопротивление свинцово-кислотного аккумулятора при частоте тока в несколько сотен герц.
Вернуться к содержанию
 

Как можно оценить внутреннее сопротивление АКБ?

В качестве примера можно рассмотреть автомобильный свинцово-кислотный аккумулятор ёмкостью 55 Ач, имеющий номинальное напряжение 12 вольт. Полностью заряженный аккумулятор имеет напряжение 12,6─12,9 вольта. Допустим, что к АКБ подключить резистор с сопротивлением 1 Ом. Пусть напряжение разомкнутого аккумулятора 12,9 вольта. Тогда ток теоретически должен быть 12,9 В / 1 Ом = 12,9 ампера. Но в реальности он будет ниже 12,5 вольта. Почему это происходит? Это объясняется тем, что в электролите скорость диффузии ионов не является бесконечно большой.

Схема АКБ с подключённым резистором



На изображении аккумуляторная батарея представлена в виде 2-полюсного источника питания. Он имеет электродвижущую силу (ЭДС), которая соответствует напряжению разомкнутой цепи, и внутренне сопротивление. На схеме они обозначены E и Rвн. Когда цепь замыкается, то ЭДС батареи частично падает на резисторе, а также на собственно внутреннем сопротивлении. То есть, происходящее в цепи можно описать следующей формулой.

E = (R + Rвн) * I.

На изображениях ниже можно посмотреть значения ЭДС автомобильного аккумулятора в разомкнутой цепи и напряжения при подключении нагрузки в виде двух автомобильных лампочек, соединённых параллельно.

ЭДС батареи



Напряжение под нагрузкой

Как уже говорилось, внутреннее сопротивление АКБ является условной величиной. Свинцово-кислотный аккумулятор представляет собой нелинейное устройство, внутреннее сопротивление которого меняется в зависимости от температуры, величины нагрузки, степени заряженности, концентрации электролита и прочих вышеперечисленных параметров. Так, что для проведения точных расчётов аккумулятора используются разрядные кривые, а не величина внутреннего сопротивления.


При этом в расчётах электрических цепей с аккумуляторами величина внутреннего сопротивления может использоваться. Естественно, что всегда величина внутреннего сопротивления берётся с учётом факторов, от которых она зависит (заряд или разряд, постоянный или переменный ток, частота тока и т. п.).

Итак, исходя из формулы выше, можно вычислить внутреннее сопротивление АКБ с ЭДС 12,6 вольта при разряде постоянным током 2 ампера.

r = (E ─ U) / I = (12,9 В – 12,5 В) / 2 А = 0,2 Ом.

Кстати, некоторые зарядные устройства позволяют измерять внутреннее сопротивление батареи. Например, ниже можно видеть величину внутреннего сопротивления заряженного автомобильного аккумулятора, измеренную зарядкой SkyRC iMax B6 mini. Правда, неизвестно, по какому принципу прибор вычисляет эту величину.

Внутреннее сопротивление автомобильной АКБ по показаниям SkyRC iMax B6 mini



Вернуться к содержанию
 

Опрос

Примите участие в опросе!

 Загрузка …
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

от чего зависит, на что влияет


Вне зависимости от типа электрического приемника, каждый из них всегда имеет внутреннее сопротивление. Постоянно проверяя сопротивление аккумулятора, владелец может оставаться уверенным в его работоспособности. Когда возникает значительный разброс показателей, в лучшем случае это станет причиной поломки батареи. В худшем – сломаются потребители на самом автомобиле.

Что это такое?

Внутреннее сопротивление аккумулятора варьируется в разных пределах, исходя из пористости, конструкции и геометрии решетки, типа используемых электродов, наличия легирующих веществ, качества обмазки и качества электрического контакта. Сопротивление между губчатым свинцом и решеткой отрицательных электродов находится на примерно одинаковом уровне. Но при этом перекись свинца, нанесенная на поверхности решетки положительных электродов, имеет примерно в десять тысяч раз большее сопротивление.

В общей сложности, внутренним сопротивлением батареи является величина поляризации, которая оказывается напряжению, протекающему внутри. Нет никакого значения в том, о каком именно токе идет речь – разрядном или зарядном. Показатель варьируется в разных пределах, в зависимости от наименования элемента внутри батареи. Собственное значение всегда имеет электролит, сепараторы и электродные решетки.

Важно! На приведенных выше элементах влияет целый ряд факторов, вследствие чего внутреннее сопротивление батареи бывает разным, в зависимости от типа аккумуляторов. Поэтому никогда не будет лишним внимательно ознакомиться с текущими показателями.

Связь с проводимостью аккумулятора?

Сопротивление имеет обратную величину – проводимость. Тут необходимо помнить о взаимосвязи между проводимостью и сопротивлением – первый параметр всегда является обратным второму.

При измерении проводимости используется специальная единица – Сименс.

От чего зависит внутреннее сопротивление аккумулятора?

Когда свинцово-кислотный аккумулятор разряжается, на электродах начинает выделяться сульфат свинца. Его появление негативно сказывается на проводимости пластин, вследствие чего они сильнее сопротивляются передаче тока. Также стоит отметить, что сульфату свинца свойственно откладываться в порах, где обмазываются пластины. Из электролита хуже происходит диффузия серной кислоты. Когда разрядка аккумулятора на свинцово-кислотной основе доходит до своего завершения, уровень сопротивления сразу же увеличивается до показателя, в два-три раза превышающего номинальный. При повторном пополнении источника питания энергией сульфат свинца растворяется. Результат – параметры восстанавливаются до первоначального уровня.

Внимание! В автомобильных аккумуляторах показатель зависит от величины сопротивления используемого электролита. Это повышает зависимость от температуры жидкости внутри батареи и ее концентрации. Когда температура окружающей среды снижается до минимально допустимого уровня, автоматически электролитное сопротивление увеличивается. А когда электролит полностью замерзает, сопротивление достигает бесконечного значения.

Минимальная величина сопротивления достигается в том случае, если аккумулятор:

  • содержит внутри электролит, плотность которого составляет 1.225 грамм на кубический сантиметр;
  • эксплуатируется при температуре 15 градусов Цельсия.

Увеличив или уменьшив плотность, уровень сопротивления автоматически увеличивается. Следовательно, внутреннее сопротивление автомобильного аккумулятора неуклонно увеличивается.

Важно! Уровень сопротивления сепараторов может меняться исходя из пористости и толщины.

Не стоит забывать о том, что ток, протекающий через различные элементы аккумулятора, влияет на уровень сопротивления поляризации. Последняя, в свою очередь, появляется по ряду причин.

  1. Поверхность электрода и сам электролит – это элементы батареи, которым свойственно менять электродный потенциал.
  2. Когда ток проходит по системе, электролит меняет свою концентрацию. Чем ближе он находится к электродам, тем интенсивнее протекает данный процесс. Результат – изменение потенциалов электродов. При размыкании цепи и исчезновении тока уровень электродных потенциалов восстанавливается до первичного значения.

Свинцово-кислотные аккумуляторы характеризуются минимальным внутренним сопротивлением, если сравнивать их с иными популярными разновидностями АКБ. За счет этого они с легкостью отдают огромный ток в течение краткого промежутка времени (вплоть до 2000 А). Поэтому неудивительно, что они используются для питания стартеров автомобильных двигателей, учитывая, какая нагрузка приходится на систему на момент запуска.

Не будет лишним напомнить, что внутреннее сопротивление АКБ бывает разным, исходя из частоты. Какой именно ток – постоянный или переменный, не имеет значения. В рамках проведения ряда исследований, инициированных энтузиастами и учеными, было заметно, что свинцово-кислотный аккумулятор имел ярко выраженное сопротивление, когда на него подавался ток частотой 200-300 Гц.

Принцип и правила проверки

За основу возьмем обычную батарею свинцово-кислотного типа для легкового автомобиля, емкость которой составляет 55 ампер/час, а напряжение – 12 В. Когда ее заряжают до полного значения, батарея способна выдавать напряжение до 13 вольт. Теперь представим, что владелец решил подключить к источнику питания одноомный резистор. Будучи разомкнутым, аккумулятор способен выдавать 13 вольт. С теоретической точки зрения, ток должен быть на уровне 13 А. Но на практике показатель ниже – как правило, меньше 12.5 В. Что является причиной такого поведения? Все дело в том, что скорость протекания ионной диффузии внутри электролита не бесконечна.

Многие автомобилисты зачастую не знают, как измерить внутреннее сопротивление аккумулятора. На рынке давно можно приобрести специальные устройства, позволяющие проверить текущую величину внутреннего сопротивления. За основу берется принцип взаимодействия внутреннего сопротивления и емкости батареи. При использовании нагрузочной вилки и прочей похожей аппаратуры проверка происходит только тогда, когда источник питания находится под нагрузкой. Это напоминает проверку сопротивления АКБ при постоянной величине тока. Другие измерители, которые задействуются на практике, показывают данные, опираясь на текущее состояние батареи. Также существует третья разновидность оборудования – измеритель спектров. Здесь появляется возможность сравнения спектров сопротивления АКБ, выдающей переменный ток различных частот. В зависимости от полученного показателя, после измерения хозяин может сделать выводы касательно состояния источника питания на момент диагностики.

В общей сложности, проверка внутреннего сопротивления способствует качественной оценке текущего состояния батареи. Чтобы владельцы не наделали грубых ошибок при диагностике, производители указывают величину допустимой частоты, при которой разрешено проверять проводимость. На этикетке параллельно указана величина тока, позволяющего проводить проверку. Когда вы определите ЭДС и внутреннее сопротивление аккумулятора, то будете точно знать, что на итоговые показатели влияет сила и частота напряжения. Соответственно, после измерения проводимости невозможно будет получить количественные данные, посредством которых пользователь бы понял, как долго продержится батарея после очередных циклов разряда на нагрузку. Главой тому причиной является отсутствие логической зависимости между внутренним сопротивлением и емкостью источника питания.

Инновационный измеритель внутреннего сопротивления аккумуляторов работает по принципу оценки осциллограммы, полученной при проверке отклика батареи посредством сигнала специальной формы. Результат – возможность оперативной оценки остаточной емкости источника питания. В свою очередь, на базе оценки определяется старение и износ АКБ, продолжительность разрядки с учетом актуального состояния, а также оставшийся ресурс.

Кроме того, владелец может измерить мультиметром текущее сопротивление аккумулятора. Но прибор не сможет дать развернутую оценку остаточного ресурса.

Дополнительная информация

Проводить измерение внутреннего сопротивления аккумулятора автомобиля рекомендуется постоянно и своевременно. Качественная диагностика упрощает планирование замены. Ежегодно показатель повышается примерно на шесть процентов. Если он увеличивается более чем на восемь процентов, специалисты мастерской приступают к анализу нагрузки и эксплуатационных условий, в которых работает источник питания. Точность определения нарушений и дефектов зависит от метода диагностики.

