Стабилитрон — chipenable.ru
Стабилитрон — это специальный полупроводниковый диод, работающий в режиме пробоя и предназначенный для стабилизации напряжения. В зарубежной литературе стабилитрон называют диодом Зенера (Zener diode), по имени Кларенса Зенера, который открыл один из механизмов электрического пробоя. Вообще существует тунельный, лавинный и тепловой пробои. На первых двух стабилитроны работают, а от последнего они выходят из строя. Но о пробоях мы рассуждать не будем, нам нужно понять, что такое стабилитрон, каков принцип его работы и как его можно использовать.
На электрических схемах стабилитрон обозначается символом диода с небольшой закорючкой у катода и буквенным обозначением VD.
Также существуют другие варианты обозначений стабилитрона, которые используются на зарубежных схемах.
Как видно из рисунка, у стабилитрона два вывода — это катод и анод. Следовательно, есть всего два варианта его включения:
— включение в обратном направлении, когда анод подключается к минусу питания, а катод к плюсу.
В прямом включении стабилитрон ведет себя как обычный диод, а вот в обратном включении в стабилитроне возникает тот самый пробой. Чтобы понять, что при этом происходит, давайте посмотрим на вольтамперную характеристику стабилитрона.
Правая часть графика — характеристика стабилитрона, к которому приложено напряжение в прямом направлении. Левая часть графика — характеристика стабилитрона, к которому приложено обратное напряжение. Похожа на характеристику диода, но пробой (участок, где загибается график) у стабилитрона наступает гораздо раньше диода. Нас интересует левая часть графика.
Вот мы подключили стабилитрон к источнику питания в обратном направлении и начинаем медленно повышать напряжение. Пока приложенное напряжение меньше напряжения пробоя, оно растет, через стабилитрон течет незначительный ток утечки Io (микроамперы, а то и меньше), пробоя нет. На этом участке стабилитрон ведет себя как резистор с очень большим сопротивлением.
В какой-то момент ток начнет возрастать, а напряжение замедлит свой рост — это значит что возникает начальная стадия пробоя стабилитрона. Его сопротивление падает, что можно наблюдать по «загибанию» вольтамперной характеристики.
При дальнейшем повышении напряжения источника питания, ток через стабилитрон будет увеличиваться значительно, а напряжение нет. Стабилитрон ведет себя как резистор с маленьким сопротивлением. Это рабочий участок характеристики, где напряжение на стабилитроне, грубо говоря, постоянно.
Снова повышаем напряжение, ток продолжает расти, стабилитрон начинает греться. Когда ток превысит максимально допустимое значение, стабилитрон перегреется и выйдет из строя.
Если не доводить дело до теплового пробоя, а снизить напряжение до нуля — вольтамперная характеристика повторится в обратном направлении.
Какие параметры характеризуют стабилитрон? Базовые параметры — это напряжение стабилизации, минимальный ток стабилизации и мощность рассеяния.
Напряжение стабилизации Uст (в зарубежной литературе Uz, zener voltage) — это, грубо говоря, рабочее напряжение стабилитрона. А если по умному, то это напряжение на стабилитроне при прохождении заданного тока стабилизации.
Как правило, стабилитроны одного типа имеют небольшой разброс напряжения стабилизации, поэтому в документации указывается минимальное, номинальное и максимальное напряжение стабилизации при заданной температуре и токе.
Минимальный ток стабилизации Iст мин (Iz) — величина тока, при которой стабилитрон «выходит» на свой рабочий участок вольтамперной характеристики. По сути, это точка с которой начинается «излом» характеристики.
Мощность рассеяния стабилитрона P — параметр определяющий максимально допустимый ток стабилитрона. Если принять, что напряжение на стабилитроне в рабочем режиме не меняется, то максимальный ток можно вычислить как P/Uст. Также можно прикинуть максимальный ток в прямом направлении P/Uf = P / 0,7. Мощность рассеяния стабилитрона зависит от его конструкции корпуса (и площади p-n перехода). Обычно этот параметр указывается в разделе «absolute maximum ratings».
