Вместо диода транзистор: Полноценная замена диода на полевой транзистор – Эквивалентная схема биполярного транзистора

Эквивалентная схема биполярного транзистора

Итак, как же нам распознать биполярный транзистор среди кучи радиоэлементов, имеющих схожий корпус? Давайте рассмотрим еще раз его внутреннюю структуру. Для транзистора прямой проводимости она будет выглядеть так:

а для транзистора обратной проводимости вот так:

А знаете что? Давайте-ка резанём серединный слой пополам… Предположим, мы взяли тонкий-тонкий ножик и разделили полупроводник базы на две части.

Итак, рисуночки у нас становятся такими:

для транзистора прямой проводимости

для транзистора обратной проводимости

Вот этот или вот этот участок транзистора вам ничего не напоминает? 

Едрить-колотить! Так ведь это же  диод!

Так что тогда  получается? Что транзистор тупо состоит из двух диодов??? Грубо говоря, дорогие читатели, так оно и есть ;-).

Значит, схематически мы можем транзистор нарисовать как два диода. Итак, что у нас тогда получиться? Для транзистора

прямой проводимости:

 

схема будет выглядеть вот так:

а для транзистора обратной проводимости

вот так:

Все элементарно и просто, господа! Итак, мы с вами узнали, что схематически транзистор можно заменить как два диода, которые соединены катодами или анодами. А проверять диоды мы с вами умеем без проблем, не так ли? Кто подзабыл, читаем статью как проверить диод мультиметром.

Приступаем к “практической электронике” 😉

У нас имеются два транзистора. Стоп! А с чего мы взяли что это вообще транзисторы? 

Внимательно смотрим на них и видим какие то буквы и цифры. КТ815Б и КТ814Б. Блин, снизу еще какие-то цифры. Во дела! Ладно, ничего страшного. Для этого открываем яндекс или гугл и вбиваем первую строчку названия транзистора. Получается вбиваем “КТ815Б” и рядышком пишем незамысловатое слово “даташит” или на буржуйский манер “datasheet”. Качаем документацию на этот радиоэлемент и узнаем что это такое и что он из себя представляет. А вот я и даташит на него нашел ——> вот он. Теперь я знаю, что это транзистор N-P-N структуры, а также знаю расположение его выводов 😉  И еще знаю, что вам лень его качать, поэтому вот вам скрины:

Эквивалентная схема биполярного транзистора

Вон сколько сразу можно узнать!

А вот и вторая страничка даташита:

Эквивалентная схема биполярного транзистора

Здесь мы видим уже тот же самый транзистор, но в другом корпусе.  У нас же на фото транзистор в корпусе КТ-27. Видите цифры на выводах транзистора? Смотрим в  табличку и узнаем где какой вывод ;-). Значит на фото у нас выводы идут таким образом:

Теперь рассмотрим другой транзистор:

Из даташита транзистора КТ815Б мы узнали, что у него есть комплиментарная пара: транзистор КТ814

Эквивалентная схема биполярного транзистора

Комплиментарная пара для кого-либо транзистора – это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть N-P-N, а КТ814 прямой проводимости, то есть P-N-P 😉 Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815 ! Короче говоря, зеркальные братья-близнецы. Также самой популярной комплиментарной парой транзисторов в Советском Союзе были транзисторы КТ315 и КТ361.

Обратите внимание на даташит транзистора КТ814:

Эквивалентная схема биполярного транзистора

Берем наш знаменитый мультиметр, цепляем щупы-крокодилы  и ставим на значок “прозвонка”

Будем проверять транзистор КТ815. Так как он структуры N-P-N, следовательно, его можно схемотехнически заменить вот на такую диодную схему:

Вспоминаем распиновку нашего транзистора:

Как мы помним, диод пропускает постоянный ток только в одном направлении. Проверяем первый диод транзистора. Для этого ставим на базу плюс, на эмиттер минус:

Видим падение напряжения при прямом включении на P-N переходе в милливольтах.

Меняем щупы местами. То есть на базу подаем минус, а на эмиттер – плюс:

Единичка, значит первый диод транзистора исправен.

Проверяем второй диод транзистора. Ставим на базу плюс, а на коллектор – минус:

Видим падение напряжения на P-N переходе. Все гуд.

Меняем щупы местами:

Мультик показывает единичку. Все ОК. Второй диод тоже в полном здравии. Значит транзистор в полной боевой готовности!

Ну что, теперь проверим комплиментарный транзистор – КТ814 ;-).Его диодная схема будет выглядеть уже по другому, так как он у нас прямой проводимости:

Здесь так же проверяем два диода. Для этого ставим минус на базу, а на эмиттер – плюс:

Ишь ты какое число). Падение напряжения на PN-переходе. Все ОК.

Меняем так же местами щупы:

Единичка – все ОК.

Проверяем второй диод транзистора точно так же. Для этого на базу также ставим минус, а на коллектор – плюс:

Опять видим падение напряжения при прямом включении на PN-переходе.

Меняем щупы местами:

Единичка – гуд!

КТ814 у нас тоже полностью жив и здоров! Все те же самые операции я ещё описал в статье Как проверить биполярный транзистор мультиметром.

Но постойте-ка…  Так что же это получается? Соединив простые диоды, как на рисунках выше, мы можем получить транзистор? А вот кукиш! 🙂 Весь прикол заключается в том, что в транзисторах оба P-N перехода расположены очень близко к друг другу, поэтому между ними возникает взаимодействие. Взаимодействие эти двух P-N переходов называют транзисторным эффектом. Именно поэтому биполярный транзистор обладает усилительными свойствами.

Итак, сделаем глубокомысленные выводы.

Транзистор схематически можно заменить двумя диодами, но если спаять два диода и “сделать” из них транзистора, то ничего не получится. Почему? Читаем здесь. Для того, чтобы узнать, живой ли у нас транзистор и можно ли его паять в схему, достаточно проверить целостность этих двух диодов. Ну и для определения эмиттера, базы и коллектора надо скачать даташит на исследуемый транзистор или копаться в бумажных справочниках (с появлением интернета, не помню, когда в последний раз открывал справочник).

P.S. Во я удод! Слово “эмиттер” пишется не с двумя “мм” , а с двумя “тт”. Косяк за мной…  Рисунки переправлять лень).

Продолжение——->

 

<——-Предыдущая статья

 

Что будет если MOSFET транзистор заменит выпрямительный диод

Кремниевые выпрямительные диоды обладают большим значением прямого падения напряжения, которое достигает величины 1,2 В. Мощность, которую они рассеивают, способна понизить величину КПД питающего источника. На антивозвратном диоде в панели фотоэлектрического типа с величиной мощности 120 Вт и номинальным значением напряжения 24 В, теряется до 6 Вт, что равно 5% относительных единиц. Еще одним отрицательным фактором использования диодов может служить добавочные затраты на систему охлаждения, что служит причиной потерь мощности.

Экономичное решение проблемы заключается в замене выпрямительного диода на MOSFEТ транзистор, который функционирует в режиме вкл/откл.

Рис. Прецизионный диод большой мощности работает в качестве выпрямителя, питает нагрузку индуктивности.