Самым простым методом в плане реализации является подача переменного напряжения. Для этого используется трансформатор, ограничительный резистор, вольтметр и конденсатор. Длительность проверки варьируется в пределах от одного до двух часов. На протяжении этого отрезка времени оборудование устанавливает текущую величину напряжения. Задача вольтметра заключается в повышении точности полученного результата.

В рамках проверки проводимости с использованием переменного тока получается значение, состоящее из активного и реактивного показателя. Чтобы вывести требуемый результат, надо подготовить частотную зависимость. Реализация представленного метода сопровождается рядом сложностей из-за электрохимических процессов. Поэтому подача переменного напряжения через провода подойдет в том случае, если нужно составить общую оценку текущего состояния батареи.

В автомобильных мастерских и гаражных кооперативах пользуются методикой постоянной нагрузки. Особенность заключается в том, что в процессе тестирования батарею, находящуюся под постоянным напряжением, стремительно разряжают. Используя вольтметр, специалисты проверяют напряжение без нагрузки и с ее наличием. За основу при расчете берется закон Ома. Метод подходит в том случае, если объектом тестирования является крупногабаритная аккумуляторная батарея. При анализе используется высокоточная аппаратура, способная проверить проводимость аккумулятора и ряд других показателей. Возможно применение тестеров с наличием пленочно-угольного резистора.

Важно понимать, что в рамках реализации данной методики конденсатор не обращает никакого внимания на измерительный прибор. Поэтому при получении результатов оценке подлежит активная составляющая АКБ. Чтобы проверить старую батарею на проводимость и прочие параметры, этот метод не подойдет. Причина заключается в проблематичности установления истинного состояния. С другой стороны, никто не запрещает проверить сопротивление аккумулятора автомобиля и ЭДС при правильно подобранном напряжении.

 

Опираясь на информацию, изложенную выше, можно сделать следующие выводы. Проверка внутреннего сопротивления относится к категории обязательных диагностических процедур, при своевременном выполнении которой автомобилист сможет оценить текущее состояние источника питания. В рамках ее выполнения могут использоваться различные методы, исходя из назначения и характеристик АКБ.

Как определить оставшийся срок службы (остаточный ресурс) аккумуляторной батареи (АКБ)?

Чтобы система бесперебойного питания не подвела в самый неподходящий момент, необходимо, чтобы все аккумуляторные батареи были в рабочем состоянии. Но как их проверить? Как убедиться, что установленные АКБ ещё не исчерпали свой остаточный ресурс? Как правильно оценить их оставшийся срок службы?

Строго говоря, самый правильный ответ вопрос, поставленный в такой форме – «никак». Ни один из приборов и методов не позволяет дать точный прогноз того, сколько еще проработает батарея и в какой именно момент она выйдет из строя. Причем касается это как обслуживаемых батарей (хотя в их отношении диапазон принимаемых мер несколько шире), так и необслуживаемых. При этом по всему миру обслуживаемые батареи используются все меньше, в то время как популярность необслуживаемых АКБ растет практически во всех областях применения.

Методом полного заряда/разряда батареи можно определить остаточную емкость аккумулятора в ампер-часах. Это достоверный метод, но даже он при однократном проведении не даст информации о том, сколько еще проработает батарея. Составить прогноз «времени дожития» можно только в том случае, если измерения проводятся на регулярной основе, их результаты сопоставляются между собой – т. е. оценивается динамика изменений. Однако полный заряд/разряд – процедура весьма продолжительная, и проводить ее регулярно (особенно при значительном количестве батарей) вряд ли возможно.

Однократный краткосрочный тест тем более не дает достоверной информации об остаточном ресурсе. Говорить о точном определении остаточной емкости в этом случае вообще не приходится – слишком разные существуют варианты аккумуляторов, чтобы существовала единая методика определения этого параметра. Можно измерить напряжение, но как сделать выводы на основе этих показаний, если уже частично деградировавший элемент выдает такое же напряжение, что и соседние? Возникает вопрос, можно ли вообще что-либо сказать о текущем состоянии АКБ при помощи быстрых измерений, или остается примириться с тем, что со временем, неизвестно в какой момент батарея выйдет из строя и ее придется менять? А ведь последствия такого события могут оказаться очень тяжелыми. Для ряда объектов: ЦОДов, подстанций, аэропортов, предприятий нефтегазовой отрасли, энергетики, медицинских учреждений и других, работа которых должна быть бесперебойной – подобные аварии просто неприемлемы, их необходимо предотвращать, а не устранять последствия.

Существует несколько базовых стратегий в работе с АКБ:

  1. Менять батарею только тогда, когда она выйдет из строя или полностью утратит емкость. Средства на проверку состояния батарей не затрачиваются, однако весь риск неблагоприятных последствий в случае сбоя ложится на владельца объекта или предприятия. Потери от одного сбоя могут многократно превысить всю «экономию» на тестировании батарей.

  2. Менять батареи по истечении определенного времени эксплуатации, независимо от их состояния. Средства на проверочные мероприятия также не затрачиваются, однако остается риск сбоя, если батарея утратит рабочие свойства раньше ожидаемого срока. Кроме того, качественные батареи часто могут работать продолжительное время и после того, как заявленный производителем срок службы (гарантийный период) истек. При таком подходе даже исправные батареи будут изыматься из эксплуатации, вызывая неоправданный рост расходов.

  3. Проводить регулярное тестирование АКБ, идентифицируя батареи, которые демонстрируют начало деградации. Им заблаговременно заказывается замена, она производится тогда, когда скорость деградации увеличится, но до наступления сбоя дело не доходит.

Наиболее экономически целесообразный подход, используемый сегодня в Европе и США состоит в том, чтобы при помощи тестов, не занимающих много времени и не требующих больших затрат, регулярно (раз в квартал, полгода, год) измерять доступные параметры, документировать результаты, сопоставлять их и отслеживать ситуацию в динамике – каждый блок, каждую батарею. В этом случае по любой из батарей можно заметить момент, когда началась деградация. Пока процесс развивается медленно, за ним можно просто следить, продолжая эксплуатацию, и заменить АКБ тогда, когда свой основной ресурс она выработала, но еще не пришла в полную негодность. Фактически, это скорее организационные меры, чем технические – комплекс мероприятий, нацеленный на максимально полное использование ресурса батарей, при том, что риск аварий и, соответственно, негативных последствий минимизируется.

Как определить оставшийся срок службы АКБ исходя из внутреннего сопротивления?

Деградации подвержены любые батареи. Причины могут быть разными (повышенные температуры, истечение электролита, сульфатация в результате многократных перезарядок, понижение нагрузки и сеточная коррозия – в зависимости от типа и модели АКБ), но в любом случае это отражается на внутреннем сопротивлении элементов батареи. У штатно работающих батарей со временем из-за естественного износа внутреннее сопротивление начинает расти. Когда отклонение от базового уровня превышает 25%, батарею пора заменить (у некоторых батарей пороговый уровень выше – отклонение порядка 50% – но лучше проверить это значение по спецификациям производителя батареи). Существенное отклонение об нормы в меньшую сторону свидетельствует о явной неисправности, такую батарею необходимо заменить независимо от срока ее использования.

Строго говоря, полный импеданс включает в себя внутреннее сопротивление, индуктивную и реактивную составляющую. Однако с технологической точки зрения для оценки АКБ достаточно измерять только активную составляющую – внутреннее сопротивление адекватно отражает рабочее состояние батареи. Это вполне надежный индикатор деградации, к тому же на его измерение требуется всего несколько секунд. Подобные тесты не требуют лабораторной точности, но важно проводить их регулярно и сопоставлять результаты, полученные в разное время. По этому критерию можно быстро определить, годна батарея к дальнейшему использованию или нет. Для подобных измерений существует не так много приборов. Одни из самых популярных – семейство тестеров аккумуляторных батарей Fluke BT500 (модели BT510, BT520 и BT521).

Чтобы измерить внутреннее сопротивление тут используется 2 щупа. Приборы подают малый переменный ток, имеющий частоту 1000 Гц. Сила тока настолько мала, а частота подобрана таким образом, что измерение можно проводить прямо в ходе нагрузки, на запитываемое оборудование это никак не повлияет. Можно проводить тесты и без нагрузки. Прибор проводит измерение напряжения, производит расчет сопротивления и выводит результат на экран.

Поскольку внутреннее сопротивление исчисляется в миллиомах, для измерения используется 4-проводное подключение Кельвина, в отечественной электротехнической литературе более известное под названием двойного измерительного моста Томсона. 4 точки подключения обеспечиваются за счет конструкции щупов: каждый из них имеет двухконтактный наконечник, центральный контакт подпружинен и при надавливании утапливается внутрь. В результате каждый щуп соприкасается с поверхностью двумя контактами, реализуя 4-проводную схему подключения и обеспечивая более точное измерение внутреннего сопротивления батареи.

В зависимости от модели прибора и доступных аксессуаров возможно одновременное определение температуры на отрицательной клемме аккумуляторной батареи – для этого используется выносной щуп BTL21 со встроенным ИК-датчиком (см. таблицу «Функции и аксессуары», комплектация зависит от модели прибора). Все измерение занимает 4 секунды. Результаты выводятся на ЖК-дисплей тестера, сохраняются в памяти для последующей загрузки на ПК через порт USB и подготовки отчета при помощи входящего в комплект программного обеспечения.

Тесты проводятся быстро не только за счет скорости измерения самого прибора, но и благодаря наличию удобных щупов, к которым предусмотрены удлинители различного размера. Результаты можно не просто сохранять (в том числе автоматически), но и подразделять на группы в соответствии с количеством блоков и батарей в них, чтобы информация была представлена в четко структурированном виде. Скриншот показывает экран прибора при последовательном измерении: три батареи из 32 уже протестированы, их результаты сохранены, по четвертой выполняются измерения (результаты на экране) и будут сохранены по нажатию кнопки Save, остальные ячейки пусты для последующих измерений.

Затраты времени на измерительные процедуры для всех 100% аккумуляторных батарей на объекте не выходят за рамки разумного, в результате сопоставление полученных в разное время данных позволит определить, в каких батареях деградация только началась, а в каких достигла уровня, когда их необходимо заменить, не дожидаясь фатального сбоя.

При массовых измерениях наконечники щупов изнашиваются, но все компоненты и измерительные провода могут быть своевременно заменены на аналогичные. Можно заменять только наконечники с подпружиненными контактами. При замене тестового щупа необходимо провести калибровку нуля прибора, для этого в комплекте предусмотрена калибровочная пластина (кассета сопротивлений). Операция выполняется самим пользователем (в отличие от поверки, которая выполняется в сертифицированной организации. Приборы Fluke BT500 внесены в Государственный реестр средств измерений, на них есть методика поверки и сертификаты установленного образца. Межповерочный интервал – 1 год).
 