Типовая схема включения стабилитрона — это схема простого стабилизатора напряжения. Она включает в себя стабилитрон и резистор для ограничения тока (источник питания и нагрузка на схеме не нарисована). На вход схемы подается нестабилизированное постоянное напряжение большее напряжения стабилизации на несколько вольт, на выходе схемы получается стабилизированное напряжение равное Uz (напряжению стабилизации) используемого стабилитрона.
Такой стабилизатор напряжения можно использовать для питания мало потребляемых схем, потому что из-за резистора он не способен «отдать» в нагрузку большой ток.
Как видно из рисунка, входной ток распределяется между стабилитроном и нагрузкой. Если нагрузка не потребляет ток, стабилитрон «забирает» весь ток на себя, и при большом его значении может перегореть. Если ток нагрузки становиться большим, то стабилитрону «достается» меньше току, напряжение на нем падает и он уже не может выполнять свои функции.
Номинал резистора R1 рассчитывается по формуле:
R = (Uin — Uz)/(Iz + I)
где Uin — входное напряжение (В),
Uz — номинальное напряжение стабилизации (В),
Iz — ток стабилитрона (А),
I — ток нагрузки (А).
Ток стабилитрона Iz нужно выбирать между минимальным и максимальным значениями, исходя из изменений входного напряжения и тока нагрузки. Минимальный ток стабилизации задается в документации, а максимальный ток можно посчитать из максимальной рассеиваемой мощности.
1.10.1. Схемы включения стабилитронов
Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне
Рис. 18
остается практически
постоянным, поэтому и напряжение на
нагрузке постоянно UН = Uст – const.
При этом уравнение для всей цепи имеет
вид: E
= U
Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а RН – const. Для поддержания режима стабилизации следует правильно выбрать RСТ. Обычно RСТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что Emin E Emax, то
Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем UCT, а, следовательно, и на нагрузке остается практически неизменным.
Рис. 19
Все изменения напряжения поглощаются RCT, поэтому должно выполнится условие:
Второй режим стабилизации: входное напряжение постоянно, а RН изменяется в пределах от RНmin до RНmax, в этом случае: ,
Так как RCT постоянно, то падение напряжения на нем равное Е−UCT также постоянно, то и ток через RCT ICP+IНCP должен быть постоянным. Это возможно, когда ток стабилизации ICP и IН изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).
Из приведенных
выражений следует, что для стабилизации
в более широком диапазоне изменений
входного напряжения Е, RCT нужно увеличивать, а для стабилизации
в режиме изменения тока нагрузки, RCT
Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение Rдоб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки RCTдолжно быть постоянным.
UН=UCT─IНRдоб
Рис. 20
Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).
UCT=UCT1+UCT2
Рис. 21
Для компенсации температурного дрейфа UCT последовательно со стабилитроном возможно включение термозависимого сопротивления RT, имеющее ТКRТ обратный по закону ТКUCT.
Рис. 22
Для стабилитронов с ТКUCT>0 в качестве RT можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.
Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).
1.10.2. Стабисторы
ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.
Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое rб и малое значение Rдиф. Слабая зависимость UПР от IПР на
Рис. 23
рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В. Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.
Как работает стабилитрон. » Хабстаб
Стабилитрон, он же диод Зенера, назван в честь первооткрывателя туннельного пробоя Кларенса Зенера и на схемах обозначается следующим образом.Но в отличие от выпрямительного диода ток через него может течь в обоих направлениях.
Для лучшего понимания его работы, можно представить его как два диода, включённых встречно-параллельно, но с разным падением напряжения.
Для любого стабилитрона, падение напряжение на одном из его диодов равно примерно 0.7 вольт, а падение напряжение на другом зависит от выбранного стабилитрона, так как разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 вольт). Например, для BZX55C3V3 прямое падение напряжение равно 0.7 вольта, а напряжение пробоя, по нашей аналогии падение напряжения на втором диоде, равно 3.3 вольта.