Схема выпрямительного устройства с МOSFEТ транзистором Q1 с низким значением сопротивления  сток-исток во время работы, является источником 36 В. Нагрузка образуется с помощью использования последовательного соединения резистора на 9 Ом и индуктивности – 25 мГн. Компаратор IC служит для управления (открытия/ закрытия) затвора транзистора Q

1. Это возможно на тех временных отрезках, когда питающее напряжение на аноде выше напряжения на катоде. Исток работает в качестве анода, а катод заменяется стоком. Способность проводить транзистором ток в направлении сток-исток весьма эффективно работает в этой схеме. При включении Q1 можно эффективно шунтировать паразитный диод, расположенный  между подложкой и стоком, при этом наблюдаются минимальные потери мощности. При небольшом напряжении, происходит работа затвора-истока в качестве транзистора. Так, и паразитный диод D1, и резистор R1 работают в качестве компаратора, они служат для ограничения напряжении я на входах.

Нормальный режим работы выпрямителя при максимально большом токе нагрузки 2,65 А наблюдается падение напряжения, оно равно 33 мВ, а Q1 действует в омической области, там, где нарастает вольт-амперная характеристика. Если напряжение затвора оставить без управления, то падение напряжения будет равно величине способствующей мгновенному возрастанию максимальной мощности.

Подобный подход к решению задачи может быть справедливым для выпрямляющих устройств самого различного типа и  с самым разным количеством диодов.

Эту же схему можно применять в DC/DC и  DS/AC преобразователях, потому как в мостовых схемах, при этом MOSFET транзисторы имеют возможность пропускать и активные, и реактивные токи. Значительной особенностью может считаться исключение воздействие паразитного диода подложка-сток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Прекращаем ставить диод 2 / Habr

Несколько лет назад мною была опубликована статья под аналогичным заголовком. Если кратко, то в ней я рассказал о процессе разработки с нуля устройства, выполняющего функции «идеального диода» для предотвращения разряда буферного аккумулятора на обесточенный блок питания.

Устройство получилось относительно сложным, хотя и довольно экономичным (ток потребления при использовании современной версии компаратора LM393 получился около 0.5 mA). Читатели обратили внимание на эту сложность и в комментариях предложили другой вариант «идеального диода», который выглядит на порядок более простым. К своему стыду, на тот момент я не был знаком с такой схемой, поэтому решил при удобном случае разобраться с ней подробнее. После серии экспериментов, которые начались с компьютерной симуляции, а закончились макетной платой, было выяснено, что при своей кажущейся простоте, эта схема очень нетривиальна как с позиции понимания всех протекающих в ней процессов, так и с точки зрения подводных камней, которые она в себе таит.


В общем, предлагаю вашему вниманию другой вариант реализации «идеального диода» с подробным описанием его особенностей.

Канонический вариант, предложенный в комментариях, имеет такой вид:


Всего четыре (или пять, смотря как считать) деталей и «идеальный диод» готов. Вроде бы все очень просто. Однако первое, что бросается в глаза, это использование сборки вместо обычных дискретных транзисторов. Может показаться, что это прихоть автора данного конкретного исполнения. Однако после изучения других вариантов обнаруживается, что такой подход используется почти во всех схемах, которые можно найти в сети. Тут мы и подходим к разбору принципа действия этой схемы.
Для понимания принципа начинать лучше с момента, когда все переходные процессы уже завершены, и нагрузка потребляет некоторый ток от блока питания. Этот ток течет через ключ и из-за ненулевого сопротивления канала, напряжение в точке 1 немного больше, чем в точке 2. В этом случае ток из точки 1 через эмиттерный переход T1 попадает в цепь баз обоих транзисторов, а затем через R1 стекает на «землю». В результате на базах транзисторов устанавливается напряжение, равное напряжению открытия эмиттерного pn-перехода. Но из-за того, что эмиттер T2 находится под более низким потенциалом, чем эмиттер T1, ток через его базу почти не течет потому что напряжение между его эмиттером и базой меньше, чем необходимо для открытия перехода. А раз базового тока нет, то T2 закрыт, сопротивление эмиттер-коллектор высокое, затвор силового ключа заземлен через R2, что создает условия для его открытия. Как итог, ток течет из точки 1 в точку 2 через открытый канал силового ключа (а не просто через технологический диод) и падение напряжения на этом участке измеряется милливольтами.

При обесточивании блока питания напряжение в точке 1 очень быстро станет ниже, чем в точке 2. При этом ток прекратит течение через эмиттерный переход T1 и вместо этого начнет протекать через эмиттерный переход T2, открывая его. В итоге сопротивление эмиттер-коллектор транзистора T2 сильно уменьшится, затвор силового ключа окажется соединенным с истоком, и канал будет закрыт.

Исходя из вышесказанного, необходимым условием работы схемы является тождественность транзисторов T1 и T2. Особенно это касается напряжения открытия эмиттерных переходов. Оно, во-первых, должно совпадать с точностью не хуже единиц милливольт, а во-вторых, любые его колебания под действием температурного фактора должны быть синхронными для обоих транзисторов.

Именно поэтому использование дискретных транзисторов в этой схеме недопустимо. Только изготовленная в рамках единого технологического цикла пара может считаться достаточно тождественной. А их размещение на общей подложке гарантирует необходимую температурную связь.

И уж тем более лишен смысла вариант схемы, который тоже можно найти на просторах интернета, где вместо одного из транзисторов используется диод.


Такая схема при определенном везении заработает, но ни о какой надежности работы тут речи просто не идет.

Кстати, некоторые авторы идут дальше, и кроме транзисторной сборки используют так же и резисторную (либо дискретные резисторы с допуском 1% или лучше), мотивируя это необходимостью дальнейшего соблюдения симметрии схемы. На самом деле резисторы совершенно не нуждаются в точном подборе, но об этом ниже.


Приведенное выше объяснения принципа действия является сильно упрощенным, оно дает краткий ответ на вопрос «как работает», но не дает понимания глубинных процессов, происходящих в схеме, и, в частности, никак не обосновывает выбор номиналов элементов.

Так что, если кому интересны подробности, то читаем дальше, а кому достаточно практической схемы, просто скрольте до последнего изображения статьи.

Для наглядности давайте сначала перевернем схему, заменим PNP-транзисторы более привычными NPN, и, наконец, немного усложним, чтобы было понятно, откуда вообще взялся конечный вариант.


Итак, что мы тут видим? Два простых усилительных каскада по схеме ОЭ и общая цепь смещения через резистор Rs. Если транзисторы одинаковые, то ток, текущий через резистор смещения, поровну разделится между базами обоих транзисторов и приоткроет их на одинаковую величину. В результате через коллекторные нагрузочные резисторы потекут одинаковые токи, и выходные напряжения в точках OUT1 и OUT2 будут тоже равны.

Теперь вернемся к нашим баранам и вспомним, что эмиттеры транзисторов не соединены вместе, напротив, между ними может возникать разность потенциалов, равная падению напряжения на открытом канале силового ключа. Учитывая величину сопротивления канала, разность напряжений между эмиттерами может составлять от единиц до сотен милливольт. Вот как это выглядит на нашей схеме.


В результате смещения эмиттер T2 оказывается немного «выше над землей», чем эмиттер T1, а значит напряжение Ube2 будет ниже, чем Ube1. Теперь вспомним, как выглядит ВАХ эмиттерного pn-перехода.
Если рабочая точка находится в области максимального наклона характеристики, то даже незначительное изменение приложенного напряжения ведет к очень сильному изменению протекающего тока, т.е. чем ниже прямое напряжение, тем больше эквивалентное сопротивление перехода.