Можно изначально держать в запасе дополнительный комплект щупов, а также измерительные провода для режима мультиметра и (в зависимости от модели) токовые клещи. Эти аксессуары позволят дополнить измерения внутреннего сопротивления другими тестовыми функциями. Возможна оценка тока пульсации (присутствие переменной составляющей в постоянном напряжении более 5% может служить симптомом – высокое значение пульсации приводит к перегреву и потере энергии). Можно отслеживать падение напряжения при разряде (измерения проводятся многократно в ходе процесса разрядки).

Сравнительные возможности тестеров АКБ серии Fluke BT 500

 

Функции и аксессуары

Fluke BT510

Fluke BT520

Fluke BT521

Измерение внутреннего сопротивления (активной составляющей, мОм)

Измерение напряжения батареи

Многократное измерение напряжения в ходе разрядки

Измерение пульсирующего напряжения (переменная составляющая в постоянном напряжении)

Температура отрицательного полюса АКБ

 

 

Режим мультиметра

Режим однократных и последовательных измерений

Задание пороговых значений

Функция автоматического сохранения измерений

Просмотр памяти

Беспроводная связь

 

 

Интерактивный тестовый зонд BTL20 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, без датчика температуры

 

 

Интерактивный тестовый зонд BTL21 с ЖК-дисплеем и динамиком, длинные и короткие удлинители, ИК-датчик температуры

 

 

Токовые клещи i420 переменного и постоянного тока

 

 

Калибровочная пластина (кассета сопротивлений)

Необходимо подчеркнуть – приборы Fluke BT500 не дают информацию об остаточной емкости батарей, в результатах не фигурируют ампер-часы. Принципиальная позиция производителя состоит в том, что точно определить емкость можно только при полном заряде/разряде АКБ, а при быстром измерении точно сделать это нельзя в принципе, поскольку конструкции батарей и проходящие в них физико-химические процессы неодинаковы. Внутреннее сопротивление напрямую от остаточной емкости не зависит. Однако оно служит надежным критерием, позволяющим отличить батареи, годные к дальнейшему использованию, от тех, которые необходимо заменить. При регулярном тестировании риск сбоя сводится к минимуму, а на объекте обеспечивается бесперебойное функционирование систем, в которых используются АКБ.

Стандарты проверки аккумуляторных батарей

Существует несколько стандартов, регламентирующих процедуры проверки АКБ в зависимости от их типа (IEEE 450 и IEEE 1188 для стационарных свинцово-кислотных батарей, IEEE 1106 для никель-кадмиевых, есть и другие), но в основных положениях они сходятся:

  1. При первоначальной установке батарей необходимо произвести испытания на разряд (проверка емкости батарей). Их может выполнять изготовитель на производственной площадке, предоставляя затем заказчику документацию, либо приемочные испытания проводятся на объекте. Чем детальнее предоставит информацию по батареям производитель, тем лучше – с этими данными можно будет сопоставлять результаты измерений, проведенных на различных этапах эксплуатации.

  2. В тот же период первоначальной установки проводится тестирование внутреннего сопротивления батарей, чтобы определить их базовые параметры. Данные фиксируются для каждой батареи, в каждом блоке, и хранятся в виде сводных отчетов для будущего сопоставления.

  3. Процедуры 1 и 2 необходимо повторять не реже 1 раза в 2 года для большинства систем, охватываемых гарантией – как правило, это одно из условий для продолжения действия гарантии.

  4. Для большинства АКБ тестирование внутреннего сопротивления следует проводить не реже, чем раз в квартал. В некоторых случаях, если так предусмотрено производителем, батареи проверяются по годичному циклу, но для большинства моделей и типов проверка имеет квартальный график. На объектах, работа которых особо критична, может быть принят свой внутренний регламент, предусматривающий тестирование чаще, каждые 1-2 месяца.

  5. В графике проверок учитывается заявленный производителем полный срок службы батарей: измерения должны проводиться как минимум по истечении каждых 25% срока службы АКБ.

  1. Если батарея выработала 85% от ожидаемого срока службы, необходимо не реже раза в год подвергать ее испытанию на остаточную емкость. С такой же периодичностью тест необходимо проводить, если емкость упала ниже 90% от заявленного производителем уровня (или разница в показаниях между предыдущими измерениями составила более 10%).

  2. Если проверка внутреннего сопротивления продемонстрировала большое расхождение с предыдущими результатами измерений, рекомендуется провести проверку остаточной емкости. При резком падении внутреннего сопротивления или превышении базового значения более чем на 25% батарею следует заменить.

  3. Результаты измерений необходимо сохранять в четком, упорядоченном виде. По отчетам отслеживается состояние каждой батареи, и если на протяжении последних измерений она демонстрирует признаки ускоряющейся деградации, АКБ подлежит замене. Грамотное ведение отчетов позволяет заранее заказать нужные наименования в нужном количестве, чтобы произвести замену вовремя.

Выводы

За состоянием аккумуляторных батарей необходимо следить. Делать это быстро и при этом получать содержательную информацию об остаточном ресурсе АКБ помогут специальные приборы, способные измерять внутреннее сопротивление, такие как семейство тестеров Fluke BT500.

См. также:

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

Как измерить внутреннее сопротивление батареи? — Зачем это делать

Батарейки найдены и используются везде! Все видели их и раньше использовали батарею. В другой предыдущей статье — Что происходит в электрической цепи: напряжение по сравнению с током, мы определили и объяснили, что такое напряжение, ток и сопротивление. Однако знаете ли вы, что каждая батарея имеет собственное сопротивление течению тока? Это известно как Внутреннее сопротивление .

Мы говорили о сопротивлении — сопротивление относится к мере сопротивления протеканию тока.Внутреннее сопротивление — это, по сути, противодействие потоку, который в настоящее время обеспечивается самими элементами и батареями. В этой статье мы поговорим о том, как измерить внутреннее сопротивление батареи:

  • Что такое внутреннее сопротивление?
  • Как измерить внутреннее сопротивление?
  • Рекомендуемые инструменты и продукты, которые помогут вам.

Что такое внутреннее сопротивление?

Источник: hk-phy

Как уже упоминалось, внутреннее сопротивление относится к противодействию протеканию тока, создаваемому самими элементами и батареями.Все материалы в некоторой степени сопротивляются току, даже элементы и батареи. Это связано с материалами, из которых изготовлены батареи.

Элементы, из которых состоит типичная батарея, включают цинк, углерод, литий, ртуть, серебро и т. Д. Все они не являются идеальными проводниками электричества. Поэтому найти аккумулятор с нулевым внутренним сопротивлением будет сложно, возможно, даже невозможно.

Внутреннее сопротивление можно рассматривать как привратник батареи. Более низкое сопротивление означает меньшее ограничение.При высоком сопротивлении аккумулятор нагревается и напряжение падает.

Как внутреннее сопротивление влияет на напряжение и ток?

Чтобы лучше понять это, воспользуемся законом Ома. Закон Ома — это формула, определяющая соотношение между напряжением, током и сопротивлением в цепи. Закон Ома гласит, что В = IR. V относится к напряжению, I относится к току, а R относится к сопротивлению, в нашем случае внутреннему сопротивлению.

Ключевым моментом для понимания является то, что напряжение и внутреннее сопротивление являются независимыми переменными, главное, на что влияют, — это зависимая переменная, т.е.е. электрический ток. Когда внутреннее сопротивление увеличивается на V / R = I, ток уменьшается. Когда внутреннее сопротивление меньше, ток, наоборот, увеличивается. Они обратно пропорциональны. Однако все это основано только на формуле закона Ома.

В реальном мире напряжение уменьшается при увеличении внутреннего сопротивления. Таким же образом мы можем измерить внутреннее сопротивление батареи.

В двух словах,

Внутреннее сопротивление — это сопротивление в цепи, которое исходит от самого элемента или батареи.При более высоком внутреннем сопротивлении ток и напряжение будут ниже.

Имея это в виду, давайте теперь исследуем, почему мы должны измерять внутреннее сопротивление?

Как измерить внутреннее сопротивление?

Что вам понадобится:
  • Новая батарейка (AA)

Цифровой вольтметр постоянного тока со светодиодной подсветкой 0,28 дюйма — желтый

RESK — Комплект резисторов

Шагов:
  1. Подключите аккумулятор и вольтметр в следующей конфигурации.

[не обращайте внимания на треугольник (GND) в нижнем левом углу]

  1. Снимите измерения с вольтметра. 1.500V

Вольтметр должен показывать величину напряжения в соответствии со спецификацией вашей батареи. Это связано с тем, что к цепи не подключена нагрузка. Это также известно как напряжение холостого хода (VOC).

Напряжение холостого хода (VOC) — это напряжение, когда оно не подключено к какой-либо нагрузке в цепи.

  1. Подключите аккумулятор, вольтметр и резистор в этой конфигурации.

[не обращайте внимания на треугольник (GND) в нижнем левом углу]

В нашем примере мы будем использовать резистор на 4 Ом.

  1. Снимите измерения с помощью вольтметра. 1.446V

Вольтметр должен показывать более низкое значение напряжения. Падение напряжения вызвано внутренним сопротивлением батареи. Мы можем рассчитать внутреннее сопротивление, если мы снимем показания напряжения холостого хода (VOC) и напряжения на батарее с подключенной нагрузкой, которая в нашем случае представляет собой резистор 4 Ом.

  1. Используйте формулу закона Ома и формулу закона Кирхгофа для расчета внутреннего сопротивления.

Сначала мы подставим полученное значение в закон Ома, чтобы определить ток, протекающий по цепи.

Сокращение:

В = Напряжение

I = текущий

R = Сопротивление

VL = Напряжение нагрузки

RL = номинал резистора

В = I · R

VL = I · RL

1.446 В = I · 4 Ом

I = 1,446 В 4 Ом

I = 0,3615A

Затем мы будем использовать Закон Кирхгофа для определения напряжения на внутреннем резисторе в батарее. Это значение также является падением напряжения на внутреннем резисторе.

Сокращение:

VOC = Напряжение холостого хода

VI = напряжение на внутреннем резисторе

VL = Напряжение нагрузки

ЛОС = VI + VL

1.500 В = VI + 1.446 В

VI = 1.500 — 1.446V

VI = 0,054

Теперь у нас есть значение падения напряжения на внутреннем резисторе и ток, протекающий по цепи. Теперь мы можем снова использовать закон Ома, чтобы найти внутреннее сопротивление батареи.

Сокращение

VI = напряжение на внутреннем резисторе

I = текущий

RI = внутреннее сопротивление

VI = I · RI

0.054V = 0,3615A · RI

RI = 0,149 Ом

Отсюда видно, что внутреннее сопротивление батареи AA составляет 0,149 Ом !