Описанное выше становится более понятно если посмотреть на вольт — амперную характеристику(ВАХ) стабилитрона.
Правая ветвь ВАХ аналогична ВАХ диода, а левая отвечает за тот самый туннельный пробой. Пока обратное напряжение не достигло напряжения пробоя, ток через стабилитрон практически не течёт, не считая утечки. При дальнейшем увеличении обратного напряжения, в определенный момент начинается пробой, он характеризуется загибом ВАХ. Дальнейшее увеличение обратного напряжения приводит к туннельному пробою, в этом состоянии ток через стабилитрон растёт, а напряжение нет.
Отличительной чертой туннельного пробоя является, его обратимость, то есть после снятия приложенного напряжение стабилитрон вернётся в исходное состояние. Если же максимально допустимый ток будет превышен и произойдёт тепловой пробой, стабилитрон выйдет из строя.
Простейшая схема стабилизатора на стабилитроне выглядит следующим образом.
Давайте соберём её, подключив осциллограф вместо нагрузки и подадим на вход треугольный сигнал амплитудой 10 вольт. Напряжение генератора — первый канал, напряжение на стабилитроне — второй канал.
На осциллограмме видно, что напряжение на стабилитроне изменяется от -0,88 до 3,04 вольта.
Для того чтобы понять почему так происходит, давайте заменим схему выше двумя эквивалентными.
При прямом включения стабилитрона, когда на аноде плюс, на катоде минус.
При обратном включении стабилитрона, когда на аноде минус, на катоде плюс.
До этого мы не учитывали величину сопротивление нагрузки. Прежде чем рассматривать как поведёт себя схема под нагрузкой, необходимо ознакомиться с основными характеристиками стабилитрона.
- Vz — напряжение стабилизации, обычно указывается минимальное и максимальное значение
- Iz и Zz — минимальный ток стабилизации и сопротивление стабилитрона
- Izk и Zzk — ток и сопротивление в точке, где начинается «излом» характеристики
- Ir и Vr — обратный ток и напряжение при заданной температуре
- Tc — температурный коэффициент
- Izrm — максимальный ток стабилизации
Что же произойдёт когда мы подключим нагрузку?
Ток, протекающий через стабилитрон уменьшиться, так как часть его потечёт через нагрузку. Вопрос в том насколько уменьшится, если ток через стабилитрон станет меньше минимального тока стабилизации стабилитрон перестанет стабилизировать напряжение и всё напряжение питания окажется приложенным к нагрузке. Из этого можно сделать вывод, что при отключенной нагрузке ток через стабилитрон должен быть равен сумме 2-х токов, минимального тока стабилизации и тока нагрузки.
Эта сумма токов задается с помощью гасящего резистора, в нашей схеме его номинал 1К.
Формула для его вычисления выглядит следующим образом
- Uin — входное напряжение
- Uz — напряжение стабилизации
- Iz — минимальный ток стабилизации
- I — ток нагрузки
1.10.1. Схемы включения стабилитронов
Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне
Рис. 18
остается практически постоянным, поэтому и напряжение на нагрузке постоянно UН = Uст – const. При этом уравнение для всей цепи имеет вид: E = Uст + Rст (Iст – IН).
Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а RН – const. Для поддержания режима стабилизации следует правильно выбрать RСТ. Обычно RСТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что Emin E Emax, то
Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем UCT, а, следовательно, и на нагрузке остается практически неизменным.
Рис. 19
Все изменения напряжения поглощаются RCT, поэтому должно выполнится условие:
Второй режим стабилизации: входное напряжение постоянно, а RН изменяется в пределах от RНmin до RНmax, в этом случае: ,;.
Так как RCT постоянно, то падение напряжения на нем равное Е−UCT также постоянно, то и ток через RCT ICP+IНCP должен быть постоянным. Это возможно, когда ток стабилизации ICP и IН изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).
Из приведенных выражений следует, что для стабилизации в более широком диапазоне изменений входного напряжения Е, RCT нужно увеличивать, а для стабилизации в режиме изменения тока нагрузки, RCTнеобходимо уменьшать (уменьшать RCT– не выгодно, тратится лишняя энергия источника).
Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение Rдоб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки RCTдолжно быть постоянным.
UН=UCT─IНRдоб
Рис. 20
Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).
UCT=UCT1+UCT2
Рис. 21
Для компенсации температурного дрейфа UCT последовательно со стабилитроном возможно включение термозависимого сопротивления RT, имеющее ТКRТ обратный по закону ТКUCT.
Рис. 22
Для стабилитронов с ТКUCT>0 в качестве RT можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.
Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).
1.10.2. Стабисторы
ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.
Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое rб и малое значение Rдиф. Слабая зависимость UПР от IПР на
Рис. 23
рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В. Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.
Стабилитрон
Cтабилитрон используется для стабилизации напряжения (например, в стабилизированных источниках питания).
Обозначение стабилитрона
Включение стабилитрона
Стабилитрон (его ещё называют диодом Зенера) включается как показано на рисунке. Включение стабилитрона на первый взгляд нелогично. Стабилитроны включаются как бы «наоборот» по сравнению с диодами. При подаче на них обратного напряжения происходит «пробой» и напряжение между их выводами остаётся неизменным. Последовательно обязательно должен быть включён резистор для ограничения проходящего тока через стабилитрон (он называется током стабилизации) и обеспечения падения «лишнего» напряжения от выпрямителя.
Каждый стабилитрон имеет своё напряжение пробоя (стабилизации) и свой рабочий ток. Исходя из этого тока рассчитывается номинал резистора, включённого последовательно со стабилитроном. На импортных стабилитронах напряжение стабилизации напечатано на корпусе стабилитрона. Обозначение диодов — стабилитронов начинается с BZX… или BZY… Их напряжение стабилизации (пробоя) напечатано с буквой V вместо десятичной запятой. Таким образом, 3V9 означает 3.9 вольта.
Минимальное напряжение стабилизации, на которое существуют стабилитроны, 2 В.
Последовательное соединение стабилитронов
Последовательное соединение стабилитронов делают в тех случаях, когда надо получить стабилизированное напряжение, на которое не существует стабилитронов (или нет в наличии). Как правило в высоковольтных стабилизаторах напряжения устанавливают несколько последовательно соединённых стабилитронов. Общее напряжение стабилизации будет равно сумме напряжений стабилизации каждого стабилитрона. Желательно соединять последовательно только однотипные стабилитроны на одинаковое напряжение стабилизации.
Ответы@Mail.Ru: Как правильно подключить стабилитрон?
Всё просто: например тебе нужно из напряжения 10-14В получить стабилизированное напряжение 5В. Схема будет такая: напряжение 10-14В подаешь на стабилитрон (минус на анод, плюс на катод) , но не напрямую, а через резистор (порви один провод, обычно плюсовой, и вставь туда резистор) . Теперь расчёт: Допустим тебе нужно получить 5В/20мА. Тогда резистор должен быть не больше (14-5)/20мА = 450 Ом. С другой стороны, без нагрузки (когда выходной ток будет не 20мА а 0мА) всё лишнее напряжение будет утекать через стабилитрон. Маломощный стабилитрон может рассеивать прмерно 0.5Вт (смотри даташит на конкретный стабилитрон) , т. е. максимальный ток, который выдержит стабилитрон на 5В будет 0.5Вт/5В= 100мА, т. е. резистор должен быть не меньше (14-5)/100мА= 90 Ом. Теперы выбирай резистор из диапазона 90…450 Ом (обычно выбирают середину) , рассчитывай его мощность и всё!!!
смотря тебе для чего
я чаще последовательно цепляю. вроде норм работает
Нет, неправильно. Просто интересно, почему Вы так решили — подключать параллельно? Какой в этом смысл?
стабилитрон включается в последовательно с резистором. Со стабилитрона СНИМАЕТСЯ напряжение, резистор это ограничитель тока. Почитай про параметрический стабилизатор
Делайъ так: <img alt=»» src=»//otvet.imgsmail.ru/download/88199436_3a114c357d894fd55363ebe5d9be4590_800.png» data-lsrc=»//otvet.imgsmail.ru/download/88199436_3a114c357d894fd55363ebe5d9be4590_120x120.png» data-big=»1″>
СТАБИЛИТРОНЫ
Современная электронная аппаратура предъявляет жёсткие требования к стабильности постоянного напряжения источника питания. Настолько жёстки эти требования, можно судить по таким цифрам. Малой стабильностью считают такую, при которой изменения выходного напряжения источника питания составляют 2-5%, средней стабильностью 0,5-2%, высокой 0,1-0,5%, очень высокой – менее 0,1%. Такие высокие показатели стабильности высокого напряжения источника питания невозможно получить без специального устройства – стабилизатора постоянного напряжения, который включается на выходе источника питания.
Следует заменить, что основными причинами, вызывающими колебания выходного напряжения источника питания, являются изменения напряжения сети и сопротивление нагрузки. Оба дестабилизирующих фактора могут быть медленными – от нескольких минут до нескольких часов и быстрыми – доли секунды. И те и другие изменения постоянного напряжения отрицательно сказываются на работе электронной аппаратуры, поэтому стабилизатор должен действовать непрерывно и автоматически.
На основании изложенного можно дать следующее определение. Стабилизатором напряжения называют устройство, поддерживающее с требуемой точностью напряжение на нагрузке при изменениях в заданных пределах напряжения сети и сопротивления нагрузки. Основой его служит стабилитрон – кремниевый диод, внутреннее сопротивление которого мало меняется при изменении тока. Малая зависимость падения напряжения на стабилитроне от протекающего тока является основным свойством стабилитрона. Благодаря этому свойству напряжение на стабилитроне, а значит, и нагрузка, подключенная к нему, поддерживается практически постоянным.
Рисунок 1 Вольтамперная характеристика стабилитрона
Вольтамперные характеристики нескольких, наиболее часто используемых стабилитронов, показаны на рисунке 1. При включении стабилитрона в прямом (пропускном) направлении его вольтамперная характеристика аналогична вольтамперной характеристике кремниевого диода. Но стабилитрон работает в режиме обратного напряжения. При увеличении обратного напряжения ток через стабилитрон вначале растёт очень медленно (на характеристике – горизонтальный участок ветвей), а затем, при некотором значении обратного напряжения наступает так называемый «пробой» р-n перехода, после чего даже небольшое увеличение напряжения значительно влияет на рост тока через стабилитрон (на характеристике – спадающий вниз участок ветви). У разных стабилитронов режим «пробоя» наступает при разных обратных напряжениях: у стабилитрона КС 133А, например, при 3…3,7 В, у стабилитрона Д808 – при 7…8,5 В.
В стабилизаторах напряжения стабилитроны работают в режимах соответствующих этим участкам их вольтамперных характеристик. Пробой р-n перехода не ведёт к порче стабилитрона, если ток через него не превышает допустимого значения.
Стабилизирующие свойства такого полупроводникового прибора характеризуются его дифференциальным сопротивлением, которое выражают как отношение изменения напряжения стабилизации к вызвавшему это малому изменению тока стабилизации.
Чтобы стабилизатор выполнял свою функцию, протекающий через него ток должен быть не меньше минимального тока стабилизации, т.е наименьшего тока, при котором работа стабилитрона в режиме пробоя устойчива, и не больше максимального тока стабилизации наибольшего тока, при котором температура нагрева р-n перехода стабилитрона не превышает допустимой. При выборе полупроводникового прибора для работы в стабилизаторе напряжения ориентируется по его напряжению стабилизации – напряжению между его выводами в рабочем режиме.