Снова посмотрим на схему. Напряжение на эмиттерном переходе T2 уменьшилось, его эквивалентное сопротивление увеличилось, а значит ток смещения, текущий через Rs уже не разделяется симметрично между базами транзисторов, а течет преимущественно через эмиттерный переход T1. От этого T1 открывается, а T2, соответственно, закрывается на ту же величину. Распределение токов теряет симметрию и схему как-бы «перекашивает». Причем абсолютная величина перекоса равна коэффициенту передачи тока транзисторов (не суммарно, а каждого в отдельности, при условии, что транзисторы одинаковые).

Если мы перевернем разность потенциалов эмиттеров на обратную, схему аналогично перекосит в противоположную сторону: чем больше коллекторный ток у одного транзистора, тем меньше у второго и наоборот. В итоге имеем «обратное» токовое зеркало, где под влиянием одного входного сигнала происходит симметрично-противоположное изменение токов в плечах схемы.

Классическое «прямое» токовое зеркало (как те, что входят в состав операционных усилителей и компараторов) отличается тем, что в нем наоборот под влиянием двух однополярных входных величин в противоположные стороны изменяется ток одного транзистора.

Идем дальше. Полученная схема дает нам понятие о ролях резисторов. Коллекторные резисторы R1 и R2 являются нагрузкой транзисторов. Их роль – питание тех цепей, которые подключаются к нашей схеме, как к источнику управляющего сигнала. А значит, их сопротивление должно быть таким, чтобы протекающего через них тока было достаточно для активации входных цепей нагрузки. В данном конкретном случае нагрузкой является затвор MOS-транзистора, который имеет входное сопротивление многие мегаомы.
В даташитах обычно указывается не входное сопротивление, а ток утечки затвора при заданном напряжении. Из этого тока можно определить оммическое сопротивление изоляции затвора и защитных диодов. Например, для транзистора IRF5305 заявлен ток утечки не более 100 нано-ампер при напряжении 20 вольт. Простой подсчет дает нам величину входного сопротивления по меньшей мере 200 МОм.

При таком входном сопротивлении потребителя можно было бы использовать очень высокоомные нагрузочные резисторы, уменьшив таким образом собственное потребление транзисторов до наноамперного уровня. Однако лучше не «шиковать» слишком сильно, потому что высокоимпедансные цепи становятся чувствительными к разнообразным наводкам. А кроме того, при субмикроамперных коллекторных токах падает коэффициент усиления биполярного транзистора. Наиболее уместным сопротивлением нагрузок в данном случае можно считать сотни кОм. Это оптимальное сопротивление с точки зрения надежности, и при этом достаточно высокое с позиции экономичности.

С коллекторными резисторами разобрались. Теперь перейдем к резистору смещения Rs. Что зависит от его сопротивления? От него зависят начальные токи коллекторов, то есть токи полностью сбалансированной схемы. Причем эти токи зависят и от выбранных ранее номиналов нагрузочных резисторов, и от коэффициента усиления транзисторов. Так какое же значение этого сопротивления все-таки будет оптимальным? А такое, при котором режимы транзисторов окажутся в точках наименьшей устойчивости.

Ведь чем проще схема поддается влиянию дисбалансирующих факторов, тем выше получается ее чувствительность ко входному сигналу. Именно поэтому в отсутствие входного сигнала транзисторы не должны быть полностью открытыми или полностью закрытыми, они должны быть в промежуточном состоянии.

Тут уместна аналогия с простейшими качелями-балансирами. Если такие качели находится в равновесии, то вывести их из этого состояния проще всего: легкий толчок, и они наклоняются в нужную сторону. А вот если они уже перекошены грузом на одном из плечей, выведение из такого устойчивого состояния требует значительных усилий.

Поэтому наилучшим сопротивлением Rs является такое, при котором напряжения на коллекторах транзисторов примерно равны половине питающего напряжения. Это условие не нужно воспринимать буквально и подбирать сопротивление до ома. Более того, для уменьшения рабочих токов вполне допустимо сознательно увеличить Rs так, чтобы напряжения на коллекторах было примерно на 5 вольт ниже питающего. Это оставит достаточный запас для надежного управления силовым ключом, но при этом до минимума уменьшит токи во всех цепях, а значит и потребление схемы.
Для управления современным силовым MOSFET-том на его затвор нужно подавать напряжение, не менее того, что заявлено в строке «Gate threshold voltage» даташита. Для типичного современного транзистора это напряжение равно 3-4 вольта, отсюда и выбранное значение 5 вольт, которого гарантировано хватит чтобы полностью открыть транзистор при минимальном входном сигнале.

Что касается конкретного номинала Rs, то натурный эксперимент показал, что, например, для сборки BC807DS его сопротивление должно быть примерно 5 MОм. Для других транзисторов эта величина может отличаться, но есть еще один фактор, который играет нам на руку и уменьшает необходимость в тонком подборе сопротивлений.

Дело в том, что в реальной схеме, когда через силовой ключ начнет идти ток, выводящий схему из равновесия, напряжение на затворе начнет изменяться, а значит, начнет изменяться и сопротивление канала. И вот эта обратная связь носит усиливающий характер, когда падение напряжения на канале приводит к дисбалансу схемы, от чего изменяется напряжение на затворе так, что сопротивление канала меняется еще сильнее, что ведет к еще большему перекосу. И так продолжается до достижения крайнего положения, в котором силовой ключ больше не реагирует изменением сопротивления канала на изменение напряжения затвора. Однако, если коэффициент усиления транзистора достаточно большой, то процесс идет дальше, вплоть до достижения напряжения питания или нуля (в зависимости от соотношения напряжений в точках 1 и 2).

Таким образом, реальная схема, которую можно нарисовать с учетом сказанного выше, может иметь такой вид:


И в таком виде она действительно изредка встречается на сайтах, посвященных электронике. Однако начинали мы с другой вполне рабочей схемы, которая и проще и встречается гораздо чаще. Что отличает эти два варианта? Давайте снова на короткое время вернемся к прототипу, с которого начинали подробный разбор.
Что в этой схеме лишнее? По той причине, что управляющее напряжение для затвора силового ключа мы снимаем с коллектора одного из транзисторов (точка OUT2), напряжение на коллекторе второго (OUT1) нас совершенно не волнует. А по той причине, что наличие или отсутствие малого коллекторного тока весьма слабо сказывается на вольт-амперной характеристике эмиттерного перехода, нагрузочный резистор R1 спокойно можно удалить из схемы. А чтобы коллекторный вывод T1 не болтался воздухе и не собирал наводки, его лучше соединить с базой T1 (хотя делать это не обязательно, схема отлично работает и с оборванным выводом коллектора).
Итоговая схема принимает до боли знакомый вид:
Причем я специально сохранил расположение резисторов как в прототипе, чтобы подчеркнуть тот факт, что резисторы эти выполняют совершенно разные функции. Это не очевидно на исходной схеме, зато хорошо видно здесь, особенно после всех объяснений и выкладок. Левый резистор – это резистор смещения Rs, а правый – нагрузочный резистор R2 из схемы прототипа. Они не то что не должны быть совершенно одинаковыми (как думают некоторые авторы), их номиналы вообще взаимосвязаны очень косвенно и в общем случае не обязаны даже иметь общий порядок.

Именно поэтому нет никакой надобности использовать в этом месте резисторную сборку или дискретные резисторы малого допуска.