Рекомендуемые инструменты и продукты

Надеюсь, вы научились измерять внутреннее сопротивление батареи, а также как и когда его применять! Вот несколько инструментов и продуктов, связанных с батареями, которые могут помочь вам в ваших проектах IoT!

Модуль ИБП для Raspberry Pi Pico — Источник бесперебойного питания

Этот источник бесперебойного питания (ИБП) — это модуль, предназначенный для обеспечения работы вашего Raspberry Pi Pico от литий-ионного аккумулятора.Он также оснащен микросхемой контроля напряжения / тока и индикатором состояния батареи.

Характеристики

  • Стандартный заголовок Raspberry Pi Pico
  • Совместимость литий-ионных аккумуляторов с динамическим управлением питанием для стабильного источника питания
  • Связь по шине I2C для контроля напряжения, тока, мощности и оставшейся емкости аккумулятора
  • Несколько мер защиты аккумулятора, т. Е. Перезаряд / защита от разряда, защита от перегрузки по току, защита от короткого замыкания, обратная защита и функция выравнивающего заряда
  • Встроенный индикатор зарядки, питания и заряда аккумулятора

0.28-дюймовый светодиодный цифровой вольтметр постоянного тока

Это супермини-светодиодный дисплей с диагональю 0,28 дюйма. Пусть вас не обманывает его небольшой внешний вид, он оснащен функцией защиты от обратного подключения. Этот вольтметр можно использовать для измерения заряда аккумулятора мобильного телефона, аккумулятора автомобиля и других подобных приложений. Также доступны несколько цветов: желтый, красный, зеленый и синий.

Спецификация

  • Диапазон напряжения: 2,5 — 30 В
  • Рабочий ток <30 мА
  • Размер: 30 × 11.7 × 9,2 мм
  • Скорость измерения: 200 мс / один раз
  • Точность 3%

18650 Корпус держателя батареи — 2 слота с переключателем

Это батарейный отсек для ваших аккумуляторов 18650! Этот футляр для батарейного отсека может вместить две перезаряжаемые батареи 18650 и оснащен встроенным переключателем. В корпус встроены провода для пайки / подключения к вашим IoT-проектам!

Корпус держателя батареи 18650 — 4 слота

Это четырехслотовый батарейный отсек для аккумуляторов 18650! В этот чехол можно установить четыре аккумуляторных батареи 18650.Подобно вышеупомянутому корпусу держателя батареи, в корпус встроены провода для пайки / подключения к вашим проектам IoT!

Сводка

Надеюсь, вы узнали больше об измерении внутреннего сопротивления батарей. Это может быть забавный проект, если вы новичок в построении схем. Если у вас есть какие-либо вопросы, не стесняйтесь оставлять их в комментариях ниже!

Следите за нами и ставьте лайки:

Продолжить чтение

ЭДС и внутреннее сопротивление

ЭДС и внутреннее сопротивление
следующий: резисторы последовательно и вверх: электрический ток Предыдущий: Сопротивление и удельное сопротивление Теперь настоящие батареи изготавливаются из материалов с ненулевым удельным сопротивлением.Отсюда следует, что настоящие батареи — это не просто источники чистого напряжения. Они также обладают внутренние сопротивления . Между прочим, чистое напряжение Источник обычно называют ЭДС (что означает электродвижущую силу ). Конечно, ЭДС измеряется в вольтах. Аккумулятор можно смоделировать как ЭДС, включенную последовательно с резистором. , который представляет собой его внутреннее сопротивление. Предположим, что такие батарея используется для управления током через внешний нагрузочный резистор, так как изображенный на рис.17. Обратите внимание, что на принципиальных схемах ЭДС представлена ​​в виде двух близко расположенных параллельных линии неравной длины. Электрический потенциал более длинной линии больше, чем тот из более коротких по вольтам. Резистор представлен как зигзагообразная линия.
Рисунок 17: Батарея ЭДС и внутреннего сопротивления подключена к нагрузочному резистору сопротивления.

Рассмотрим батарею на рисунке.Напряжение аккумулятора равно определяется как разница в электрическом потенциале между его положительным и отрицательные клеммы: т.е. , точки и соответственно. Когда мы переходим от к , электрический потенциал увеличивается на вольт, когда мы пересекаем ЭДС, но затем уменьшается на вольт, когда мы пересекаем внутренний резистор. Падение напряжения на резисторе следует из закона Ома, из которого следует, что падение напряжения на резисторе, несущем ток , находится в том направлении, в котором текущие потоки.Таким образом, напряжение аккумулятора связано с его ЭДС. и внутреннее сопротивление через

(133)

Обычно мы думаем, что ЭДС батареи по существу постоянная (поскольку она зависит только от химической реакции, происходящей внутри батареи, которая преобразует химическая энергия в электрическую), поэтому мы должны заключить, что напряжение батарея на самом деле уменьшается по мере увеличения тока, потребляемого от нее.Фактически, напряжение равно только ЭДС при пренебрежимо малом токе. Текущий розыгрыш от аккумулятора обычно не может превышать критическое значение
(134)

поскольку напряжение становится отрицательным (что может произойти только если резистор нагрузки также отрицательный: это практически невозможно). Отсюда следует, что если мы закоротим аккумулятор, подключив его положительные и отрицательные клеммы вместе с использованием проводника с незначительным сопротивлением, ток, потребляемый батареей, ограничен ее внутренним сопротивлением.Фактически в этом случае ток равен максимально возможному. Текущий .

Настоящая батарея обычно характеризуется его ЭДС (, т.е. , его напряжение при нулевом токе) и максимальный ток, который он может подавать. Например, стандартный сухой элемент (, т.е. , своего рода аккумулятор, используемый для питания калькуляторов и фонарей) обычно рассчитан на и скажи) . Таким образом, ничего действительно катастрофического не произойдет. произойдет, если мы закоротим сухой элемент.Мы разрядим аккумулятор через сравнительно короткий промежуток времени, но опасно большой ток не будет поток. С другой стороны, автомобильный аккумулятор обычно рассчитывается на и что-то вроде (такой ток нужен для запустить стартер). Понятно, что автомобильный аккумулятор должен иметь много более низкое внутреннее сопротивление, чем у сухого элемента. Отсюда следует, что если мы были достаточно глупы, чтобы замкнуть автомобильный аккумулятор, в результате довольно катастрофически (представьте себе всю энергию, необходимую для запуска двигателя автомобиль собирается тонким проводом, соединяющим клеммы аккумулятора вместе).



следующий: резисторы последовательно и вверх: электрический ток Предыдущий: Сопротивление и удельное сопротивление
Ричард Фицпатрик 2007-07-14

Оценка внутреннего сопротивления в цепях | Электрические цепи

Рабочий пример 7: Внутреннее сопротивление в цепи с последовательными резисторами

Для следующей схемы рассчитайте:

  1. разности потенциалов \ (V_ \ text {1} \), \ (V_ \ text {2} \) и \ (V_ \ text {3} \) на резисторах \ (R_ \ text {1} \), \ (R_ \ text {2} \) и \ (R_ \ text {3} \)

    .
  2. сопротивление \ (R_ \ text {3} \).

  3. сопротивление \ (R_ \ text {3} \).

Если внутреннее сопротивление равно \ (\ text {0,1} \) \ (\ text {Ω} \), какова ЭДС батареи и какая мощность рассеивается внутренним сопротивлением батареи?

Примечание

Это вопрос, очень похожий на то, что вы видели ранее. Это необходимо для того, чтобы выделить Дело в том, что подход к внутреннему сопротивлению строится на том же принципы, с которыми вы уже работали.

Определите, как подойти к проблеме

Нам дана разность потенциалов на ячейке и ток в цепи, а также сопротивления двух из трех резисторов. Мы можем использовать закон Ома для расчета разности потенциалов на известных резисторах. Поскольку резисторы включены в последовательную цепь, разность потенциалов равна \ (V = V_ \ text {1} + V_ \ text {2} + V_ \ text {3} \), и мы можем вычислить \ (V_ \ text {3} \). Теперь мы можем использовать эту информацию, чтобы найти разность потенциалов на неизвестном резисторе \ (R_ \ text {3} \).

Вычислить разность потенциалов на \ (R_ \ text {1} \)

Используя закон Ома: \ begin {align *} R_ \ text {1} & = \ frac {V_ \ text {1}} {I} \\ I \ cdot R_ \ text {1} & = I \ cdot \ frac {V_ \ text {1}} {I} \\ V_ \ text {1} & = {I} \ cdot {R_ \ text {1}} \\ & = 2 \ cdot 1 \\ V_ \ текст {1} & = \ текст {2} \ текст {V} \ end {align *}

Рассчитать разность потенциалов на \ (R_ \ text {2} \)

Снова используя закон Ома: \ begin {align *} R_ \ text {2} & = \ frac {V_ \ text {2}} {I} \\ I \ cdot R_ \ text {2} & = I \ cdot \ frac {V_ \ text {2}} {I} \\ V_ \ text {2} & = {I} \ cdot {R_ \ text {2}} \\ & = 2 \ cdot 3 \\ V_ \ текст {2} & = \ текст {6} \ текст {V} \ end {align *}

Вычислить разность потенциалов на \ (R_ \ text {3} \)

Поскольку разность потенциалов на всех резисторах, вместе взятых, должна быть такой же, как разность потенциалов на ячейке в последовательной цепи, мы можем найти \ (V_ \ text {3} \), используя: \ begin {align *} V & = V_ \ text {1} + V_ \ text {2} + V_ \ text {3} \\ V_ \ text {3} & = V — V_ \ text {1} — V_ \ text {2} \\ & = 23-2-6 \\ V_ \ текст {3} & = \ текст {15} \ текст {V} \ end {align *}

Найдите сопротивление \ (R_ \ text {3} \)

Нам известна разность потенциалов на \ (R_ \ text {3} \) и ток через нее, поэтому мы можем использовать закон Ома для вычисления значения сопротивления: \ begin {align *} R_ \ text {3} & = \ frac {V_ \ text {3}} {I} \\ & = \ frac {\ text {15}} {\ text {2}} \\ R_ \ text {3} & = \ text {7,5} ~ ​​\ Omega \ end {align *}

Разница потенциалов внутреннего сопротивления аккумулятора

Значение ЭДС можно рассчитать по разности потенциалов нагрузки и разности потенциалов на внутреннем сопротивлении.2} {R} \), и мы знаем ток в цепи, внутреннее сопротивление и разность потенциалов на ней, поэтому мы можем использовать любую форму уравнения для мощности:

\ begin {align *} P_r & = V_rI_r ​​\\ & = (\ текст {0,2}) (\ текст {2}) \\ & = \ текст {0,4} \ текст {W} \ end {align *}

Напишите окончательный ответ

  • \ (V_ \ text {1} = \ text {2,0} \ text {V} \)
  • \ (V_ \ text {2} = \ text {6,0} \ text {V} \)
  • \ (V_ \ text {3} = \ text {10,0} \ text {V} \)
  • \ (R_ \ text {3} = \ text {7,5} \ Omega \)
  • \ (\ mathcal {E} = \ text {23,2} \ text {V} \)
  • \ (P_r = \ text {0,4} \ text {W} \)

Рабочий пример 8: Внутреннее сопротивление и резисторы параллельно

Разность потенциалов на батарее составляет 18 В, когда она подключена к двум параллельным резисторам \ (\ text {4,00} \) \ (\ Omega \) и \ (\ text {12,00} \) \ ( \ Omega \) соответственно.Рассчитайте ток через ячейку и через каждый из резисторов. Если внутреннее сопротивление батареи \ (\ text {0,375} \) \ (\ text {Ω} \), какова ЭДС батареи?