Рисунок 2 Электрическая принципиальная схема простейшего параметрического стабилизатора
Практическая часть
1) Снятие вольтамперной характеристики
Рисунок 3 Электрическая принципиальная схема для снятия вольт амперной характеристики стабилитрона
Тут приведена полярность для обратной ветви характеристики, для снятия прямой ветви соответственно изменить полярность питания и подключения измерительных приборов.
Соберём схему по рисунку 3. Для снятия вольтамперной характеристики стабилитрона вначале изменяют прямое, а затем обратное напряжение, подводимое к диоду, и следят за изменениями тока в цепи. Для построения характеристики достаточно снять 5-6 показаний приборов для прямой и 8-10 показаний для обратной ветви характеристики. Особенно тщательно следует снимать характеристику на участке стабилизации, так как здесь в широком диапазоне изменения тока диода напряжение Uст меняется незначительно. Данные наблюдений записывают в таблицу I= f (U)
2) Построение вольтамперной характеристики
График вольтамперной характеристики кремниевого стабилитрона строят по результатам таблицы. Примерный вид вольтамперной характеристики показан на рисунке 4.
Рисунок 4 Примерный вид вольтамперной характеристики
Рисунок 5 Электрическая принципиальная схема для исследования параметрического стабилизатора
Схема для исследования параметрического стабилизатора показана на рисунке 5. Поочередно осуществляется подключение нагрузочных резисторов R2 или R3 с разными сопротивлениями, тем самым изменяется нагрузочный ток.
Порядок выполнения работы
- Подключить к схеме для исследования параметрического стабилизатора измерительную аппаратуру и источник питания. Подготовить приборы для измерения соответствующих параметров.
- Рассчитать по известным параметрам схемы коэффициент стабилизации напряжения Кст стабилизатора.
- Определить экспериментально и записать в таблицу коэффициент стабилизации напряжения при изменениях входного напряжения от 25 до 30 В для обоих нагрузочных резисторов. Для чего установить входное напряжение стабилизатора с точностью до 0,05 В. Затем увеличив входное напряжение до 30 В снова измерить входное напряжение. По результатам измерений, записанных в таблицу, по формуле (6) определить искомый коэффициент стабилизации, сравнив с расчётами, сделанными в п.2, учитывая, что они могут отличаться на 20-30%.
- Определить расчётно-экспериментальным путём минимальное и максимальное сопротивление балластного резистора. Для определения сопротивление балластного резистора по формулам (4) необходимо измерить минимальное и максимальное значения нагрузочного тока, определённое при любом входном напряжении от 25 до 30 В. В качестве напряжения Uст принять значение напряжения Uн из таблицы, округляя его до 0,1 долей вольта.
- Определение коэффициента стабилизации.
Используемый в лабораторной работе стабилитрон Д814Б и резисторы (балластное сопротивление R1 МЛТ-2 510 Ом, нагрузочные резисторы R2 МЛТ-1 1 кОм и R3 МЛТ-0,5 3 кОм) закреплены на плате из одностороннего фольгированного стеклотекстолита.
Первая часть лабораторной работы состоит в снятии прямой и обратной ветвей вольтамперной характеристики стабилитрона
Во второй части на основе стабилитрона собирается простейший параметрический стабилизатор.
Меняя напряжение на входе стабилизатора, можно убедиться, что напряжение на нагрузке (резистор R2 или R3) изменяться практически не будет. Аналогично переключая резисторы R2 или R3 можно удостовериться, что изменение сопротивления нагрузки также не приводит к значительным колебаниям напряжения на ней.
Здесь были использованы сокращения материала в теоретической части, полную версию работы прочитайте тут. Специально для radioskot.ru — Denev
Форум
Обсудить статью СТАБИЛИТРОНЫ