А еще из этой схемы следует, что питание устройство получает из точки 2, а точка 1 – просто источник входного сигнала. Таким образом, когда напряжение присутствует только в точке 2, питание подается непосредственно, а если только в точке 1, то сначала запитка происходит через технологический диод силового транзистора, а затем, когда схема проснется и начнет работать, уже через открытый канал.


С принципом действия и номиналами разобрались, результат на схеме:
Именно в таком виде схему массово рекомендуют на разных форумах, но есть пара нюансов, которые сильно ограничивают ее практическое применение. Первая проблема заключается в одном параметре биполярных транзисторов, о котором не принято вспоминать в большинстве практических применений. Вот он:
Оказывается, что максимальное обратное напряжение эмиттерного перехода большинства маломощных транзисторов составляет единицы вольт, и вот чем это грозит нашей схеме. Если напряжение есть только в точке 2, а точка 1 через небольшое сопротивление соединена с землей (как раз так себя ведет обесточенный блок питания), то ток из точки 2 через прямосмещенный эмиттерный переход T2 попадает на обратносмещенный эмиттерный переход T1, за которым уже почти земля. То есть почти все напряжение точки 2 оказывается приложено к эмиттерному переходу T1.
И вот тут и происходит самое интересное. Если напряжение в точке 2 выше предельно допустимого, то эмиттерный переход T1 входит в режим лавинного пробоя, и при достаточно малом значении RL, транзистор просто выходит из строя.

Таким образом, надежная эксплуатация этой схемы возможна только при рабочих напряжениях не выше, чем то, что заявлено в даташите на выбранный транзистор, т.е. на практике это не более 5-8 вольт. Даже 12-вольтовый источник формально уже не может быть подключен к такой схеме.

Тут кстати, интересный факт. Я перепробовал несколько сборок разного типа, у которых заявлено максимальное напряжение эмиттерного перехода от 5 до 8 вольт, и все они показали напряжение лавинного пробоя аж 12-13 вольт. Однако не стоит на это рассчитывать в практических схемах, не зря же говорят, что спецификации пишутся дымом сгоревших компонентов.

Если нужно коммутировать относительно высокое напряжение, то транзистор T1 нуждается в защите. Проще всего это сделать, просто внеся дополнительное сопротивление, которое ограничит обратный ток через переход.
Этот резистор внесет некоторый дисбаланс в схему, однако по той причине, что его сопротивление довольно мало по сравнению с сопротивлением резистора смещения, влияние будет минимальным и на практике не ощутимым. Кроме того, через этот резистор потечет небольшой ток утечки из точки 2 в точку 1, который сделает наш диод не таким идеальным, как хотелось бы. Но тут приходится идти на некоторый компромисс.

Некоторые авторы (те немногие, которые осознали саму необходимость защиты) предлагают дополнительно оградить эмиттерный переход при помощи прямо включенного диода.


Этот диод позволяет вообще не достигать порогового значения напряжения, ограничив его величиной прямого падения, то есть менее одного вольта.

Однако по моему скромному мнению, скрипач диод не нужен. Дело в том, что лавиный пробой для любого pn-перехода является совершенно нормальным режимом работы и с ним не нужно бороться.

Старая поговорка гласит: убивает не напряжение, убивает ток. И это относится не только к случаю поражению человека электрическим током. С диодами и транзисторами ситуация аналогичная. Лавинный пробой сам по себе полностью обратим и штатным образом используется, например, в стабилитронах. А дурная слава закрепилась за ним из-за того, что в силовых схемах это явление как правило сопровождается неконтролируемым ростом тока, протекающего через переход, сильным нагревом, и следующим за ним уже необратимым тепловым пробоем.


Если схему планируется использовать при напряжениях около 12 вольт, то все можно оставить как есть и наслаждаться. Но ситуации в жизни бывают разные и рано или поздно напряжение может оказаться и выше, например 24-27 вольт, как в бортовой сети больших автомобилей.

И вот тут всплывает еще одно ограничение, о котором тоже не часто приходится вспоминать при проектировании маловольтажных схем. Дело в том, что затвор MOSFET отделен от канала тончайшей оксидной пленкой. Ее толщина определяет передаточные свойства транзистора и на практике составляет единицы атомов оксида кремния. Естественно, что электрическая прочность такого тонкого диэлектрика оказывается весьма невысокой. Заглянем в даташит типового мощного «полевика».


Тут мы видим, что предельное напряжение завтора – 20 вольт. А теперь снова посмотрим на конечную схему нашего устройства и подумаем, что будет, когда транзистор T2 окажется полностью закрыт. В этом случае затвор полевого транзистора через R2 окажется заземлен. А так как сопротивление затвора, как мы выяснили выше, имеет порядок сотен мегаом, потенциалы распределятся так, что почти все напряжение питания будет приложено к изоляции затвора.

При питании напряжением выше 20 вольт получаем риск пробоя затвора силового ключа. Чтобы этого не произошло, нужно как-то ограничить напряжение между истоком и затвором до допустимой величины. Проще всего сделать это при помощи стабилитрона, шунтирующего выводы истока и затвора.


В этом случае даже если транзистор T2 окажется полностью закрыт, излишний ток возьмет на себя стабилитрон, и напряжение на затворе ограничится напряжением стабилизации D1. Именно поэтому напряжение стабилизации должно быть в диапазоне от параметра «Gate Threshold Voltage» до «Gate-to-Source Voltage», с небольшими отступами, конечно же.
В принципе, в некоторых даташитах в составе силового MOS-транзистора рисуют встречно-последовательную пару стабилитронов между затвором и истоком, которая, надо полагать, как раз и предназначена для ограничения напряжения на затворе. Так что тут каждый пусть решает сам, доверять судьбу транзистора встроенной защитной цепи, или же подстраховаться собственными силами.

Полученное тут устройство отлично выполняет свои функции «идеального диода», обеспечивая прямое сопротивление, полностью соответствующее выбранному силовому «полевику», обратное сопротивление более 100 кОм, и собственное потребление при напряжении 25 вольт не более 150 мкА.

Транзистор вместо диода схема – 4apple – взгляд на Apple глазами Гика

Camilo Quintáns Graña и Jorge Marcos Acevedo, Испания

На мощных кремниевых выпрямительных диодах прямое падение напряжения может достигать 1.2 В. Рассеиваемая на них мощность снижет КПД источников питания. Так, к примеру, на антивозвратном диоде в фотоэлектрической панели мощностью 120 Вт с номинальным напряжением 24 В может теряться до 6 Вт мощности, что в относительных единицах означает 5%. Система охлаждения диодов требует дополнительных затрат, и, опять же, увеличивает потери мощности.

В статье предлагается более экономичное решение, заключающееся в замене мощного диода MOSFET транзистором, работающим в режиме включения/выключения.

Рисунок 1. Прецизионный мощный диод работает как выпрямитель, питающий индуктивную нагрузку.
Надписи на схеме
POWER PRECISION EQUIVALENT DIODE Эквивалентный мощный прецизионный диод
CATHODE Катод
ANODE Анод

На Рисунке 1 изображена схема выпрямителя с MOSFET транзистором Q1, имеющим во включенном состоянии низкое сопротивление сток-исток. V2 представляет источник переменного напряжения 36 В. Нагрузка образована последовательным соединением резистора 9 Ом и индуктивности 25 мГн. Компаратор IC1 управляет затвором транзистора Q1 на тех отрезках времени, когда напряжение питания на аноде превышает напряжение на катоде. Таким образом, исток выполняет функцию анода выпрямителя, а сток – катода. В схеме используется способность транзистора проводить ток в направлении исток-сток. При включении Q1 происходит эффективное шунтирование паразитного диода между подложкой и стоком, благодаря чему потери мощности оказываются минимальными. При низком напряжении затвор-исток выключены как транзистор, так и паразитный диод. Диод D1 и резистор R1 выполняют функцию защиты компаратора, ограничивая напряжение на его входах.