Сначала нарисуйте схему перед выполнением любых расчетов

Определите, как подойти к проблеме

Нам нужно определить ток через ячейку и каждый из параллельных резисторов. Нам дана разность потенциалов на ячейке и сопротивления резисторов, поэтому мы можем использовать закон Ома для расчета тока.

Рассчитать ток через ячейку

Чтобы рассчитать ток через элемент, нам сначала нужно определить эквивалентное сопротивление остальной части цепи. Резисторы включены параллельно и поэтому: \ begin {align *} \ frac {\ text {1}} {R} & = \ frac {\ text {1}} {R_ \ text {1}} + \ frac {\ text {1}} {R_ \ text {2}} \ \ & = \ frac {\ text {1}} {\ text {4}} + \ frac {\ text {1}} {\ text {12}} \\ & = \ frac {3 + 1} {\ text {12}} \\ & = \ frac {\ text {4}} {\ text {12}} \\ R & = \ frac {\ text {12}} {\ text {4}} = \ text {3,00} \ \ Omega \ end {выровнять *} Теперь, используя закон Ома, чтобы найти ток через ячейку: \ begin {align *} R & = \ frac {V} {I} \\ I & = \ frac {V} {R} \\ & = \ frac {\ text {18}} {\ text {3}} \\ I & = \ text {6,00} \ text {A} \ end {align *}

Теперь определите ток через один из параллельных резисторов

Мы знаем, что для чисто параллельной конфигурации резисторов разность потенциалов на ячейке такая же, как и разность потенциалов на каждом из параллельных резисторов.Для этой схемы: \ begin {align *} V & = V_ \ text {1} = V_ \ text {2} = \ text {18} \ text {V} \ end {выровнять *} Начнем с вычисления тока через \ (R_ \ text {1} \) по закону Ома: \ begin {align *} R_ \ text {1} & = \ frac {V_ \ text {1}} {I_ \ text {1}} \\ I_ \ text {1} & = \ frac {V_ \ text {1}} {R_ \ text {1}} \\ & = \ frac {\ text {18}} {\ text {4}} \\ I_ \ text {1} & = \ text {4,50} \ text {A} \ end {align *}

Рассчитайте ток через другой параллельный резистор

Мы можем снова использовать закон Ома, чтобы найти ток в \ (R_ \ text {2} \): \ begin {align *} R_ \ text {2} & = \ frac {V_ \ text {2}} {I_ \ text {2}} \\ I_ \ text {2} & = \ frac {V_ \ text {2}} {R_ \ text {2}} \\ & = \ frac {\ text {18}} {\ text {12}} \\ I_ \ text {2} & = \ text {1,50} \ text {A} \ end {выровнять *} Альтернативный метод вычисления \ (I_ \ text {2} \) заключался бы в использовании того факта, что токи через каждый из параллельных резисторов должны составлять общий ток через ячейку: \ begin {align *} I & = I_ \ text {1} + I_ \ text {2} \\ I_ \ text {2} & = I — I_ \ text {1} \\ & = 6 — 4.5 \\ I_ \ text {2} & = \ text {1,5} \ text {A} \ end {align *}

Определить ЭДС

Суммарный ток через батарею — это ток через внутреннее сопротивление батареи. Знание силы тока и сопротивления позволяет нам использовать закон Ома для определения разности потенциалов на внутреннем сопротивлении и, следовательно, ЭДС батареи.

Используя закон Ома, мы можем определить разность потенциалов на внутреннем сопротивлении:

\ begin {align *} V & = I \ cdot r \\ & = \ текст {6} \ cdot \ text {0,375} \\ & = \ текст {2,25} \ текст {V} \ end {выровнять *}

Мы знаем, что ЭДС аккумулятора — это разность потенциалов на клеммах, суммированная с разностью потенциалов на внутреннем сопротивлении, так:

\ begin {align *} \ mathcal {E} & = V + Ir \\ & = \ text {18} + \ text {2,25} \\ & = \ текст {20,25} \ текст {V} \ end {align *}

Напишите окончательный ответ

Ток через ячейку равен \ (\ text {6,00} \) \ (\ text {A} \).

Ток через резистор \ (\ text {4,00} \) \ (\ Omega \) равен \ (\ text {4,50} \) \ (\ text {A} \).

Ток через резистор \ (\ text {12,00} \) \ (\ Omega \) равен \ (\ text {1,50} \) \ (\ text {A} \).

ЭДС аккумулятора равна \ (\ text {20,25} \) \ (\ text {V} \).

Рабочий пример 9: Мощность в последовательной и параллельной сетях резисторов

Учитывая следующую схему:

Ток, покидающий батарею, равен \ (\ text {1,07} \) \ (\ text {A} \), общая мощность, рассеиваемая во внешней цепи, равна \ (\ text {6,42} \) \ ( \ text {W} \), отношение полных сопротивлений двух параллельных сетей \ (R_ {P \ text {1}}: R_ {P \ text {2}} \) равно 1: 2, соотношение \ (R_ \ text {1}: R_ \ text {2} \) равно 3: 5 и \ (R_ \ text {3} = \ text {7,00} \ text {Ω} \).

Определите:

  1. разность потенциалов АКБ,
  2. мощность, рассеиваемая в \ (R_ {P \ text {1}} \) и \ (R_ {P \ text {2}} \), и
  3. , если батарея имеет ЭДС, равную \ (\ text {6,50} \) \ (\ text {V} \), каково значение сопротивления каждого резистора и мощность, рассеиваемая в каждом из них.

Что требуется

В этом вопросе вам дается различная информация и предлагается определить мощность, рассеиваемую на каждом резисторе и каждой комбинации резисторов.Обратите внимание, что данная информация в основном относится ко всей цепи. Это подсказка о том, что вам следует начать с общей схемы и двигаться вниз к более конкретным элементам схемы.

Расчет разности потенциалов аккумулятора

В первую очередь остановимся на батарее. Нам дана мощность всей цепи, а также ток, покидающий батарею. Мы знаем, что разность потенциалов на клеммах аккумулятора — это разность потенциалов в цепи в целом.

Мы можем использовать соотношение \ (P = VI \) для всей цепи, потому что разность потенциалов такая же, как разность потенциалов на клеммах батареи: \ begin {align *} P & = VI \\ V & = \ frac {P} {I} \\ & = \ frac {\ text {6,42}} {\ text {1,07}} \\ & = \ текст {6,00} \ текст {V} \ end {align *}

Разность потенциалов на батарее равна \ (\ text {6,00} \) \ (\ text {V} \).

Мощность, рассеиваемая в \ (R_ {P \ text {1}} \) и \ (R_ {P \ text {2}} \)

Помните, что мы работаем от общих деталей схемы вниз к деталям отдельных элементов, это противоположно тому, как вы относились к этой схеме ранее.

Мы можем рассматривать параллельные сети как эквивалентные резисторы, поэтому схема, с которой мы сейчас работаем, выглядит так:

Мы знаем, что ток через два элемента схемы будет одинаковым, потому что это последовательная цепь и что сопротивление всей цепи должно быть: \ (R_ {Ext} = R_ {P \ text {1}} + R_ {P \ text {2}} \). Мы можем определить полное сопротивление по закону Ома для цепи в целом: \ begin {align *} V_ {батарея} & = IR_ {Ext} \\ R_ {Ext} & = \ frac {V_ {аккумулятор}} {I} \\ & = \ frac {\ text {6,00}} {\ text {1,07}} \\ & = \ текст {5,61} \ текст {Ω} \ end {align *}

Мы знаем, что соотношение между \ (R_ {P \ text {1}}: R_ {P \ text {2}} \) равно 1: 2, что означает, что мы знаем: \ begin {align *} R_ {P \ text {1}} & = \ frac {\ text {1}} {\ text {2}} R_ {P \ text {2}} \ \ \ text {и} \\ R_T & = R_ {P \ text {1}} + R_ {P \ text {2}} \\ & = \ frac {\ text {1}} {\ text {2}} R_ {P \ text {2}} + R_ {P \ text {2}} \\ & = \ frac {\ text {3}} {\ text {2}} R_ {P \ text {2}} \\ (\ text {5,61}) & = \ frac {\ text {3}} {\ text {2}} R_ {P \ text {2}} \\ R_ {P \ text {2}} & = \ frac {\ text {2}} {\ text {3}} (\ text {5,61}) \\ R_ {P \ text {2}} & = \ text {3,74} \ text {Ω} \ end {выровнять *} и поэтому: \ begin {align *} R_ {P \ text {1}} & = \ frac {\ text {1}} {\ text {2}} R_ {P \ text {2}} \\ & = \ frac {\ text {1}} {\ text {2}} (3.2 (\ text {3,74}) \\ & = \ текст {4,28} \ текст {W} \ end {выровнять *} Эти значения будут в сумме с исходным значением мощности, которое у нас было для внешней цепи. Если бы они не мы бы сделали ошибку в расчетах.

Расчет параллельной сети 1

Теперь мы можем приступить к детальному расчету первого набора параллельных резисторов.

Мы знаем, что соотношение между \ (R _ {\ text {1}}: R _ {\ text {2}} \) составляет 3: 5, что означает, что мы знаем \ (R _ {\ text {1}} = \ frac {\ text {3}} {\ text {5}} R _ {\ text {2}} \).Нам также известно общее сопротивление двух параллельных резисторов в этой сети. это \ (\ text {1,87} \) \ (\ text {Ω} \). Мы можем использовать соотношение между значениями двух резисторов, а также формула для общей сопротивление (\ (\ frac {\ text {1}} {R_PT} = \ frac {\ text {1}} {R_ \ text {1}} + \ frac {\ text {1}} {R_ \ text {2) }} \)) чтобы найти номиналы резисторов: \ begin {align *} \ frac {\ text {1}} {R_ {P \ text {1}}} & = \ frac {\ text {1}} {R_ \ text {1}} + \ frac {\ text {1}} { R_ \ text {2}} \\ \ frac {\ text {1}} {R_ {P \ text {1}}} & = \ frac {\ text {5}} {3R_ \ text {2}} + \ frac {\ text {1}} { R_ \ text {2}} \\ \ frac {\ text {1}} {R_ {P \ text {1}}} & = \ frac {\ text {1}} {R_ \ text {2}} (\ frac {\ text {5}} { \ text {3}} + 1) \\ \ frac {\ text {1}} {R_ {P \ text {1}}} & = \ frac {\ text {1}} {R_ \ text {2}} (\ frac {\ text {5}} { \ text {3}} + \ frac {\ text {3}} {\ text {3}}) \\ \ frac {\ text {1}} {R_ {P \ text {1}}} & = \ frac {\ text {1}} {R_ \ text {2}} \ frac {\ text {8}} {\ текст {3}} \\ R_ \ text {2} & = R_ {P \ text {1}} \ frac {\ text {8}} {\ text {3}} \\ & = (\ text {1,87}) \ frac {\ text {8}} {\ text {3}} \\ & = \ текст {4,99} \ текст {Ω} \ end {выровнять *} Мы также можем вычислить \ (R _ {\ text {1}} \): \ begin {align *} R _ {\ text {1}} & = \ frac {\ text {3}} {\ text {5}} R _ {\ text {2}} \\ & = \ frac {\ text {3}} {\ text {5}} (\ text {4,99}) \\ & = \ текст {2,99} \ текст {Ω} \ end {align *}

Для определения мощности нам нужно рассчитанное нами сопротивление и либо разность потенциалов, либо ток. 2} {\ text {4,99}} \\ & = \ текст {0,80} \ текст {W} \ end {align *}

Параллельная сеть 2 расчета

Теперь мы можем приступить к детальному расчету второго набора параллельных резисторов.

Нам дан \ (R_ \ text {3} = \ text {7,00} \ text {Ω} \), и мы знаем \ (R_ {P \ text {2}} \), поэтому мы можем вычислить \ (R_ \ text {4} \) из: \ begin {align *} \ frac {\ text {1}} {R_ {P \ text {2}}} & = \ frac {\ text {1}} {R_ \ text {3}} + \ frac {\ text {1}} { R_ \ text {4}} \\ \ frac {\ text {1}} {\ text {3,74}} & = \ frac {\ text {1}} {\ text {7,00}} + \ frac {\ text {1}} {R_ \ текст {4}} \\ R_ \ text {4} & = \ text {8,03} \ text {Ω} \ end {align *}

Мы можем вычислить разность потенциалов во второй параллельной сети, вычтя разность потенциалов первой параллельной сети из разности потенциалов батареи, \ (V_ {P \ text {2}} = \ text {6,00} — \ text {2,00} = \ text {4,00} \ text {V} \).2} {\ text {8,03}} \\ & = \ текст {1,99} \ текст {W} \ end {align *}

Внутреннее сопротивление

Мы знаем, что ЭДС батареи равна \ (\ text {6,5} \) \ (\ text {V} \), но что разность потенциалов, измеренная на клеммах, составляет всего \ (\ text {6} \) \ (\ текст {V} \). Разница — это разность потенциалов на внутреннем сопротивлении батареи, и мы можем использовать известный ток и закон Ома для определения внутреннего сопротивления:

\ begin {align *} V & = I \ cdot R \\ R & = \ frac {V} {I} \\ & = \ frac {\ text {0,5}} {\ text {1,07}} \\ & = \ text {0,4672897} \\ & = \ текст {0,47} \ текст {Ω} \ end {выровнять *}

Мощность, рассеиваемая внутренним сопротивлением батареи:

\ begin {align *} P & = VI \\ & = \ текст {0,5} \ cdot \ text {1,07} \\ & = \ текст {0,535} \ текст {W} \ end {align *}

Рабочий пример 10: Внутреннее сопротивление и фары [NSC 2011 Paper 1]

Фара и два ИДЕНТИЧНЫХ задних фонаря скутера подключены параллельно к батарее с неизвестным внутренним сопротивлением, как показано на упрощенной принципиальной схеме ниже.Фара имеет сопротивление \ (\ text {2,4} \) \ (\ text {Ω} \) и управляется переключателем \ (\ textbf {S} _1 \). Задние фонари управляются переключателем \ (\ textbf {S} _2 \). Сопротивлением соединительных проводов можно пренебречь.

На приведенном рядом графике показана разность потенциалов на клеммах батареи до и после включения переключателя \ (\ textbf {S} _1 \) (пока переключатель \ (\ textbf {S} _2 \) открыт). Переключатель \ (\ textbf {S} _1 \) закрывается в момент \ (\ textbf {t} _1 \).

  1. Используйте график, чтобы определить ЭДС аккумулятора.

    (1 балл)

  2. ПРИ ТОЛЬКО ВЫКЛЮЧАТЕЛЬ \ (\ textbf {S} _1 \) ЗАКРЫТО, рассчитайте следующее:

    1. Ток через фару

      (3 балла)

    2. Внутреннее сопротивление \ (r \) батареи

      (3 балла)

  3. ОБЕ ПЕРЕКЛЮЧАТЕЛИ \ (\ textbf {S} _1 \) И \ (\ textbf {S} _2 \) ТЕПЕРЬ ЗАКРЫТЫ.В течение этого периода аккумулятор обеспечивает ток \ (\ text {6} \) \ (\ text {A} \).

    Рассчитайте сопротивление каждого заднего фонаря.

    (5 баллов)

  4. Как повлияет на показания вольтметра, если фара перегорит? (Оба переключателя \ (\ textbf {S} _1 \) и \ (\ textbf {S} _2 \) все еще закрыты.)

    Запишите только УВЕЛИЧИВАЕТ, УМЕНЬШАЕТСЯ или ОСТАЕТСЯ ОДИН ТО ЖЕ.

    Дайте объяснение.

    (3 балла)

Вопрос 1

\ (\ text {12} \) \ (\ text {V} \)

(1 балл)

Вопрос 2.1

Вариант 1:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {9,6}} {\ text {2,4}} \\ & = \ текст {4 A} \ end {выровнять *}

Вариант 2:

\ begin {align *} \ text {emf} & = IR + Ir \\ 12 & = I (\ text {2,4}) + \ text {2,4} \\ \ поэтому I & = \ text {4 A} \ end {выровнять *}

(3 балла)

Вопрос 2.2

Вариант 1:

\ begin {align *} \ text {emf} & = IR + Ir \\ 12 & = \ text {9,4} + 4r \\ r & = \ текст {0,6} \ \ Omega \ end {выровнять *}

Вариант 2:

\ begin {align *} V_ {потеряно} & = Ir \\ \ text {2,4} & = \ text {4} r \\ \ поэтому r & = \ text {0,6} \ \ Omega \ end {выровнять *}

Вариант 3:

\ begin {align *} \ text {emf} & = I (R + r) \\ \ text {12} & = \ text {4} (\ text {2,4} + r) \\ \ поэтому r & = \ text {0,6} \ \ Omega \ end {выровнять *}

(3 балла)

Вопрос 3

Вариант 1:

\ begin {align *} \ text {emf} & = IR + Ir \\ \ text {12} & = \ text {6} (R + \ text {0,6}) \\ R _ {\ text {ext}} & = \ text {1,4} \ \ Omega \ конец {выравнивание *} \ begin {выравнивание *} \ frac {1} {R} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ \ frac {1} {\ text {1,4}} & = \ frac {1} {\ text {2,4}} + \ frac {1} {R} \\ R & = \ текст {3,36} \ \ Omega \ end {выровнять *}

Каждый задний фонарь: \ (R = \ text {1,68} \ \ Omega \)

Вариант 2:

\ begin {align *} \ text {Emf} & = V _ {\ text {terminal}} + Ir \\ 12 & = V _ {\ text {терминал}} + 6 (\ text {0,6}) \\ \ поэтому V _ {\ text {terminal}} & = \ text {8,4} \ text {V} \ конец {выравнивание *} \ begin {выравнивание *} I _ {\ text {2,4} \ \ Omega} & = \ frac {V} {R} \\ & = \ frac {\ text {8,4}} {\ text {2,4}} \\ & = \ text {3,5 A} \ конец {выравнивание *} \ begin {выравнивание *} I _ {\ text {задние фонари}} & = 6 — \ text {3,5} \\ & = \ текст {2,5} \ текст {A} \\ R _ {\ text {задние фонари}} & = \ frac {V} {I} \\ & = \ frac {\ text {8,4}} {\ text {2,5}} \\ & = \ текст {3,36} \ \ Omega \\ R _ {\ text {задний фонарь}} & = \ text {1,68} \ \ Omega \ end {выровнять *}

Вариант 3:

\ begin {align *} V & = IR \\ \ text {12} & = \ text {6} (R) \\ R _ {\ text {ext}} & = 2 \ \ Omega \ конец {выравнивание *} \ begin {выравнивание *} R _ {\ text {parallel}} & = 2 — \ text {0,6} \\ & = \ текст {1,4} \ \ Omega \\ \ frac {1} {R} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ \ frac {1} {\ text {1,4}} & = \ frac {1} {\ text {2,4}} + \ frac {1} {R} \\ R & = \ текст {3,36} \ \ Omega \ end {выровнять *}

Каждый задний фонарь: \ (R = \ text {1,68} \ \ Omega \)

Вариант 4:

Для параллельной комбинации: \ (I_ {1} + I_ {2} = 6 \ text {A} \)

\ begin {align *} \ поэтому \ frac {V} {\ text {2,4}} + \ frac {V} {R _ {\ text {задние фонари}}} & = \ text {6} \\ \ text {8,4} \ left (\ frac {1} {\ text {2,4}} + \ frac {1} {R _ {\ text {задние фонари}}} \ right) & = \ text {6 } \\ \ поэтому R _ {\ text {задние фонари}} & = \ text {3,36} \ \ Omega \\ R _ {\ text {задний фонарь}} & = \ text {1,68} \ \ Omega \ end {выровнять *}

(5 баллов)

Вопрос 4

Увеличивается

Сопротивление увеличивается, а ток уменьшается.Таким образом, \ (Ir \) (потерянное вольт) должно уменьшаться, что приводит к увеличению напряжения.

(3 балла)

[ИТОГО: 15 баллов]

Как внутреннее сопротивление влияет на работу аккумулятора погрузчика

Какое внутреннее сопротивление батареи?

Внутреннее сопротивление иногда называют «привратником» батареи. Батареи являются источником напряжения, но все они имеют определенное внутреннее сопротивление, которое ограничивает подачу напряжения и определяет время работы батареи.