Рисунок 2. На этих осциллограммах приведены формы напряжений на индуктивной нагрузке, состоящей из резистора 9 Ом и индуктивности 25 мГн. На осциллограмме C2 максимальный ток нагрузки равен 2.65 А. (100 мВ/А). C1 показывает падение напряжения между анодом и катодом выпрямителя.

На рисунке 2 показана форма напряжения на нагрузке и падение напряжения на выпрямителе Q1.

Рисунок 3. Осциллограммы для случая, когда на затвор подается управляющее напряжение. Паразитный диод MOSFET транзистора закрыт, и падение напряжения на транзисторе всего 33 мВ (осциллограмма C1). На осциллограмме C2 изображена форма тока, протекающего через выпрямитель.

Рисунок 3 иллюстрирует нормальное функционирование выпрямителя, когда при максимальном токе нагрузки 2.65 А падение напряжения равно 33 мВ, а Q1 работает в омической области (области нарастания вольт-амперной характеристики). Напротив, если не управлять напряжением затвора, падение напряжения достигает 629 мВ, приводя к возрастанию максимальной мгновенной мощности до 1.66 Вт (Рисунок 4).

Рисунок 4. Осциллограммы для случая, когда управляющее напряжение на затвор не подается. Паразитный диод MOSFET транзистора открыт , и падение напряжения на транзисторе равно 629 мВ (осциллограмма C1). На осциллограмме C2 изображена форма тока, протекающего через выпрямитель.

Предлагаемый подход справедлив для выпрямителей любого типа с любым количеством диодов. Кроме того, возможно использовать эту схему в DC/DC и DC/AC преобразователях, поскольку в мостовых схемах MOSFET транзисторы могут пропускать как активные, так и реактивные составляющие токов. Существенной особенностью является и исключение влияния паразитного диода подложка-сток.

Перевод: AlexAAN по заказу РадиоЛоцман

Полноценная замена диода на полевой транзистор

Автор: Providec
Опубликовано 10.07.2013
Создано при помощи КотоРед.

Так, для начала сами схемы.


Первая схема самая простая, ее выкладывают в сети все кому не лень, с нее и начнем. Это защита от переполюсовки питания, больше применения ей нет, не является полноценной заменой диода, так как будет пропускать ток в обратном направлении, т.е. если вместо нагрузки повесить конденсатор, то при отключении блока питания, этот конденсатор разрядится через открытый полевик на сам блок питания.

Вторая схема – назовем ее электронным (управляемым) рэле. При отсутствии управляющего сигнала на оптроне схема разорвана по питанию с любой стороны. При подаче управляющего сигнала на оптрон оба полевика откроются и мы получим «замкнутые клеммы», т.е. ток (положительной полярности) сможет проходить в любом направлении.

Третья схема – полноценная замена диода (неуправляемая). Вместо оптрона стоит компаратор, который позволяет окрыть полевики когда левый потенциал напряжения больше правого и закрыть, когда все наоборот. Выход компаратора представляет собой свободный коллектор n-p-n транзистора, эмиттер которого посажен на землю.

Четвертая схема – полноценная замена управляемого диода (тиристора). Последовательно с выходным транзистором компаратора стоит оптрон, который и управляет работой схемы.

P.S. Заметил что неправильно подключены входы компаратора, для того чтобы все работало как в описании их нужно поменять местами.

Целесообразность применения каждый выбирает сам, неоспоримым преимуществом является малое сопротивление полевика в открытом состоянии, как следствие практически отсутствие падения напряжения на ключе, что обеспечивает как минимум выигрыш по КПД (актуально для малых нагрузок) и уменьшение напрасного тепловыделения (актуально для больших нагрузок).

Camilo Quintáns Graña и Jorge Marcos Acevedo, Испания

На мощных кремниевых выпрямительных диодах прямое падение напряжения может достигать 1.2 В. Рассеиваемая на них мощность снижет КПД источников питания. Так, к примеру, на антивозвратном диоде в фотоэлектрической панели мощностью 120 Вт с номинальным напряжением 24 В может теряться до 6 Вт мощности, что в относительных единицах означает 5%. Система охлаждения диодов требует дополнительных затрат, и, опять же, увеличивает потери мощности.

В статье предлагается более экономичное решение, заключающееся в замене мощного диода MOSFET транзистором, работающим в режиме включения/выключения.

Рисунок 1. Прецизионный мощный диод работает как выпрямитель, питающий индуктивную нагрузку.
Надписи на схеме
POWER PRECISION EQUIVALENT DIODE Эквивалентный мощный прецизионный диод
CATHODE Катод
ANODE Анод

На Рисунке 1 изображена схема выпрямителя с MOSFET транзистором Q1, имеющим во включенном состоянии низкое сопротивление сток-исток. V2 представляет источник переменного напряжения 36 В. Нагрузка образована последовательным соединением резистора 9 Ом и индуктивности 25 мГн. Компаратор IC1 управляет затвором транзистора Q1 на тех отрезках времени, когда напряжение питания на аноде превышает напряжение на катоде. Таким образом, исток выполняет функцию анода выпрямителя, а сток – катода. В схеме используется способность транзистора проводить ток в направлении исток-сток. При включении Q1 происходит эффективное шунтирование паразитного диода между подложкой и стоком, благодаря чему потери мощности оказываются минимальными. При низком напряжении затвор-исток выключены как транзистор, так и паразитный диод. Диод D1 и резистор R1 выполняют функцию защиты компаратора, ограничивая напряжение на его входах.

Рисунок 2. На этих осциллограммах приведены формы напряжений на индуктивной нагрузке, состоящей из резистора 9 Ом и индуктивности 25 мГн. На осциллограмме C2 максимальный ток нагрузки равен 2.65 А. (100 мВ/А). C1 показывает падение напряжения между анодом и катодом выпрямителя.

На рисунке 2 показана форма напряжения на нагрузке и падение напряжения на выпрямителе Q1.

Рисунок 3. Осциллограммы для случая, когда на затвор подается управляющее напряжение. Паразитный диод MOSFET транзистора закрыт, и падение напряжения на транзисторе всего 33 мВ (осциллограмма C1). На осциллограмме C2 изображена форма тока, протекающего через выпрямитель.

Рисунок 3 иллюстрирует нормальное функционирование выпрямителя, когда при максимальном токе нагрузки 2.65 А падение напряжения равно 33 мВ, а Q1 работает в омической области (области нарастания вольт-амперной характеристики). Напротив, если не управлять напряжением затвора, падение напряжения достигает 629 мВ, приводя к возрастанию максимальной мгновенной мощности до 1.66 Вт (Рисунок 4).

Рисунок 4. Осциллограммы для случая, когда управляющее напряжение на затвор не подается. Паразитный диод MOSFET транзистора открыт , и падение напряжения на транзисторе равно 629 мВ (осциллограмма C1). На осциллограмме C2 изображена форма тока, протекающего через выпрямитель.

Предлагаемый подход справедлив для выпрямителей любого типа с любым количеством диодов. Кроме того, возможно использовать эту схему в DC/DC и DC/AC преобразователях, поскольку в мостовых схемах MOSFET транзисторы могут пропускать как активные, так и реактивные составляющие токов. Существенной особенностью является и исключение влияния паразитного диода подложка-сток.

Перевод: AlexAAN по заказу РадиоЛоцман

Оцените статью: Поделитесь с друзьями!

Основные правила замены диодов и транзисторов.

Прежде всего необходимо заметить, что для успешной замены элементов конструкции нужно хорошо представлять принцип ее работы, уметь оценивать предельные характеристики (токи, напряжения и т. д.), которые определяют режимы работы различных узлов. В общем случае дать рекомендации по замене диодов и транзисторов практически невозможно. Здесь подойдет, пожалуй, лишь общее утверждение, что замена заведомо не ухудшит параметров устройства, если заменяющий элемент имеет одновременно лучшие, чем оригинал, характеристики сразу по целому комплексу данных:
по предельно допустимым токам и напряжениям,
по предельно допустимой рассеиваемой мощности,
по частотным и шумовым свойствам и т. д.
Транзисторы
Найти такую замену крайне трудно, да и обычно в этом нет необходимости. Дело в том, что, ориентируясь на свои возможности, автор конструкции порой использует, если так можно сказать, «слишком хорошие» для данного применения элементы.


При замене диодов в большинстве случаев бывает достаточно оценить воздействующее на диод обратное напряжение (постоянное и/или импульсное), протекающий через него прямой ток (постоянный и/или импульсный), допустимый обратный ток («обратное сопротивление диода») и, наконец, максимальные частоты воздействующих на диод сигналов.
Такой параметр диода, как обратный ток, существенен лишь в тех случаях, когда диод должен надежно развязывать элементы устройства в «закрытом» состоянии. Примером может служить пиковый вольтметр (в последнее время все чаще используется в индикаторах уровня записи магнитофонов) — «обратное сопротивление диода может существенно влиять на постоянную времени цепи разрядки.
Прямое падение напряжения на диоде важно в основном, когда он используется как элемент стабилизации низкого напряжения (0,5…2В). Как известно, для кремниевых диодов оно лежит обычно в пределах 0,5…1,0В, а у германиевых составляет всего лишь доли вольта. В данном случае заменять кремниевые диоды на германиевые (удовлетворяющие по всем остальным параметрам), разумеется, нельзя.
В выпрямителях на диоде уменьшается выходное напряжение на величину прямого падения напряжения, поэтому замена кремниевых диодов на германиевые вполне допустима. Более того, в определенных ситуациях она может оказаться даже предпочтительной. Стабилизаторы напряжения для надежной работы регулирующего транзистора требуют определенной разности выходных и входных напряжений. Если используемый радиолюбителем трансформатор при максимальном токе нагрузки обеспечивает ее на пределе, то несколько повысить надежность работы устройства (не перематывая трансформатор) можно именно заменой в выпрямителе кремниевых диодов на германиевые.
Подбор заменяющих транзисторов более сложен из-за большего числа параметров, по которым он производится. Но схема анализа возможных вариантов остается прежней. Начинают с оценки действующих в узлах устройства токов и напряжений. Максимально допустимое напряжение коллектор-эмиттер транзистора должно быть больше, чем максимальное (с учетом переменной составляющей) напряжение, действующее на этом участке. Правда, если необходимо избегать коротких замыканий (обычно это имеет место только в процессе налаживания устройства), то подобная замена вполне оправдана.
В узлах, где имеется значительная переменная составляющая, ее необходимо учитывать при выборе транзистора. Примером могут служить предоконечные и двухтактные каскады усилителей звуковой частоты. Постоянное напряжение, приложенное между коллекторами и эмиттерами транзисторов в этих каскадах, составляет половину напряжения источника питания (при однополярном питании). Одна¬ко здесь действует переменное напряжение с амплитудой, близкой к половине напряжения источника. Таким образом, реально напряжение коллектор-эмиттер в данном случае изменяется практически от нуля до полного напряжения источника питания. Естественно, что транзисторы в оконечном и предоконечном каскаде должны иметь соответствующее максимально допустимое напряжение коллектор-эмиттер.
Оценив возможность замены на имеющийся у радиолюбителя транзистор по данному параметру, следует аналогичным образом проверить, проходит ли он по максимально допустимому току кол¬лектора и по мощности, рассеиваемой на коллекторе.
Во многих случаях критичным может оказаться выбор транзистора по статическому коэффициенту передачи тока. Например, в простейшем стабилизаторе напряжения на транзисторе потребляемый ток достигает 200 мА. Ток в базовой цепи будет меньше (пропорционально статическому коэффициенту передачи тока регулирующего транзистора). В данном случае проблем с заменой не возникает, поскольку практически у всех современных транзисторов этот коэффициент не менее 30.
Это означает, что ток, потребляемый базовой цепью регулирующего транзистора, изменяется в пределах 0…7 мА. Такое изменение легко обеспечивается простейшим параметрическим стабилизатором на стабилитроне. Однако при больших потребляемых токах или низкоомных нагрузках (и частности, в усилителях звуковой частоты) значение статического коэффициента передачи тока транзистора может быть уже критичным. В любом случае при замене следует оценить, обеспечивают ли предшествующие каскады необходимый ток в нагрузке (по постоянной и/или переменной составляющим) при минимально допустимом значении этого коэффициента.
И наконец, необходимо проверить, проходит ли заменяющий транзистор по частотным характеристикам. Здесь следует заметить, что в настоящее время даже в низкочастотных узлах широко применяют высокочастотные транзисторы (особенно в маломощных каскадах) из-за их доступности. Поэтому порой вполне возможна замена и на транзисторы с более низкой граничной частотой, чем те, которые использовались в данной схеме.

Диодные включения транзисторов

Для создания интегрального диода достаточно сформировать только один p-n-переход. Однако при изготовлении микросхем желательно все элементы формировать в едином технологическом процессе. Поэтому наиболее экономично использовать биполярный транзистор в диодном включении.

При этом характеристики диода-транзистора можно изменять, используя тот или иной p-n-переход путем применения одного из шести возможных вариантов включения (рис. 15).

 

Рис. 15. Транзистор в диодном включении

 

Первые два варианта анализируются наиболее просто. Так как один из переходов замкнут, то напряжение на нем равно нулю, т. е. закороченные p-n-переходы не оказывают никакого влияния на вольт-амперные характеристики рабочих p-n-переходов. В вариантах (в) и (г) второй p-n-переход никуда не подключается и влияет на рабочий переход, снижая ток насыщения получающегося диода.

Последний вариант (е) получается, если в технологическом процессе формирования транзисторной структуры исключить эмиттерную диффузию. Поскольку остается только один p‑n‑переход, никакого влияния на него не оказывается, и вольт-амперная характеристика точно такая же, как и при закороченных выводах эмиттер—база.

Отмечая особенности рассмотренных вариантов, можно сказать, что наибольший ток пропускает диод варианта (д), наибольшим быстродействием обладает диод варианта (а), а наибольшие пробивные напряжения имеют диоды вариантов (б, г, е).

 

СОДЕРЖАНИЕ РАБОТЫ

 

1. Определение вольт-амперных характеристик диодных структур транзисторов и характерных электрических параметров их. Исследование изменения электрических свойств диодов в зависимости от температуры.



2. Определение входных и выходных вольт-амперных характеристик транзисторных структур и исследование изменения электрических свойств транзисторов в зависимости от температуры.

 

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

 

Лабораторная установка включает в себя измерительный блок и персональный компьютер (ПК).

Измерительный блок содержит управляемый источник тока, коммутатор образцов и преобразователь ток – напряжение. Управляемый источник тока предназначен для задания тока азы исследуемых транзисторов. Коммутатор схем включения служит для задания схемы эксперимента. Выбор необходимого объекта происходит с помощью коммутатора образцов. Измерение тока производится при помощи преобразователя трок – напряжение. Образцы помещены в термостат, там же расположен и датчик температуры. Необходимый режим работы термостата задается узлом управления нагревателя.

ОПИСАНИЕ ПРОГРАМНОГО ИНТЕРФЕЙСА

Основное меню

Главное окно программы содержит меню, которое включает следующие пункты: Измерение, Настройки, Окно, Помощь. Некоторые из них содержат подменю. Описание команд меню приведено в таблице 1.

 

Таблица 1

Пункт меню Подменю Действие
Измерение База данных Открывает окно базы данных
    Осциллограф Открывает окно осциллографа
    Подключиться Команда подключения клиента к серверу
    Отключиться Команда отключения клиента от сервера
    Разговор с оператором Открывает окно диалога между кли­ентом и сервером
    Выход Выход из программы
Настройки Параметры Выводит на экран окно параметров установки и сведений об исследуе­мых образцах
  Термостат Открывает окно настройки термо­стата
Окно Каскадом Упорядочить все Закрыть все База данных Команды управления расположени­ем на экране открытых окон прило­жения
Помощь О программе Приводит к появлению на экране окна с информацией о разработчике программы
    Содержание Открывает электронную справоч­ную систему программы

Панель инструментов

Ниже строки меню находится панель инструментов, где располагаются кнопки, описанные в таблице 2.

 

Окно базы данных

Окно «База данных» (рис. 16) содержит таблицу записей результатов измерений различных характеристик в базе. Таблица записей включает дату измерений, номер образ­ца и измерения, для которого получена характеристика.

Рис. 16. Окно «База данных»

 

В окне базы данных содержатся следующие кнопки:

Просмотр;
Удаление текущей записи.

При нажатии «Просмотр» открывается окно просмотр текущего измерения содер­жащее панель инструментов для редактирования графических характеристик.

 

Таблица 3

При нажатии кнопки открывается окно редактирования отображения графика (рис. 17).

Рис. 17. Окно «Редактирования графика»

 

Для редактирования параметров графика, таких как цвет линии, тип линии, толщи­на линии необходимо открыть вкладку «Series» в окне «Editing Chart» на экране монитора появится окно «Series». В этом окне из выпадающего списка меню выбрать серию экспе­риментов, которую необходимо отредактировать.

Рис. 18. Окно настройки параметров графика

Далее нажать кнопку «Border» откроется окно редактирования линии, где можно задать её параметры.

Рис. 19. Окно редактирования линии

 

Окно измерений

При нажатии кнопки открывается окно осциллографа (рис. 20).

Для запуска измерения необходимо нажать кнопку «Обновлять», а при снятии тем­пературных измерений нажать кнопку «Термостат». При нажатии вкладки «Настройки» в окне «Осциллограф» открывается окно настроек текущего измерения, где отображается текущий режим измерения и устанавливается время обновления измерения (рис.21). Если частота процессора невелика, можно увеличить время обновления (например, 3 с). В этом случае ПЭВМ будет успевать обрабатывать измерительную информацию и характе­ристики на экране не будут искажены.

Рис. 20. Окно «Осциллограф»

Рис. 21.Окно «Настройки»

 

Меню настройки

Меню настройки содержит две вкладки:

— Параметры;

— Термостат.

Нажав вкладку «Параметры» открывается окно (рис. 22) содержащее вкладки:

— установки — содержит сведения об IP — адресе сервера и порта;

— образцы — содержит сведения об образцах установленных в термокамере изме­рительного блока.

Нажав вкладку «Термостат» в меню «Настройки» открывается окно настроек па­раметров термостат (рис. 23):

— установка начальной температуры измерений;

— установка конечной температуры измерений;

— установка шага измерения температуры.

Рис. 22. Окно «Параметры»

Рис.23. Окно «Термостат»

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

 

1. Включить ПК, подать напряжение на измерительный блок с помощью тумблера (загорится сигнальная лампа «Сеть»). Прибор должен быть включен до запуска программы. Запустить программу «Биполярные структуры».

2. Замерить начальную температуру транзисторных структур.

3. Снять ВАХ и записать таблицу значений тока и напряжения указанных преподавателем диодных структур транзисторов.

При этом необходимо задать максимальные значения обратного и прямого напряжений для управляемого источника напряжения (УИН) и предельные значения измеряемого обратного и прямого токов.

Максимальный предел изменения прямого тока – 50 мА, которое достигается при прямом смещении кремниевых структур на 0,7 – 1 В и 0,4 – 0,7 В для германиевых.

Обратный ток для кремниевых переходов составляет десятые – сотые доли микроампер, а у германиевых — единицы — сотни микроампер. На ВАХ диодов должно наблюдаться явление электрического пробоя.

4. Снять входные ВАХ и записать таблицу значений тока и напряжения исследуемого транзистора при двух различных значениях напряжения коллектор — эмиттер UКЭ. Значение напряжения коллектор — эмиттер записать.

В данной лабораторной работе реализована возможность регистрации входных характеристик биполярных транзисторов в схеме с общим эмиттером. При этом снимается зависимость напряжения база – эмиттер UБЭ от тока базы IБ при постоянном напряжении коллектор-эмиттер UКЭ.

С помощью управляемого источника тока (УИТ) изменяется ток базы транзистора всегда в диапазоне от нуля до 1 мА, а UБЭ измеряется электронным вольтметром. Можно снять семейство входных характеристик при различных значениях напряжения UКЭ (от нуля до 5В), задаваемых при помощи УИН.

6. Снять выходные ВАХ и записать таблицу значений тока и напряжения исследуемого транзистора при двух различных значениях тока базы IБ. Значение тока базы записать.

В данной лабораторной работе реализована возможность регистрации выходных характеристик биполярных транзисторов в схеме с общим эмиттером. При этом снимается зависимость тока коллектора IК от напряжения коллектор – эмиттер UКЭ при постоянном токе базы IБ.

С помощью УИН изменяется UКЭ транзистора в диапазоне от нуля до заданного предельного значения, при этом измеряется IК. Можно снять семейство выходных характеристик при различных значениях IБ (от нуля до 1 мА), задаваемых УИТ. Выбор необходимых значений IБ осуществляется путем перемещения движка регулятора тока базы. Правильно выбирайте предел измерения по току коллектора. При смене значения IБ, как правило, необходимо нажать кнопку “Авто”.

7. Повторить работу по пунктам 3-6 при заданных преподавателем температурах.

ОБРАБОТКА РЕЗУЛЬТАТОВ

 

Отчет формируется в любом текстовом редакторе.

Часть I «Исследование диодных структур» содержит:

— схемы диодных включений транзисторов с указанием их типов;

— графики ВАХ полупроводниковых диодов при различных температурах;

-сравнительные таблицы электрических параметров полупроводниковых диодов при различных температурах (см. таблицы 4 и 5), используя полученные в ходе лабораторной таблицы значений токов и напряжений. Для сравнения выберите 10 – 15 значений во всем измеряемом диапазоне.

 

Таблица 4. Сравнительная таблица значений тока и напряжения полупроводниковых диодов в прямом включении электрического поля при различных температурах

Прямая ветвь ВАХ
Iпр, мА Uпр, В
T1= , °С T2= , °С
Кремневый диод (указать тип) Германиевый диод (указать тип) Кремневый диод (указать тип) Германиевый диод (указать тип)
         

 

Таблица 5. Сравнительная таблица значений тока и напряжения полупроводниковых диодов в обратном включении электрического поля при различных температурах

Обратная ветвь ВАХ
Uобр, В Iобр, мкА
T1= , °С T2= , °С
Кремневый диод (указать тип) Германиевый диод (указать тип) Кремневый диод (указать тип) Германиевый диод (указать тип)
         

 

— значения напряжений отпирания и пробоя диодов с указанием их на увеличенных ВАХ соответственно прямой и обратной ветвей;

— расчет сопротивления прямой и обратной ветви при различных температурах и фиксированных значениях напряжений, соответственно, прямого и обратного включений, а также график зависимости прямого и обратного сопротивлений от температуры.

В выводах пояснить принцип действия полупроводникового диода, опираясь на его ВАХ, охарактеризовать напряжения отпирания и пробоя. По полученным данным сделать выводы об изменении свойств полупроводниковых материалов в зависимости от температуры и сравнить их с теоретическими данными.

 

Часть II «Исследование транзисторных структур» содержит:

— схемы измерения входных и выходных характеристик транзистора с указанием его типа;

— серии входных ВАХ транзистора при различных значениях напряжения коллектор-эмиттер и температурах;

— сравнительные таблицы входных ВАХ транзистора при двух различных значениях UКЭ и температуры (см. таблицы 6), используя полученные в ходе лабораторной таблицы значений токов и напряжений. Для сравнения выберите 10 – 15 значений во всем измеряемом диапазоне.

 

Таблица 6. Сравнительная таблица входных ВАХ транзистора (указать тип) при различных температурах

Входные ВАХ
Iб, А UБЭ, В
Т= , °С Т= , °С
UКЭ= , В UКЭ= , В UКЭ= , В UКЭ= , В
         

 

— серии выходных ВАХ транзистора при различных значениях тока базы и температурах;

— сравнительные таблицы выходных ВАХ транзистора при двух различных значениях Iб и температуры (см. таблицы 7), используя полученные в ходе лабораторной таблицы значений токов и напряжений. Для сравнения выберите 10 – 15 значений во всем измеряемом диапазоне.

Таблица 7. Сравнительная таблица выходных ВАХ транзистора (указать тип) при различных температурах

Выходные ВАХ
UКЭ, В Iк, А
Т= , °С Т= , °С
Iб = , А Iб = , А Iб = , А Iб = , А
         

 

В выводах пояснить принцип действия полупроводникового транзистора опираясь на его входные и выходные ВАХ, а также выявить как изменяются электрические свойства транзистора при его нагреве.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. В чем заключается суть зонной теории твердых материалов?

2. Поясните физические процессы, определяющие собственную и примесную проводимости полупроводников с точки зрения кристаллического строения вещества и зонной теории.

3. Как влияют внешние факторы (температура, деформация, свет, электрические поля и др.) на элекропроводимость полупроводников?

4. Что такое электронно-дырочные переход?

5. Какие особенности у перехода металл-полупроводник?

6. Полупроводниковый диод: принцип действия, вольт-амперная характеристика.

7. Биполярный транзистор: его принцип действия, входные и выходные вольт-амперные характеристики, получение диодных структур.

8. Как определить тип электропроводимости полупроводника?

9. Классификация полупроводниковых материалов.

10. Дайте характеристику простым полупроводниковым материалам (германий, кремний, селен).

11. Дайте характеристику группам сложных полупроводниковых материалов.

12. Какие бывают методы очистки полупроводниковых материалов?

13. Каким образом изготовляют монокристаллические полупроводники? Для чего они предназначены?

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Материаловедение. Технология конструкционных материалов : Учеб.пособие / Под ред.В.С.Чередниченко. — 4-е изд.,стер. — М. : Омега-Л, 2008.

2. Лахтин Ю.М.
Материаловедение : Учебник / Ю. М. Лахтин, В. П. Леонтьева. — 3-е изд.,перераб.и доп. ; Репр.изд. — М. : Альянс, 2013. — 528 с.

3. Справочник по электротехническим материалам: В 3-х т. / Под ред.Ю.В.Корицкого, В.В.Пасынкова, Б.М.Тареева. — 3-е изд.,перераб. — Л.: Энергоатомиздат.Ленингр.отд-ние, 1988.

4. Электротехнический справочник: В 3-х т. Т.1: Общие вопросы. Электротехнические материалы / Под общ.ред.И.Н.Орлова(гл.ред.) и др. — 7-е изд.,испр.и доп. — М.: Энергоатомиздат, 1985.

5. Никулин Н.В. Справочник молодого электрика по электротехническим материалам и изделиям / Н. В. Никулин. — 5-е изд.,перераб.и доп. — М.: Высш.шк., 1982.

6. Харламова Т.Е. Электроматериаловедение. Электротехнические материалы [Электронные текстовые данные]: Учеб.пособие / Т. Е. Харламова; Северо-зап.заочный политехн.ин-т. — СПб.: Изд-во СЗПИ, 1998

7. Алиев И.И. Электротехнические материалы и изделия: Справочник / И. И. Алиев, С. Г. Калганова. — М.: РадиоСофт, 2005.

 


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Идеальный диод на MOSFET / Схемотехника / Сообщество разработчиков электроники

Наверняка, тема тыщу раз обсуждалась, но раз народ спрашивает, то вот он, «идеальный» диод на MOSFET’е:



«Идеальный» он потому, что он лишен главного недостатка обычного диода: на обычном диоде падает постоянное напряжение, обычно 0.6 вольт для pn диодов и 0.3 вольта для диодов Шоттки. Если ваша система питается, к примеру от 2*AA баратеек, то 0.6 вольта — это уже 25% емкости батареек, которая уйдет в тепло.

«Идеальный» диод обладает постоянным сопротивлением, и его можно сделать намного более эффективным, чем обычный.

Работает он очень просто. При подачи питания, ток протекает через паразитный диод транзистора. Напряжение на истоке оказывается больше чем на затворе и транзистор открывается, ток течет в нагрузку.

Возможен вариант и с N-канальным транзистором. Вот такой:


Тут все аналогично: транзистор открывается когда напряжение на затворе становится больше чем на истоке. N-канальные транзисторы обычно лучше p-канальных, и, поэтому, эта схема лучше.

Низкие напряжения
Во-первых, такому «диоду» нужно некоторое минимальное напряжение, чтобы он хорошо открыться. К примеру, если ваша система работает от одной AA батарейки, то такой транзистор найти будет очень сложно, если вообще возможно. Альтернативой может стать вот такая система:

RT1 — это самовостанавливающийся предохранитель, он-же, сопротивление с положительным температурным коэффициентом. При переполюсовке ток начинает идти через диод, сопротивление нагревается и ток практически прекращается.
Ввод резерва
Для ввода резерва, в случае и «идеальными диодами», нужна немного более сложная схема, чем с обычными:

In2 должен иметь большее напряжение и имеет приоритет над In1. Если нужно еще и отключать In1, то посмотрите статью «двусторонний ключ для питания»

Добавить комментарий

Ваш адрес email не будет опубликован.