Внутреннее сопротивление измеряется в миллиомах, и существует множество различных факторов, которые влияют на уровень внутреннего сопротивления, в том числе:

Отслеживание внутреннего сопротивления батареи помогает определить ее возможности, оценить ее производительность и понять состояние ее здоровья.

В этом блоге мы рассмотрим, почему внутреннее сопротивление влияет на работу аккумулятора погрузчика, и обсудим способы проверки внутреннего сопротивления и смягчения некоторых из этих эффектов.

How to F ind Падение напряжения в батарее

Когда электрический ток течет по цепи, выходное напряжение всегда ниже входного — эта разница известна как падение напряжения.

Падение напряжения является произведением силы тока и сопротивления, поэтому, зная величину падения напряжения, вы можете определить, насколько энергоэффективен ваш аккумулятор.

Чем ниже внутреннее сопротивление, тем лучше производительность батареи.Чем выше внутреннее сопротивление батареи, тем сильнее она нагревается, вызывая падение напряжения.

Электролит батареи и внутреннее сопротивление

Что вызывает более высокое внутреннее сопротивление в батарее? Он варьируется в зависимости от состава батареи.

Никелевые батареи:

В никелевых батареях образование кристаллов способствует более высокому уровню внутреннего сопротивления и может быть обращено вспять с помощью глубокого цикла.

Кристаллическое образование, иногда известное как «эффект памяти», происходит, когда никелевый аккумулятор не заряжается должным образом.

Если их повторно заряжать после того, как они были частично разряжены, кажется, что батарея «запоминает» более низкий уровень емкости, и ее общая емкость уменьшается.

Чтобы предотвратить этот эффект, пользователи должны периодически разряжать аккумулятор до одного вольта на элемент, примерно каждые несколько месяцев или около того.

Свинцово-кислотные батареи :

Для свинцово-кислотных аккумуляторов сульфатирование и коррозия сетевых аккумуляторов могут вызвать увеличение внутреннего сопротивления, а также более низкую температуру.

Коррозия сетки происходит, когда вывод положительной сетки превращается в диоксид свинца и в результате разрушаются свинцовые пластины.

Коррозия сетки — одна из наиболее частых неисправностей в сроке службы свинцово-кислотных аккумуляторов, и ее можно сократить, но полностью избежать ее невозможно.

Сульфатирования можно избежать с помощью надлежащих методов зарядки, что означает отказ от частичных зарядов и всегда позволяя ему полностью разряжаться, полностью заряжаться и проходить требуемый период охлаждения после зарядки.

Литий-ионные батареи :

Для литий-ионных аккумуляторов старение и продолжительное использование приведут к накоплению межфазного твердого электролита, или SEI, на аноде. Этот нарост со временем становится толще и препятствует взаимодействию с графитом, что увеличивает его внутреннее сопротивление.

Многие производители литий-ионных аккумуляторов разработали собственные способы компенсации этого эффекта с помощью специальных добавок к электролиту. По мере развития технологии литий-ионных аккумуляторов их эффективность значительно повысилась.

Как проверить Внутренний Сопротивление

Одна из основных причин, по которой вы можете захотеть проверить уровень внутреннего сопротивления батареи, — это понять ее состояние, поскольку показание выше нормы будет указывать на то, что срок службы батареи близок к концу.

Это показание наиболее полезно по сравнению с показанием аккумулятора при первом вводе в эксплуатацию.

Есть разные способы проверить внутреннее сопротивление батареи, и это посмотреть на постоянный ток (DC) и переменный ток (AC):

  • Постоянный ток — измеряет падение напряжения при заданном токе, смотрит только на чистое сопротивление
  • Переменный ток — учитывает реактивное сопротивление и предоставляет полное сопротивление, которое может отличаться от значения постоянного тока, но оба значения верны.

Сравнение внутреннего сопротивления батареи

Уровень внутреннего сопротивления аккумулятора зависит от всех перечисленных выше факторов, а также от уровня заряда.

Никелевые батареи:
  • Внутреннее сопротивление в этих типах батарей уменьшается в процессе разряда примерно до середины цикла разряда, а затем снова постепенно увеличивается.

Свинцово-кислотные батареи :
  • Внутреннее сопротивление увеличивается во время разряда, что вызвано истощением электролита по мере того, как он становится более водянистым, что снижает его удельный вес.
  • Свинцово-кислотные батареи имеют падение напряжения из-за внутреннего сопротивления в результате непрерывного сильноточного разряда.

Литий-ионные батареи :

  • Сопротивление литий-ионных аккумуляторов довольно стабильно от разряженного до полного заряда, что позволяет сохранять его характеристики стабильными.
  • Литий-ионные батареи
  • имеют одно из самых низких внутренних сопротивлений, и их высокий уровень кулоновской эффективности, или рейтинг CE, является подтверждением этого.

Внутреннее сопротивление и производительность аккумулятора погрузчика

Понимание концепции внутреннего сопротивления полезно для всех, кто работает с аккумуляторными батареями для вилочных погрузчиков и принимает решения о них на регулярной основе.

Аккумуляторы становятся больше, чем просто источником энергии после размышлений; это инвестиции в технологии, которые могут помочь повысить производительность, производительность и общую эффективность организации.

Литий-ионные батареи

имеют низкое внутреннее сопротивление, поэтому они превосходят другие типы.Понимание той роли, которую играет внутреннее сопротивление, поможет вам принять обоснованное решение о батарее погрузчика.

(PDF) Внутреннее сопротивление батареи

2

автомобилей, в то время как другие, такие как никель-кадмиевые или литий-ионные

, используются в мобильных телефонах и портативных компьютерах. Аккумулятор

обычно состоит из двух электродов из разного материала

, погруженных в электролит, который может быть жидкостью или влажной пастой

.Электролит химически взаимодействует с электродами

и из-за их химических реакций толкает положительные заряды

к одной клемме, называемой положительным электродом

, и отрицательные заряды к другой клемме

, называемой отрицательный электрод. Независимо от марки

батареи (ее типа, размера, объема, природы электродов

и электролита и деталей их химических реакций

и т. Д.)), батарея в конечном итоге вызывает разделение положительных и

отрицательных зарядов, что приводит к возникновению электрического потенциала на

батарее. Химический потенциал, который представляет собой линейный интеграл

силы на единицу заряда из-за химических реакций (от отрицательного электрода

к положительному), называется ЭДС батареи

(исторически называемая электродвижущей силой

). что на самом деле является неправильным, так как это не сила, а

вместо разности потенциалов между двумя электродами).В первом приближении к

мы можем записать эффективную силу, обусловленную химическими реакциями

на заряде, как, где

— расстояние между двумя электродами. Именно эта сила обусловлена ​​химическими реакциями

, которые толкают положительные заряды к положительному электроду

, а отрицательные заряды к отрицательному электроду

внутри батареи или элемента, создавая

разности электрических потенциалов между двумя электродами. .

В целом изменение электрического потенциала в батарее

может быть нелинейным и в основном локализовано на границах раздела электрод —

электролит, но с энергетической точки зрения то, что

в конечном итоге имеет значение, — это чистая разность потенциалов между

два электрода. Это, в свою очередь, приводит к возникновению электрического поля

внутри батареи, которое оказывает на каждый заряд

электрическую силу в направлении, противоположном силе

из-за химических реакций.В результате суммарная сила заряда

, толкающая его к соответствующему электроду в батарее

, становится равной

(1)

. батарею к их

соответствующим электродам, при этом все больше и больше зарядов осаждаются там

. Однако с увеличением будет уменьшаться

, уменьшая ток внутри батареи, пока на электродах

не появится разница напряжений.Тогда (1) и движение заряда

и

сводится к нулю внутри аккумулятора. Таким образом, в разомкнутой цепи

батарея будет приобретать на своих выводах

напряжение, равное ее ЭДС, то есть ее химическому потенциалу

(рис. (1a)), без чистой силы на заряды и, следовательно,

электрического тока. ток внутри батареи, несмотря на наличие электрического потенциала

на ее выводах.

Теперь подключите нагрузку (внешний резистор) к

батарее, замыкая цепь.Сразу же электрический ток

начнется от положительного вывода к отрицательному

через внешнее сопротивление. На самом деле электрический ток в цепи

обусловлен потоком электронов в направлении, противоположном направлению

тока, обычно показываемого в цепи (рис.

(1c)), но это не меняет физику цепи. эта проблема.

Рис. 2. Напряжения и токи в батарее ЭДС при перезарядке

другой батареи ЭДС.

Внешний ток вызывает недостаток некоторых отрицательных зарядов

на отрицательном электроде, а также нейтрализует некоторые положительные

зарядов на положительном электроде, уменьшение зарядов

вызывает небольшое падение напряжения по сравнению с начальным разомкнутым контуром

Стоимость

. Это означает, что электрическое поле внутри батареи

теперь будет меньше, чем значение разомкнутой цепи (или

), и электрическая сила не будет полностью компенсировать

силу, воздействующую на заряды внутри батареи из-за химического вещества

. реакции.Это, в свою очередь, вызовет перемещение зарядов

согласно (1), что приведет к возникновению положительного тока от отрицательного электрода

к положительному электроду внутри батареи.

Первоначально, поскольку ток в батарее может быть меньше, чем

во внешней цепи, количество зарядов, пополняемых на клеммах

, будет меньше, чем количество разряженных на

протекания внешнего тока, следовательно, напряжение будет падать

еще дальше.И по мере увеличения это должно привести не к

, а к еще большему току внутри батареи, это также вызовет падение

, даже небольшое, во внешнем токе при падении напряжения

на внешнем резисторе. Однако очень скоро будет достигнута стадия

, когда внутренний ток в батарее

станет равным току во внешней цепи. Теперь, начиная с

, больше не будет никаких изменений напряжения на клеммах батареи

и достигнуто состояние равновесия.Однако

будет оставаться постоянной борьбой за батарею через внутренний ток

, чтобы восполнить заряды

на своих выводах из-за внешнего тока. Таким образом, мы видим, что ток

будет перетекать от более низкого электрического потенциала к более высокому

внутри батареи из-за большего толчка

зарядов в этом направлении силой, обусловленной химическими реакциями

, чем Противодействующая сила электрического поля

переходит от более высокого к более низкому потенциалу.

III. ВНУТРЕННЕЕ СОПРОТИВЛЕНИЕ

В замкнутой цепи электрический ток, протекающий в батарее

, происходит из-за химических реакций, которые будут иметь место

, только если напряжение на батарее отличается от химического потенциала

. Устойчивое состояние означает, что внутренний ток

внутри батареи должен быть равен току

через внешнее сопротивление. Внутреннее сопротивление может быть определено как

.Следует отметить, что

ток увеличивается при уменьшении. Принимая постоянную

в определенном диапазоне около и отмечая, что

когда, мы получаем. Отсюда

Почему внутреннее сопротивление батареи со временем увеличивается? Импеданс?

Зависимость полного сопротивления батареи от сопротивления батареи

Сопротивление — это противодействие текущему току. Импеданс включает сопротивление и любое дополнительное сопротивление потоку переменного тока из-за факторов такие как индуктивность, емкость и выпрямление.В большинстве аккумуляторных приложений импеданс = сопротивление, но измерения импеданса на более высоких частотах утилита в импульсных приложениях и при тестировании батарей. Кроме того, AC Измерение импеданса выполняется быстрее и включает в себя измерение постоянного тока, поэтому сортировка батарейки практичны.


Общие факторы, влияющие на аккумулятор сопротивление

Факторы, влияющие на сопротивление батареи:

  • Сопротивление проводника, как в металлическом компоненте электродные пластины и конвейерные и соединительные провода, пластины и фольга
  • Электролитное сопротивление.
  • Ионная мобильность
  • Эффективность сепаратора
  • Скорость реакции на электродах
  • Концентрационная поляризация из-за переноса реактивного сопротивления а также удаление и проводимость продуктов реакции
  • Активационная поляризация из-за узких мест в стадия переноса заряда электродной реакции
  • Температурные эффекты реакции и скорости переноса

Сопротивление проводника

По мере старения батареи коррозия металлических носителей тока, в частности пластин или фольг, подложек, которые активные материалы могут уменьшить их поперечное сечение, и поэтому увеличивайте их сопротивление

Сопротивление электролита и ионная подвижность


Электролит сопротивление зависит от количества носителей заряда и подвижности носители заряда через него.По мере старения батареи компоненты электролит расходуется на коррозию металлических компонентов аккумулятора, и в других вторичных химических реакциях, что снижает их концентрацию и уменьшение количества носителей заряда. Скопление продуктов реакции может также увеличьте вязкость и поляризуйте электролит так, чтобы ион подвижность снижена.

Конкретный пример — свинцово-кислотная химия. В виде аккумулятор разряжен, концентрация электролита снижается, становясь чистой водой, когда аккумулятор полностью разряжен.Из-за этого изменения в концентрация электролита сопротивление батареи увеличивается во время увольнять.

Потеря электролита также является частой причиной повышенного сопротивление электролита. Это может происходить из-за миграции воды через пластик. или резиновые уплотнения, перезарядка и вентиляция.

Эффективность сепаратора


Сепараторы непроводящие листы, которые предотвращают электрический контакт электродов, но все же должны быть пористыми, чтобы позволить ионам проходить через них.Как батарея стареет реакция продукты и продукты коррозии могут забивать поры, тем самым уменьшая ионную расход и увеличение сопротивления батареи.

Скорость реакции на электродах


При старении аккумулятора электроды могут менять пористость, кристаллическую структуру и химический состав. состав, увеличивающий сопротивление батареи.

Из никелевого металла гидридные батареи отрицательный электрод состоит из слоя металлических частиц связаны с никелевой фольгой. Частицы металла поглощают водород во время зарядки и десорбировать во время разряда.Электролит медленно разъедает металлические частицы, увеличение мертвого слоя на поверхности зерна, что делает его более твердым чтобы ионы водорода попадали в металл и выходили из него, увеличивая сопротивление.

В свинцово-кислотных аккумуляторах больших размеров, непроводящие, менее растворимые кристаллы сульфата свинца растут, когда аккумулятор остается незаряженным или частично заряжен, что увеличивает сопротивление аккумулятора.

Литий-ионный аккумуляторы ионных рецепторных каналов как в положительном, так и в отрицательном электроды могут разрушиться или забиться металлическим литием или продуктами коррозии

Концентрационная поляризация

Батареи с жидким электролитом полагаться на диффузию для получения свежих реагентов на поверхности электродов.Диффузия обычно является медленным процессом, поэтому реагенты обычно истощаются около поверхность электрода. Разница в концентрации, существующая между поверхность электрода и объем электролита создают разность потенциалов, которая похоже на повышение сопротивления.

Активационная поляризация

Активационная поляризация происходит от скорость химической реакции на поверхности электрода. Факторы, которые На это влияют термодинамика реакции и площадь поверхности.Пористые электроды часто используются для увеличения площади поверхности, но в качестве батарея стареет, поры могут закупориться продуктами реакции, электродный материал или продукты коррозии.

Температурные эффекты


Фундаментальный закон природы химические процессы замедляются с понижением температуры. Это потому, что диффузия замедляется, и средняя кинетическая энергия молекул уменьшается. Таким образом при понижении температуры вы можете ожидать более высокое сопротивление химикатов.В сопротивление металлов в батарее снижается с повышением температуры вниз, но это очень малый эффект по сравнению с химическим воздействием.

Внутреннее сопротивление — когда оно незначительно, а когда нет

Батарейки потеют, если заставлять их работать слишком много

Батарея преобразует химическую энергию в электрическую. Это преобразование вызвано химическими реакциями внутри батареи. Чем быстрее батарея вырабатывает энергию, тем быстрее должны происходить химические реакции.

Если вы заставляете аккумулятор работать интенсивно, то часть химической энергии преобразуется в электрическую, а часть — в тепловую. Тепловая энергия нагревает аккумулятор.

Чем тяжелее работает аккумулятор, тем больше химической энергии преобразуется в тепловую и тем сильнее нагревается аккумулятор.

Анимация, показывающая различные способы короткого замыкания всей цепи, подключив одну клемму батареи напрямую к другой.

Как заставить работать аккумулятор

Если вы заставляете батарею работать с одним компонентом, который очень быстро потребляет энергию, например очень яркой лампочкой, или с множеством компонентов, включенных параллельно, тогда батарея должна работать очень тяжело, потому что она должна очень быстро подавать энергию.

Помните, что батареи являются (или стараются быть) поставщиками постоянного напряжения. Сила тока зависит от выполняемой ими работы. Когда они много работают, они дают большой ток. Но, как мы увидим, если они выдают очень большой ток, то напряжение упадет.

Меньше электроэнергии означает меньшее напряжение

Вы можете думать о напряжении как об энергии, приходящейся на заряд.

Если доступно меньше электроэнергии (потому что часть химической энергии превращается в тепло в батарее), то напряжение на клеммах батареи упадет.Это означает, что напряжение в цепи также падает.

Практический результат состоит в том, что если вы сделаете аккумуляторную батарею большим током к

  • заставляет его запускать что-то, что требует большого тока, например очень яркую (с низким сопротивлением) лампочку
  • , позволяющий запускать множество вещей одновременно (подключены параллельно)
  • закорачивая аккумулятор (соединив один вывод с другим проводом)

напряжение упадет.

Если электрическая энергия преобразуется в тепловую, это должен быть резистор

Батареи не имеют внутри резистора, который можно вынуть и посмотреть. Но у них действительно есть источники сопротивления, например продукты химических реакций и металлические части со всеми их соединениями.

Таким образом, батареи часто моделируют как идеальный источник питания (напряжение которого никогда не падает), включенный последовательно с воображаемым резистором.

Очевидно, батарейки используются для работы чего-то вроде лампочки.Сопротивление цепи, в которой они работают, называется сопротивлением нагрузки R L .

Внутреннее сопротивление обычно обозначается символом r. Это не значит, что он всегда маленький. Сопротивление батарейки миниатюрных часов может составлять 100 Ом или около того. Батарея фонаря имеет внутреннее сопротивление около 0,1 Ом, а автомобильный аккумулятор — около 0,001 Ом.

Наш воображаемый внутренний резистор подчиняется закону Ома, как и любой другой резистор. Единственное отличие в том, что он спрятан внутри аккумулятора.

Почему важно внутреннее сопротивление?

Автомобильный аккумулятор на 12 В имеет такое же напряжение, как и восемь батарей 1,5 В типа AA. Могли бы вы использовать эти батареи, чтобы завести машину?

Ответ — решительное нет. Есть два взгляда на это.

  1. Батарейки типа AA не могут обеспечивать энергию очень быстро, в то время как вашему стартеру требуется энергия очень быстро.
  2. Внутреннее сопротивление ваших батареек AA слишком велико, поэтому напряжение падает с 12 В до почти 0 В, как только вы пытаетесь запустить двигатель.

Если вы знаете, что вам нужно очень быстро подавать энергию, вам нужно очень низкое внутреннее сопротивление. Как и толстый кусок провода, большая батарея имеет меньшее сопротивление. Поэтому аккумуляторные батареи большой мощности должны быть большими, как автомобильные.

Если вам не нужна энергия очень быстро, другими словами, ваше устройство потребляет только крошечный ток, как цифровые часы, тогда внутреннее сопротивление менее важно, поэтому вы можете позволить себе уменьшить размер батареи. Это полезно, если вы хотите поместить его в часы!

Что такое «незначительное внутреннее сопротивление»?

Это выражение часто встречается в экзаменационных вопросах.

Это не значит, что сопротивление должно быть маленьким. как таковой . Это просто означает, что батарея не работает достаточно усердно, чтобы ее напряжение сильно упало.

Электродвижущая сила — это напряжение аккумулятора, когда на нем ничего не работает

Максимальное напряжение, которое вы можете получить от батареи, называется электродвижущей силой или ЭДС. Это называется так по историческим причинам, но в этом нет ничего особенного. Это просто напряжение. Обычно ему присваивается символ ε.

Если внутренним сопротивлением нельзя пренебречь и аккумулятор работает, например, от лампочки, то фактически измеренное напряжение на выводах аккумулятора (а также на лампе) будет ниже, чем ЭДС. Мы называем это более низкое напряжение напряжением нагрузки, V L .

Определение внутреннего сопротивления и э.д.с. батареи

Вы можете измерить ЭДС. батареи, просто измерив напряжение на клеммах, когда она ни к чему не подключена.Это называется измерением напряжения в «разомкнутой цепи».

Вы не можете просто измерить внутреннее сопротивление напрямую, потому что вы не можете попасть внутрь батареи. Поэтому вам нужно провести эксперимент, в котором вы изменяете ток, потребляемый от батареи (изменяя сопротивление нагрузки) и измеряя p.d. через терминалы.

Закон Кирхгофа по напряжению гласит, что если сложить напряжения на всех компонентах в последовательной цепи, они должны точно равняться напряжению батареи.

e.м.ф. = напряжение на внутреннем сопротивлении + напряжение на нагрузке (например, лампочке)

В символах это уравнение

ε = V внутренний + V L

Мы знаем, что V = IR, или используя соответствующие термины для внутреннего сопротивления V внутреннее = Ir, поэтому

ε = Ir + V L

Мы можем изменить это уравнение, чтобы получить

В L = -rI + ε

Если вы настроили схему с переменным резистором для нагрузки, вы можете изменить ток I, потребляемый от батареи, и измерить напряжение на выводах, V L .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *