Вихревой теплогенератор. Как изготовить вихревой тепловой генератор потапова своими руками Нагрев воды кавитацией своими руками
Чтобы обеспечить экономное отопление жилого, подсобного или производственного помещения, хозяева используют различные схемы и приемы получения тепловой энергии. Для того чтобы собрать теплогенератор кавитационного действия своими руками, следует разобраться в процессах, которые позволяют осуществить выработку тепла.
Что лежит в основе работы
Кавитация обозначает процесс образования парообразных пузырьков в толще воды , чему способствует медленное понижение водяного давления при большой скорости потока. Возникновение каверн или полостей, заполненных паром, может быть вызвано и прохождением акустической волны или излучением лазерного импульса. Замкнутые области воздуха, или кавитационные пустоты, перемещаются водой в область высокого давления, где происходит процесс их схлопывания с излучением волны ударной силы. Явление кавитации не может возникнуть при отсутствии указанных условий.
Физический процесс кавитационного явления сродни закипанию жидкости, но при кипении давление воды и пара в пузырьках является средним по значению и одинаковым. При кавитации давление в жидкости выше среднего и выше парового давления. Понижение же напора носит локальный характер.
При создании нужных условий молекулы газа, которые всегда присутствуют в толще воды, начинают выделяться внутрь образующихся пузырьков. Этот явление проходит интенсивно, так как температура газа внутри полости достигает до 1200ºС из-за постоянного расширения и сжимания пузырьков. Газ в кавитационных полостях содержит большее число молекул кислорода и при взаимодействии с инертными материалами корпуса и других деталей теплогенератора приводит к их скорой коррозии и разрушению.
Исследования показывают, что разрушительному действию агрессивного кислорода подвергаются даже инертные к этому газу материалы – золото и серебро. Кроме того, явление схлопывания воздушных полостей вызывает достаточно шума, что является нежелательной проблемой.
Многие энтузиасты сделали процесс кавитации полезным для создания отопительных теплогенераторов частного дома. Суть системы заключена в замкнутом корпусе, в котором продвигается водяная струя через кавитационное устройство, для получения давления используется обыкновенный насос. В России на первое изобретение отопительной установки был выдан патент в 2013 году . Процесс образования разрыва пузырьков происходит под действием переменного электрического поля. При этом паровые полости являются маленькими по размеру и не взаимодействуют с электродами. Они передвигаются в толщу жидкости, и там происходит вскрытие с выделением дополнительной энергии в теле водяного потока.
Роторный генератор тепла
Такое устройство представляет собой видоизмененный насос центробежного действия. В таком устройстве роль статора исполняет корпус насоса, в него установлена входящая и выходящая труба. Основным рабочим органом является камера, внутрь которой помещен подвижный ротор, работающий по типу колеса.
За время создания кавитационных насосов конструкция ротора претерпела много изменений, но самой продуктивной считается модель Григгса , который одним из первых достиг положительных результатов в создании теплогенератора кавитационного действия. В таком устройстве ротор выполнен в форме диска, на поверхности которого предусмотрены многочисленные отверстия. Они глухие, с определенным диаметром и глубиной. Количество ячеек зависит от частоты электрического тока и, следственно, вращения ротора.
Статор в теплогенераторе представляет собой цилиндр, запаянный с обоих концов, в котором вращается ротор. Зазор между диском ротора и стенками статора составляет около 1,5 мм.
Ячейки ротора нужны чтобы в толще струи жидкости, которая постоянно трется о поверхности подвижного и статического цилиндра, возникали завихрения для образования кавитационных полостей. В этом же зазоре и происходит нагрев жидкости. Для эффективной работы теплогенератора поперечный разм
Вихревые теплогенераторы(ВТГ): Ю. С. Потапова и Установка ЮСМАР-М
Теплогенератор Ю. С. Потапова очень похож на вихревую трубу Ж. Ранке, изобретенную этим французским инженером ещё в конце 20-х годов XX века. Работая над совершенствованием циклонов для очистки газов от пыли, тот заметил, что струя газа, выходящая из центра циклона, имеет более низкую температуру, чем исходный газ, подаваемый в циклон. Уже в конце 1931 г. Ранке подаёт заявку на изобретенное устройство, названное им «вихревой трубой». Но получить патент ему удаётся только в 1934 г., и то не на родине, а в Америке (Патент США №1952281.)
Содержание материала
История создания
Французские же учёные тогда с недоверием отнеслись к этому изобретению и высмеяли доклад Ж. Ранке, сделанный в 1933 г. на заседании Французского физического общества. Ибо по мнению этих учёных, работа вихревой трубы, в которой происходило разделение подаваемого в неё воздуха на горячий и холодный потоки как фантастическим «демоном Максвелла», противоречила законам термодинамики. Тем не менее вихревая труба работала и позже нашла широкое применение во многих областях техники, в основном для получения холода.
Для нас наиболее интересны работы ленинградца В. Е. Финько, который обратил внимание на ряд парадоксов вихревой трубы, разрабатывая вихревой охладитель газов для получения сверхнизких температур. Он объяснил процесс нагрева газа в пристеночной области вихревой трубы «механизмом волнового расширения и сжатия газа» и обнаружил инфракрасное излучение газа из ее осевой области, имеющее полосовой спектр, что потом помогло нам разобраться и с работой вихревого теплогенератора Потапова.
В вихревой трубе Ранке, схема которой приведена на рисунке 1, цилиндрическая труба 1 присоединена одним концом к улитке 2, которая заканчивается сопловым вводом прямоугольного сечения, обеспечивающим подачу сжатого рабочего газа в трубу по касательной к окружности её внутренней поверхности. С другого торца улитка закрыта диафрагмой 3 с отверстием в центре, диаметр которого существенно меньше внутреннего диметра трубы 1. Через это отверстие из трубы 1 выходит холодный поток газа, разделяющийся при его вихревом движении в трубе 1 на холодную (центральную) и горячую (периферийную) части. Горячая часть потока, прилегающая к внутренней поверхности трубы 1, вращаясь, движется к дальнему концу трубы 1 и выходит из нее через кольцевой зазор между её краем и регулировочным конусом 4.
Рисунок 1. Вихревая труба Ранке: 1-труба; 2- улитка; 3- диафрагма с отверстием в центре; 4- регулировочный конус.
Законченной и непротиворечивой теории вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. «На пальцах» получается, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается тут, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной зоны через одно отверстие, а из осевой — через другое, и достигают разделения исходного потока газа на горячий и холодный потоки.
Жидкости, в отличие от газов, практически не сжимаемы. Поэтому более полувека никому и в голову не приходило подать в вихревую трубу воду вместо газа или пара. И автор решился на, казалось бы, безнадёжный эксперимент — подал в вихревую трубу вместо газа воду из водопровода.
К его удивлению, вода в вихревой трубе разделилась на два потока, имеющих разные температуры. Но не на горячий и холодный, а на горячий и тёплый. Ибо температура «холодного» потока оказалась чуть выше, чем температура исходной воды, подаваемой насосом в вихревую трубу. Тщательная же калориметрия показала, что тепловой энергии такое устройство вырабатывает больше, чем потребляет электрической двигатель насоса, подающего воду в вихревую трубу.
Так родился теплогенератор Потапова.
Конструкция теплогенератора
Правильнее говорить об эффективности теплогенератора — отношении величины вырабатываемой им тепловой энергии к величине потребленной им для этого извне электрической или механической энергии. Но поначалу исследователи не могли понять, откуда и как в этих устройствах появляется избыточное тепло. Предполагали даже, что туг нарушается закон сохранения энергии.
Рисунок 2. Схема вихревого теплогенератора: 1-инжекционный патрубок; 2- улитка; 3- вихревая труба; 4- донышко; 5- спрямитель потока; 6- штуцер; 7- спрямитель потока; 8- байпас; 9- патрубок.
Вихревой теплогенератор, схема которого приведена на рисунке 2, присоединяют инжекционным патрубком 1 к фланцу центробежного насоса (на рисунке не показан), подающего воду под давлением 4-6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой раз в 10 больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающемуся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 — спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, соосной с трубой 3. В виде сверху он напоминает оперенные авиабомбы или мины.
Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 рождается противоток. В нём вода, тоже вращаясь, движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска «холодного» потока. В штуцере 6 изобретатель установил ещё один спрямитель потока 7, аналогичный тормозному устройству 5 Он служит для частичного превращения энергии вращения «холодного» потока в тепло. А выходящую из него тёплую воду направил по байпасу 8 в патрубок 9 горячего выхода, где она смешивается с горячим потоком, выходящим из вихревой трубы через спрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник (все про теплообменные аппараты), передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подаёт её в вихревую трубу через патрубок 1.
После тщательных и всесторонних испытаний и проверок нескольких экземпляров теплогенератора «ЮСМАР» они пришли к заключению, что ошибок нет, тепла получается действительно больше, чем вкладывается механической энергии от двигателя насоса, подающего воду в теплогенератор и являющегося единственным потребителем энергии извне в этом устройстве.
Но непонятно было, откуда появляется «лишнее» тепло. Были предположения и о скрытой огромной внутренней энергии колебаний «элементарных осцилляторов» воды, высвобождающейся в вихревой трубе, и даже о высвобождении в её неравновесных условиях гипотетической энергии физического вакуума. Но это только предположения, не подкреплённые конкретными расчетами, подтверждающими экспериментально полученные цифры. Было ясно только одно: обнаружен новый источник энергии и похоже, что это фактически даровая энергия.
В первых модификациях тепловых установок Ю. С. Потапов подсоединял свой вихревой теплонагреватель, изображённый на рисунке 2, к выпускному фланцу обыкновенного рамногоцентробежного насоса для перекачивания воды. При этом вся конструкция находилась в окружении воздуха (Если что здесь про воздушное отопление дома своими руками) и была легко доступна для обслуживания.
Но КПД насоса, как и КПД электродвигателя, меньше ста процентов. Произведение этих КПД составляет 60-70%. Остальное — потери, идущие в основном на нагрев окружающего воздуха. А ведь изобретатель стремился греть воду, а не воздух. Поэтому он решился поместить насос и его электромотор в воду, подлежащую нагреву теплогенератором. Для этого использовал погружной (скважный) насос. Теперь тепло от нагрева мотора и насоса отдавалось уже не в воздух, а той воде, которую требовалось нагреть. Так появилось второе поколение вихревых теплоустановок.
Теплогенератор Потапова превращает в тепло часть своей внутренней энергии, а точнее часть внутренней энергии своей рабочей жидкости — воды.
Но вернёмся к серийным тепловым установкам второго поколения. В них вихревая труба по-прежнему находилась в воздухе сбоку от термоизолированного сосуда, в который был погружён скважный мотор-насос. От горячей поверхности вихревой трубы нагревался окружающий воздух, унося часть тепла, предназначавшегося для нагрева воды. Приходилось трубу обматывать стекловатой для уменьшения этих потерь. И чтобы не бороться с этими потерями трубу погрузили в тот сосуд, в котором уже находятся мотор и насос. Так появилась последняя серийная конструкция установки для нагрева воды, получившая имя «ЮСМАР».
Рисунок 3. Схема теплоустановки «ЮСМАР-М»: 1 — вихревой теплогенератор, 2 — электронасос, 3 — бойлер, 4 — циркуляционный насос, 5 — вентилятор, 6 — радиаторы, 7 — пульт управления, 8 — датчик температуры.
Установка ЮСМАР-М
В установке «ЮСМАР-М» вихревой теплогенератор в комплекте с погружным насосом помещены в общий сосуд-бойлер с водой (см. рисунок 3) для того, чтобы потери тепла со стенок теплогенератора, а также тепло, выделяющееся при работе электродвигателя насоса, тоже шли на нагрев воды, а не терялись. Автоматика периодически включает и отключает насос теплогенератора, поддерживая температуру воды в системе (или температуру воздуха в обогреваемом помещении) в заданных потребителем пределах. Снаружи сосуд-бойлер покрыт слоем теплоизоляции, которая одновременно служит звукоизоляцией и делает практически неслышимым шум теплогенератора даже непосредственно рядом с бойлером.
Установки «ЮСМАР» предназначены для нагрева воды и подачи её в системы автономного водяного отопления жилых помещений, промышленных и административных зданий, а также в душевые, бани, на кухни, в прачечные, мойки, для обогрева сушилок сельхозпродуктов, трубопроводов вязких нефтепродуктов для предотвращения их замерзания на морозе и других промышленных и бытовых нужд.
Рисунок 4. Фото тепловой установки «ЮСМАР-М»
Установки «ЮСМАР-М» питаются от промышленной трёхфазной сети 380 В, полностью автоматизированы, поставляются заказчикам в комплекте со всем необходимым для их работы и монтируются поставщиком «под ключ».
Все эти установки имеют одинаковый сосуд-бойлер (см. рисунок 4), в который погружают вихревые трубы и мотор-насосы разной мощности, выбирая наиболее подходящие конкретному заказчику. Габариты сосуда-бойлера: диаметр 650 мм, высота 2000 мм. На эти установки, рекомендуемые для использования как в промышленности, так и в быту (для обогрева жилых помещений путем подачи горячей воды в батареи водяного отопления), имеются технические условия ТУ У 24070270,001 -96 и сертификат соответствия РОСС RU. МХОЗ. С00039.
Установки «ЮСМАР» используют на многих предприятиях и в частных домовладениях, они получили сотни похвальных отзывов от пользователей. В настоящее время Уже тысячи теплоустановок «ЮСМАР» успешно работают в странах СНГ и ряде других стран Европы и Азии.
Их использование особенно выгодно там, куда ещё не дотянулись газопроводы и где люди вынуждены использовать для нагрева воды и обогрева помещений электроэнергию, которая с каждым годом становится всё дороже.
Рисунок 5. Схема подключения тепловой установки «ЮСМАР-М» к системе водяного отопления: 1 -теплогенератор «ЮСМАР»; 2 — циркулярный насос; 3-пульт управления; 4 -терморегулятор.
Теплоустановки «ЮСМАР» позволяют экономить треть той электроэнергии, которая необходима для нагрева воды и отопления помещений традиционными методами электронагрева.
Отработаны две схемы подключения потребителей к теплоустановке «ЮСМАР-М»: непосредственно к бойлеру (см. рисунок 5) — когда расход горячей воды в системе потребителя не подвержен резким изменениям (например, для отопления здания), и через теплообменник (см. рисунок 6) — когда расход воды потребителем колеблется во времени.
У теплоустановок «ЮСМАР» нет деталей, нагревающихся до температуры свыше 100°С, что делает эти установки особенно приемлемыми с точки зрения пожарной безопасности и техники безопасности.
Рисунок 6. Схема подключения тепловой установки «ЮСМАР-М» к душевой: 1-теплогенератор «ЮСМАР»; 2 -циркулярный насос; 3- пульт управления; 4 -термодатчик, 5 — теплообменник.
Используемая литература:
Ю.С. Потапов, Л.П. Фоминский, С.Ю. Потапов — » Энергия вращения»-01.01.2008 г.
Поделитесь материалом с друзьями в социальных сетях
Вихревой теплогенератор. Правда и вымысел
Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 — преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан «на использовании возобновляемой энергии». При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более…
Но перейдем от теории к практике.
На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.
Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.
Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.
Хотя по «тепловому вихрегенератору» расскажу…
Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.
Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте — не хватает масштабов, а центральное отопление отсутствует или далеко.
Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
Вот тут приходил на помощь г-н Потапов и подобные.
Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
Только всей подоплеки им никто не рассказывает.
Вихревые теплогенераторы
Экология потребления.Наука и техника:Вихревые теплогенераторы это установки, которые позволяют получать тепловую энергию в специальных устройствах путем преобразования электрической энергии.
Вихревые теплогенераторы это установки, которые позволяют получать тепловую энергию в специальных устройствах путем преобразования электрической энергии.
История создания первых вихревых теплогенераторов уходит корнями в первую треть двадцатого века, когда французский инженер Жозеф Ранк столкнулся с неожиданным эффектом, исследуя свойства искусственно создаваемого вихря в разработанном им устройстве — вихревой трубе. Сущность наблюдаемого эффекта заключалась в том, что на выходе вихревой трубы наблюдалось разделение сжатого воздушного потока на теплую и холодную струю.
Исследования в данной области были продолжены немецким изобретателем Робертом Хилшем, который в сороковых годах прошлого столетия улучшил конструкцию вихревой трубы Ранка, добившись увеличения разности температур двух воздушных потоков на выходе из трубы. Однако как Ранку, так и Хилшу не удалось теоретически обосновать наблюдаемый эффект, что отсрочило его практическое применение на многие десятилетия. Следует отметить, что более-менее удовлетворительное теоретическое объяснение эффекта Ранка — Хилша с точки зрения классической аэродинамики не найдено до сих пор.
Одним из первых ученых, которому пришла в голову идея запустить в трубу Ранка жидкость, является российский ученый Александр Меркулов, профессор Куйбышевского (ныне Самарского) государственного авиакосмического университета, которому принадлежит заслуга в развитии основ новой теории. Созданная Меркуловым в конце 50-х годов Отраслевая научно-исследовательская лаборатория тепловых двигателей и холодильных машин провела огромный объем теоретических и экспериментальных исследований вихревого эффекта.
Идея использовать в качестве рабочего тела в вихревой трубе не сжатый воздух, а воду, была революционной, поскольку вода, в отличие от газа, несжимаема. Следовательно, эффекта разделения потоков на холодный и горячий ожидать не стоило. Однако результаты превзошли все ожидания: вода при прохождении по «улитке» быстро нагревалась (с эффективностью, превышавшей 100%).
Ученый затруднялся объяснить подобную эффективность процесса. По мнению некоторых исследователей, аномальное повышение температуры жидкости вызвано микрокавитационными процессами, а именно «схлопыванием» микрополостей (пузырьков), заполненных газом или паром, которые образуются в ходе вращения воды в циклоне. Невозможность объяснить столь высокий КПД наблюдаемого процесса с точки зрения традиционной физики привела к тому, что вихревая теплоэнергетика прочно обосновалась в списке «псевдонаучных» направлений.
Между тем, данный принцип был взят на вооружение, что привело к разработке работающих моделей тепло- и электрогенераторов, реализующих описанный выше принцип. В данный момент времени на территории России, некоторых республик бывшего Советского Союза и ряда зарубежных стран успешно функционируют сотни вихревых теплогенераторов различной мощности, произведенных рядом отечественных научно-производственных предприятий.
Рис. 1. Принципиальная схема вихревого теплогенератора
В настоящее время промышленными предприятиями выпускаются вихревые теплогенераторы разных конструкций.
Рис. 2. Вихревой теплогенератор «МУСТ»
На Тверском научно-внедренческом предприятии «Ангстрем» разработан преобразователь электрической энергии в тепловую — вихревой теплогенератор «МУСТ». Принцип его действия запатентован Р.И.Мустафаевым (пат. 2132517) и позволяет получать тепловую энергию непосредственно из воды. В конструкции отсутствуют какие-либо нагревательные элементы, а электроэнергией питается только насос, прокачивающий воду. В корпусе вихревого теплогенератора размещен блок ускорителей движения жидкости и тормозное устройство. Он состоит из нескольких вихревых трубок особой конструкции. Изобретатель утверждает, что большего коэффициента не имеет ни одно из устройств, предназначенных для этих целей.
Высокий КПД не единственное достоинство нового преобразователя. Разработчики считают особенно перспективным использование своего вихревого теплогенератора на вновь строящихся, а также удаленных от централизованного теплоснабжения объектах. Вихревой теплогенератор «МУСТ» может монтироваться непосредственно в сформировавшиеся внутренние отопительные сети объектов, а также в технологические линии.
Нельзя не сказать, что новинка пока дороже традиционных котлов. «Ангстрем» предлагает покупателям уже несколько генераторов «МУСТ» мощностью от 7,5 до 37 кВт. Они способны отапливать помещения объемом от 600 до 2200 кв.м соответственно.
Коэффициент преобразования электроэнергии равен 1,2, но может достигать и 1,5. Всего в России работает около ста вихревых теплогенераторов «МУСТ». Выпускаемые модели теплогенераторов «МУСТ» позволяют обогревать помещения объемом до 11,000 м3. Масса установки составляет от 70 до 450 кг. Тепловая мощность установки МУСТ 5,5 составляет 7112 ккал/час, тепловая мощность установки МУСТ 37 — 47840 ккал/час. Теплоносителем, используемым в вихревом теплоге-нераторе МУСТ может выступать вода, тосол, полигликоль, либо любая другая незамерзающая жидкость.
Рис. 3. Вихревой теплогенератор «ВТГ»
Вихревой теплогенератор ВТГ представляет собой цилиндрический корпус, оснащенный циклоном (улиткой с тангенциальным входом) и гидравлическим тормозным устройством. Рабочая жидкость под давлением подается на вход циклона, после чего по сложной траектории проходит через него и тормозится в тормозном устройстве. Дополнительного давления в трубах тепловой сети не создается. Система работает в импульсном режиме, обеспечивая заданный режим температур.
В качестве теплоносителя в ВТГ используется вода или иные неагрессивные жидкости (антифриз, тосол) в зависимости от климатической зоны. Процесс нагревания жидкости происходит за счет ее вращения по определенным физическим законам, а не под воздействием нагревательного элемента.
Коэффициент преобразования электрической энергии в тепловую у вихревого теплогенератора ВТГ первого поколения был не менее 1,2 (то есть КПЭ не менее 120%). В ВТГ расходуется только на электронасос, прокачивающий воду, а вода выделяет дополнительную тепловую энергию.
Работает установка в автоматическом режиме с учётом температуры окружающего воздуха. Режим работы контролируется надежной автоматикой. Возможен прямоточный нагрев жидкости (без замкнутого контура), например для получения горячей воды. Нагрев происходит за 1-2 часа в зависимости от наружной температуры и объёма обогреваемого помещения. Коэффициент преобразования электрической энергии (КПЭ) в тепловую намного выше 100%.
Вихревые теплогенераторы ВТГ испытывались в различных НИИ, в том числе в РКК «Энергия» им. С.П. Королёва в 1994 г, в Центральном Аэродинамическом институте (ЦАГИ) им. Жуковского в 1999 г. Испытания подтвердили высокую эффективность вихревого теплогенератора ВТГ по сравнению с другими типами нагревателей (электрическими, газовыми, а также работающими на жидком и твёрдом топливах). При той же тепловой мощности, что и у традиционных тепловых установок, кавитационные вихревые теплогенераторные установки потребляют меньше электроэнергии.
Установка отличается самой высокой эффективностью работы, проста в обслуживании и имеет срок эксплуатации более 10 лет. Вихревой теплогенератор ВТГ отличается своими небольшими габаритами: занимаемая площадь в зависимости от вида теплогенераторной установки составляет 0,5-4 кв.м. По желанию заказчика возможно изготовление генератора для работы в агрессивных средах. Вихревые теплогенераторы различной мощности выпускаются и другими предприятиями. опубликовано econet.ru
P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet
Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках
Вихревые теплогенераторы: получаем тепло из… воды
Немного истории
Вихревые теплогенераторы были изобретены в 90-х годах прошлого века руководителем Кишиневской негосударственной научно-технической и внедренческой фирмы «Визир». В его разработке был использован принцип действия вихревой трубы французского инженера Ж. Ранке, разделяющей очищаемый от пыли воздух на холодный и теплый потоки. Как и многие мировые открытия, изобретение Потапова оказалось случайным: сначала он решил пропустить воду через вихревую трубу в надежде получить охлажденный напиток, а в итоге была создана конструкция, генерирующая тепло прямо из… воды.
Что такое вихревой теплогенератор?
Вихревым теплогенератором (ВТГ) называют устройство гидродинамического типа, работающее на воде и предназначенное для преобразования электроэнергии в тепловую. Его используют при обогреве как жилых, так и производственных помещений, а также в целях горячего водоснабжения. Кроме того, с помощью ВТГ можно получать электрическую и механическую энергию.
ВТГ является экологически чистым теплогенератором без нагревательных элементов и разработан как альтернатива существующим отопительным котлам. Нагревание жидкости в генераторе происходит при схлопывании кавитационных пузырьков, трении и синтезе молекул воды. Укомплектованный всеми необходимыми принадлежностями, вихревой теплогенератор оснащен автоматической системой управления. Его можно присоединять и к новым, и к уже существующим системам отопления. Благодаря простоте конструкции и небольшим габаритам ВТГ легко размещается в любом приспособленном для этой цели помещении.
Конструкция вихревого теплогенератора представлена цилиндрическим корпусом, в который помещен циклон (улитка с тангенциальным входом) и гидравлическое тормозное устройство. На вход циклона под давлением поступает рабочая жидкость, которая проходит через него по сложной траектории и тормозится тормозным устройством. При этом в трубах теплосети не возникает дополнительное давление. Работая в импульсном режиме, система поддерживает заданный температурный режим.
Принцип действия ВТГ
Теплоносителем в вихревом теплогенераторе являются вода и другие неагрессивные жидкости (тосол, антифриз). При этом вода не подвергается какой-то специальной подготовке (химической очистке), поскольку нагревание жидкости осуществляется при ее вращении в соответствии с определенными физическими законами, а не при воздействии нагревательного элемента.
Сегодня выпускается уже третье поколение ВТГ, но и установки первого поколения преобразовывали электроэнергию в тепловую с коэффициентом 1,2 (КПЕ от 120% и выше), что превышало на 40-80% КПЕ ранее существовавших отопительных систем. Например, эффективность парогазовых турбин «Сименс» составляет порядка 58%, а теплоцентралей Московского региона — 55%. И это притом, что в теплотрассах теряется еще до 15% эффективности!
ВТГ принципиально отличается от других установок тем, что расходование электроэнергии происходит только при работе электронасоса, прокачивающего воду, а выделение дополнительной тепловой энергии происходит из воды.
Установка работает в автоматическом режиме, учитывая температуру окружающего воздуха. Кроме замкнутого, возможно прямоточное нагревание жидкости — такой механизм используется при горячем водоснабжении.
Основные преимущества вихревых теплогенераторов
Подводя итоги сказанному, обобщим преимущества использования ВТГ в отопительных системах и при горячем водоснабжении.
Во-первых, эта установка очень экономична. При монтаже ВТГ отсутствует необходимость прокладки газовых и тепловых сетей, не нужны затраты на водоподготовку, а оригинальный метод нагрева не приводит к образованию накипи в системе отопления. При эксплуатации ВТГ не нужно закупать, транспортировать и хранить топливо.
Во-вторых, вихревые теплогенераторы являются безопасными в работе и экологически чистыми: при их работе не используются загрязняющие окружающую среду вещества (дизельное топливо, дрова, уголь, газ). ВТГ не выделяет продукты сгорания и распада воздуха. Кроме того, исключена вероятность пожара или взрыва. Благодаря применению современной аппаратуры для контроля безопасности, в системе отопления невозможны неуправляемый рост давления и температуры.
В-третьих, ВТГ просты в обслуживании. Монтаж осуществляется соединением подающего и обратного патрубков теплогенератора и соответствующих патрубков системы отопления. Нагрев и контроль работы осуществляется блоком автоматического управления. При этом не требуется специальная подготовка персонала. Вихревым теплогенераторам необходимо минимальное обслуживание (раз в полгода смазываются и проверяются подшипники и уплотнения генератора). В-четвертых, эти устройства очень надежны. Они служат не меньше 15 лет, а сервисное обслуживание предполагает замену генераторов, подшипников и сальников.
Кроме того, при установке ВТГ не нужны согласования с котлонадзором и Энергонадзором.
Энергия магнитных волн
Кроме вихревых теплогенераторов, отечественные производители предлагают использовать при отоплении жилых домов (садовых домиков, коттеджей, вилл, многоэтажных зданий), гаражей, бань, строений коммунально-бытового, общественного, торгового, сельскохозяйственного и промышленного назначения вихревые индукционные нагреватели (ВИН). Эти нагревательные приборы генерируют тепло и предназначены для нагревания любых теплоносителей (исключая агрессивные и горючие жидкости) в открытых или замкнутых системах теплоснабжения, оснащенных принудительной циркуляцией под действием насоса. В основе их действия лежит индукционный нагрев электропроводящих ферромагнитных материалов.
Как и ВТГ, ВИН позволяет экономить электроэнергию (КПД этого устройства при рабочей частоте 50-60 Гц составляет до 99%). Устройство легко монтируется как в новые, так и в существующие отопительные системы, имеет небольшой вес и размеры.
Маленькое но…
Хотя вихревые теплогенераторы имеют массу преимуществ, далеко не все ученые согласны с самим фактом их существования. Ведь до сих пор нет стройной научной теории, которая бы объяснила, почему у этих устройств настолько высок коэффициент эффективности. А пока маститые ученые из Комиссии по борьбе с лженаукой при РАН продолжают клеймить «лжеученых», производители выпускают все больше таких устройств, спрос на которые возрастает с каждым годом.
www.spbenergo.com
ENERGOINFORM.ORG — Опыт профессионалов — Вихревые теплогенераторы
Энергоинформ / Опыт профессионалов / Теплогенераторы: Вихревые теплогенераторы
Вихревые теплогенераторы
В данной статье рассмотрена история создания вихревых теплогенераторов, принципы их работы, а также приведены основные технические характеристики моделей вихревых теплогенераторов, производимых российскими фирмами на данный момент.
История создания вихревых теплогенераторов уходит корнями в первую треть двадцатого века, когда французский инженер Жозеф Ранк столкнулся с неожиданным эффектом, исследуя свойства искусственно создаваемого вихря в разработанном им устройстве — вихревой трубе. Сущность наблюдаемого эффекта заключалась в том, что на выходе вихревой трубы наблюдалось разделение сжатого воздушного потока на теплую и холодную струю.
Исследования в данной области были продолжены немецким изобретателем Робертом Хилшем, который в сороковых годах прошлого столетия улучшил конструкцию вихревой трубы Ранка, добившись увеличения разности температур двух воздушных потоков на выходе из трубы. Однако как Ранку, так и Хилшу не удалось теоретически обосновать наблюдаемый эффект, что отсрочило его практическое применение на многие десятилетия. Следует отметить, что более-менее удовлетворительное теоретическое объяснение эффекта Ранка — Хилша с точки зрения классической аэродинамики не найдено до сих пор.
Одним из первых ученых, которому пришла в голову идея запустить в трубу Ранка жидкость, является российский ученый Александр Меркулов, профессор Куйбышевского (ныне Самарского) государственного авиакосмического университета, которому принадлежит заслуга в развитии основ новой теории. Созданная Меркуловым в конце 50-х годов Отраслевая научно-исследовательская лаборатория тепловых двигателей и холодильных машин провела огромный объем теоретических и экспериментальных исследований вихревого эффекта. Идея использовать в качестве рабочего тела в вихревой трубе не сжатый воздух, а воду, была революционной, поскольку вода, в отличие от газа, несжимаема. Следовательно, эффекта разделения потоков на холодный и горячий ожидать не стоило. Однако результаты превзошли все ожидания: вода при прохождении по «улитке» быстро нагревалась (с эффективностью, превышавшей 100%). Ученый затруднялся объяснить подобную эффективность процесса. По мнению некоторых исследователей, аномальное повышение температуры жидкости вызвано микрокавитационными процессами, а именно «схлопыванием» микрополостей (пузырьков), заполненных газом или паром, которые образуются в ходе вращения воды в циклоне. Невозможность объяснить столь высокий КПД наблюдаемого процесса с точки зрения традиционной физики привела к тому, что вихревая теплоэнергетика прочно обосновалась в списке «псевдонаучных» направлений.
Между тем, данный принцип был взят на вооружение предпринимателями, что привело к разработке работающих моделей тепло-и электрогенераторов, реализующих описанный выше принцип. В данный момент времени на территории России, некоторых республик бывшего Советского Союза и ряда зарубежных стран успешно функционируют сотни вихревых теплогенераторов различной мощности, произведенных рядом отечественных научно-производственных предприятий. Некоторые из них будут рассмотрены в данной статье.
Вихревые теплогенераторы «ЮСМАР»
ООО «ЮСМАР»,
г. Кишинев, ул. Фередеулуй, 4, Молдова, MD-2005
тел: 8 10 373 22 545043
факс: 8 10 373 22 540272
e-mail: [email protected]
Заслуга в создании теплогенераторов «Юсмар» принадлежит Ю.С. Потапову. В 1992 им была создана научно-техническая фирма «Юсмар», которая занимается производством теплогенераторов, предназначеных для отопления и горячего водоснабжения жилых, производственных и складских помещений в местах, удаленных от тепло-и газопроводов. Эффективность теплогенераторов «Юсмар», превышающая 100%, была доказана рядом практических исследований. Получены патенты Молдавии N167 от 18.03.1993, патент России N2045715 от 26.04.1993, патент Франции N 9310527 от 9.09.1993.
Модельный ряд установок «Юсмар» включает в себя четыре модели (ЮСМАР 1,2,3 и 4), которые различаются по вырабатываемой мощности и производительности. Теплогенераторы «Юсмар» имеют мощность 2,8,4,0, 11, 45 и 65 кВ, выпускаются с 1993 года. Их теплопроизводительность — от 6900 до 66200 ккал/час. Частота вращения электродвигателя составляет 2900 об/мин для всех моделей при одинаковой температуре теплоносителя (воды), равной 90 °С. Масса установок составляет от 150 до 400 кг. Теплогенераторы «Юсмар» позволяют обогревать помещения объемом до 2500 м3. Все установки работают в автоматическом режиме. В Москве с Ю.С. Потаповым можно связаться через компанию «РУФИКО», тел: (095) 268 25 24
Вихревые проточные термогенераторы «НТК»
ООО «Нотека-С»,
ул. Жуковского, 1, г. Жуковский, Московская область, Россия, 140160
Тел: (095) 556-32-30
Факс: (095) 556-95-04
e-mail: [email protected]
www.noteka.narod.ru
Термогенераторы «НКТ» производятся фирмой «Нотека-С», которая была создана в 1998 году как внедренческая, использующая новейшие российские разработки в области нетрадиционной вихревой энергетики. За четыре года ООО «Нотека-С», начав с дилерских отношений с молдавской фирмой «ЮСМАР», стала компанией, владеющей собственным производством и испытательной базой для отработки новых видов продукции. Научно-внедренческая фирма «НОТЕКА» занимается разработкой и внедрением экологически чистых энергетических систем на основе применения принципов нетрадиционной вихревой энергетики. Основной продукцией фирмы являются локальные тепловые узлы на основе вихревых гидравлических теплогенераторов «НТК» (Рис.1)
Теплогенератор «НТК» предназначен для преобразования энергии движущейся в нем жидкости в тепловую, используемую для обогрева в заданных диапазонах температур жилых, производственных и складских помещений, а также теплиц и других зданий и сооружений сельскохозяйственного назначения. Рабочей жидкостью, используемой в системе для центральных и южных климатических поясов является вода, тогда как в холодных районах страны может использоваться антифриз.
Модельный ряд термогенераторов «НТК» включает в себя пять модификаций: НТК 11, НТК 22, НТК 37, НТК 55 и НТК 75. Индекс в названии указывает Рис. 1 на установленную мощность установки (в кВт). В ходе работы установки потребляют 10,21,37,55 и 75 кВт энергии соответственно. Все модели имеют одинаковую частоту вращения электродвигателя — 2900 об/мин и позволяют обогревать помещения объемом до 3500 м3. Теплопроизводительность установки НТК 11 составляет 8600 ккал/час, тогда как теплопроизводительность термогенератора НТК 75 составляет 65000 ккал/час. Термогенераторы НТК работают, используя большую, чем в теплогенераторах «Юсмар», температуру теплоносителя — до 115 ° С. Масса установок составляет от 160 до 700 кг. Все термогенераторы НТК работают в автоматическом режиме.
Вихревые теплогенераторы «ВТГ-5″
|
Рис.1 Вихревые теплогенераторы «ВТГ-5» |
НПП «Альтернативные Технологии Энергетики и Коммуникации», г.Москва
тел: (095)9770549
факс: (095) 9155545, 4960136
e-mail: [email protected]
Вихревые теплогенераторы «ВТГ-5» производятся НПП «АТЭК» и имеют двенадцать модификаций — ВТГ-5/1…12. Коэффициент преобразования потребляемой генератором энергии в тепловую -1,9…2,4. Также НПП «АТЭК» выполняет именные заказы на разработку и изготовление бестопливных автономных квантовых вихревых теплоэлектростанций мощностью от 50 до 8000 кВт.
Вихревые теплогенераторы «МУСТ»
Научно-производственное предприятие «Ангстрем»,
170017, Тверь, пос. Б Перемерки, а/я 157
тел: (0822) 331844
http://www.ptechnology.ru/MainPart/Energy/EnergT.html
Рис. 2 | Рис. 3 |
Вихревые теплогенераторы «МУСТ» |
Вихревые теплогенераторы «МУСТ» (Рис.2) производятся НПП «Ангстрем», г.Тверь. Директором НПП «Ангстрем» и разработчиком теплогенерато-ра «МУСТ» является кандидат физико-математических наук Р.И. Мустафаев. Принцип действия данного типа вихревого теплогенератора основан на изобретении Мустафаева (патент РФ № 2132517), которое позволяет получать тепловую энергию непосредственно из воды, воздействуя на неё механическим способом. В данном случае механическое воздействие — это приведение воды в вихревое движение. Принципиальное отличие генератора «МУСТ» от других теплогенераторов, преобразующих электрическую энергию в тепловую, состоит в том, что энергия подаётся только на насос, прокачивающий воду. Коэффициент преобразования электроэнергии равен 1,2, но может достигать и 1,5. Всего в России работает около ста вихревых теплогенераторов «МУСТ». Выпускаемые модели теплогенераторов «МУСТ» позволяют обогревать помещения объемом до 11,000 м3. Масса установки составляет от 70 до 450 кг. Тепловая мощность установки МУСТ 5,5 составляет 7112 ккал/час, тогда как тепловая мощность установки МУСТ 37 — 47840 ккал/час. Теплоносителем, используемым в вихревом теплоге-нераторе МУСТ может выступать вода, тосол, полигликоль, либо любая другая незамерзающая жидкость.
Вихревые термогенераторы «ТМГ»
ОАО «Завод КОММАШ»,
ул. Ставского, 4, г. Пенза, Россия, 440600
Коммерческая служба (8412) 63-47-08
Тел./факс (8412) 63-49-39, 63-35-44
http://www.kommash.itbc.ru/termovihr.htm
ООО «Термовихрь»
ул. Ставского, 4, г. Пенза, Россия, 440600,
Тел.:(8412) 63-38-28
Факс:(8412)63-39-16
E-mail: [email protected]
Вихревой термогенератор «ТМГ» производится на Пензенском Заводе Коммунального Машиностроения (КОММАШ). Модельный ряд включает в себя вихревые термогенераторы, установленная мощность которых составляет от 1 до 45 кВт.
Рис.4 Термогенератор ТМГ накопительного типа |
Рис.5 Термогенератор ТМГ (промышленный) Объем обогреваемых помещений составляет до 1650 м3. |
Теплопроизводительность термогенераторов ТМГ составляет от 2000 до 34800 ккал/час. Все термогенераторы функционируют в автономном режиме. Частота вращения электродвигателя составляет 2900 об/мин и является универсальной для всех моделей. На основе вихревых термогенераторов ТМГ производится монтаж автономных отопительных систем для отопления жилых домов, торговых объектов, школ, больниц и других жилых, общественных и производственных помещений. Наибольшую актуальность использование подобных термосистем приобретает в условиях, где отсутствует централизованное теплоснабжение, а подвод магистрали природного газа требует капиталовложений или невозможен.
Вихревые генераторы тепла «ГТ»
e-mail: [email protected], [email protected]
Вихревые генераторы тепла «ГТ» имеют следующие модификации: ГТ 1,2,3,4 и 5. Минимальная мощность электродвигателей насосной установки составляет 0,6 кВт (ГТ 1), максимальная — 180 кВт (ГТ 5). Минимальная масса генератора тепла (без рабочей жидкости) составляет 12 кг, максимальная — 367 кг. Диапазон рабочих температур составляет от 40 до 95°С. Минимальный расход рабочего тела при циркуляции составляет 3 м3/час, максимальный — 350 м3/час. Номинальная тепловая мощность генератора ГТ 1 составляет 4,85 кВт; генератора ГТ 5 — 107,5 кВт.
Вихревые тепловые генераторы «ТГВ»
Рис. 6 |
ООО «Центр-Лес»,
г. Москва, ул. Складочная, д.1, стр.9
тел: (095) 517 90 80, 771 34 63
Вихревой тепловой генератор (ТГВ) предназначен для отопления и горячего водоснабжения жилых домов, общественных зданий, производственных помещений и сельскохозяйственных комплексов. Энергетическая эффективность генераторов ТГВ (Рис.6) составляет от 1.16 до 1.2 в зависимости от режима работы насоса. Модельный ряд вихревых теплогенераторов ТГВ представлен шестью моделями: ТГВ 3, ТГВ 5, ТГВ 7, ТГВ 11, ТГВ 11, ТГВ 22, ТГВ 37.
Использование данных теплогенераторов позволяет обогревать помещение объемом от 150 до 1850 м3. Мощность используемого в модели ТГВ 3 двигателя составляет от 3 до 4,5 кВт, тогда как наиболее мощная модель ТГВ 37 оснащена двигателем мощностью 37 кВт. Диапазон температур рабочей жидкости составляет от 65 до 90° С. Максимальный Рис. 6 объем потребляемой энергии (генератором ТГВ 37) — 22 кВт/ч. При этом его теплопроизводительность равна 31800 ккал/ч. Все типы вихревого теплогенератора ТГВ функционируют в автоматическом режиме.
Вихревой теплогенератор «ВИТА-15″
ООО УК «ОРБИ»,
бульвар Мира, д. 12, г. Н. Новгород, Россия, 603086
В Нижнем Новгороде компанией «ОРБИ» было налажено производство вихревых теплогенераторов «ВИТА-15». По словам Бориса Поташника, генерального директора управляющей компании «ОРБИ», в ходе испытаний данного теплогенератора с 1 кВт затраченной электроэнергии было получено 1,35 кВт тепла (газета Биржа плюс свой дом, №42 от 11.03.2003).
Кавитационный генератор Николая Петракова
В одном из номеров «Российской газеты» была опубликована информация об изобретении алтайского механика Николая Петракова. Он создал сверхэкономичную установку для обогрева помещений, расходующую в полтора раза меньше энергии, чем лучшие отечественные системы. В основе его изобретения также лежит эффект кавитации, при котором происходит быстрый нагрев воды почти до температуры кипения за счет «схлопывания» большого количества пузырьков, образующихся вследствие вращения электродвигателем крыльчатки насоса. «Ноу-хау» изобретения Петракова, давшее существенный прирост КПД, заключается в оригинальной конструкции впускных и выпускных клапанов.
Теплогенератор «VIP»
INTERENERGORESURS Ltd,
ул. Фучикова, 16, 979 01, Римавска Собота, Словакия
Тел.: 00421 47 563 14 32
Тел./факс: 00421 47 563 11 44
e-mail: [email protected]
Теплогенераторы «VIP» (Рис.7) производятся в Словакии фирмой INTERENERGORESURS Ltd. Их установленная потребляемая мощность (кВт) модифицируется по техническому заданию заказчика. Генераторы изготавливаются по соответствующим параметрам насоса с мотором; безтопливные тепловые установки VIP могут иметь установленную потребляемую мощность от 3 кВт до 150 кВт. Частота вращения вала двигателя -2950 об/мин. Потребляемый ток — 380 В, 50 герц. Максимально допустимая температура теплоносителя в тепловом генераторе составляет не более 95°С. Тепловая эффективность установки 20 кВт. Режим работы — автоматический.
Как утверждает директор фирмы, господин Павловский, проверки теплогенераторов «VIP» осуществлялись в г. Донецк, ОАО Проектно-конструкторский и технологический институт «Газоаппарат». Испытательный центр «Газоаппарат», 1996 год. Была достигнута максимальная эффективность 155 % (Протокол П-ОВА-19/96 Испытаний теплоустановки безтопливной ТБ-2-6,9 ТУ У 240070270.001-96). Зарегистрировано в Государственном Комитете Украины по стандартизации и метрологии 13.06.1996 г. №086/003488. Испытания также проводились в г. Киев, НПО «Холод». Испытательный стенд, 1997 год, эффективность 180 %, и в г. Превидза, Словакия — VANSOFT
s.r.o. Установка VIP, с погруженным насосом и тепловым генератором. Испытательный стенд. 1998 год, эффективность 126 %. |
Как заявляет Павловский, теплогенераторы «VIP» успешно работают в г. Киев, НПО «Холод», на стенде которого проходили испытания установки, Донецк, Краматорск, Перевальск (Банк «Украина»), Полтава, Селидово, Луганск, Феодосия (Картинная галерея Айвазовского), Черкассы, Днепропетровск.
Примечание редакции (журнала «Новая энергия»): Растущая конкуренция в сфере новых технологий, в частности, в области разработки и производства вихревых теплогенераторов зачастую приводит к возникновению конфликтных ситуаций. Так, автором-разработчиком теплогенераторов «VIP», производимых в Словакии фирмой «Интерэнергоресурс», является Г. Г. Иваненко (технический директор компании). Известно, что ранее он долгое время работал с Ю.С. Потаповым. Однако никакого упоминания о Ю.С. Потапове и его разработках на интернет-сайте компании нами обнаружено не было.
Мы связались с Ю.С.Потаповым. По его мнению, эффективность всех теплогенераторов Иваненко «VIP» не превышает 95%.
Нами был послан запрос генеральному директору компании «Interenergoresours», Михаилу Павловскому, и вскоре от него был получен ответ в форме емайл, начинающегося злой критической цитатой Круглякова из «комиссии РАН по борьбе со лженаукой», и нам стало ясно с кем связан господин Павловский. Он утверждает, что Ю.С. Потапов не только не имеет ни одного реального протокола испытаний вихревых теплогенераторов с эффективностью более 100%, но и вообще Потапов никогда не имел такого изобретения, как «вихревой теплогенератор». Павловский ссылается на книгу Базиева, автора теории «электрино», в которой Базиев пишет, что проведенный им расчет тепловых установок «Юсмар» показал эффективность всего 13%. По мнению теоретика Базиева, теплогенераторы «Юсмар» хуже обычных электронагревателей.
Павловский утверждает, что испытания двух теплогенераторов «Юсмар», проведенных в Кишиневе с участием эксперта из кишиневского института на средства заинтересованного инвестора, закончились неудачей — первый теплогенератор сгорел еще до начала испытаний, тогда как второй показал эффективность всего 36% и также сгорел. Павловский ссылается на информацию о том, что разработки Ю.С. Потапова, а также эксплуатация самих установок «Юсмар» якобы запрещена постановлением правительства Республики Молдова. Однако, номер и дату этого постановления Павловский не дает.
Возможно, что проблемы Павловского в том. что он не договорился с Потаповым о покупке «ноу-хау», и пытается производить теплогенераторы, не понимая принципов их работы.
Таким образом, можно сделать вывод, что инвесторам нужна серьезная юридическая экспертиза, которая позволит выявить истинного патентообладателя изобретения «вихревой теплогенера-тор», решить проблему авторства и лицензирования. Хотя, с другой стороны, принцип вихревой трубы Ранка, реализованной в конкретном устройстве, имеющем новизну (отличия от других изобретений), может быть основанием для получения патента любым разработчиком.
Рис. 8 | Рис. 9 |
Установка VIP-1-7,5 (без Рис.9 Схема подключения теплогенератора VIP теплоизолирующего
корпуса) для воздушно-вентиляционного отопления. Эффективность преобразования электрической энергии в тепловую — до 300% |
Итак, остается пожелать изобретателям удачи и сказать «сделай сам»!
Обзор по материалам Интернет подготовил Н. Овчаренко
Гидровихревой теплогенератор: новые перспективы
История вопроса
В основе вихревого теплогенератора лежит изобретение французского инженера Жоржа Жозефа Ранка (Georges Joseph Ranque). В конце 1920−х годов он занимался конструированием вихревых промышленных газовых фильтров – циклонов. И в процессе работы заметил, что если сжатый газ запустить в трубку и заставить в ней вращаться, то он не только очистится от пыли, но и выйдет из нее охлажденным. Объяснить, почему так происходит, Ранк не смог, но, как настоящий инженер, подал заявку на изобретение устройства, разделяющего поток воздуха на холодный и горячий, и сделал доклад во Французском физическом обществе.
На родине ему не поверили, поэтому патент № 1952281 на вихревую трубу, которую теперь называют «трубка Ранка», Жорж Жозеф получил в 1934 году в США.
В 1930−е годы ленинградский ученый, заведующий кафедрой ЛПИ Константин Иванович Страхович, не зная об экспериментах Ранка, теоретически обосновал возможность того, что во вращающихся потоках газа должны возникать разности температур. Но наиболее полное обоснование физической сути вихревого эффекта дал в 1969−м году профессор Куйбышевского (ныне Самарского) государственного аэрокосмического университета Александр Петрович Меркулов. Он же первым попробовал запустить в вихревую трубу воду.
И тут оказалось, что при прохождении трубки Ранка вода нагревается. Причем не просто нагревается, а нагревается очень эффективно.
Объяснить это явление даже Меркулов, который состоял почетным членом Американского общества инженеров-механиков, – не смог. Но факт остается фактом: простым прокачиванием жидкости по вихревой трубе ее можно нагреть.
Неудивительно, что с 1970−х годов было предложено множество конструкций гидровихревых теплогенераторов (ГВТГ). Разными изобретателями в 1990−е и 2000−е получен не один патент. И, надо сказать, что тепловые генераторы и выпускаются, и работают.
Работает или нет?
Однако тут возникает ключевой вопрос и главная загадка ГВТГ. А именно – эффект дополнительного тепловыделения, о котором заявляют некоторые производители. В двух абзацах суть проблемы вот в чем.
Если объяснять нагрев воды в генераторе прямым преобразованием работы в теплоту – за счет, например, внутреннего трения в жидкости, или схлопывания газовых пузырьков на тормозных устройствах, или рассеяния энергии акустических колебаний, – то закон сохранения энергии не нарушается. И коэффициент преобразования энергии будет меньше единицы.
Но если действительно есть дополнительное тепловыделение, и коэффициент преобразования больше 100%, то к объяснению аномального явления придется привлечь некоторый арсенал альтернативной науки: теорию мирового эфира, специфическое толкование теоремы о вириале, торсионные поля, перекристаллизацию жидкой воды, холодный термоядерный синтез и, наконец, воздействие космологического векторного потенциала.
Поэтому мы решили проверить на практике, как работает гидровихревой теплогенератор, разработанный и выпускаемый по патенту (№ 2301947 от 27.06.07) ООО «Группа Константа». Цели ставились две. Первая: понять, можно ли на основании ГВТГ построить эффективную систему теплоснабжения загородного дома. Вторая: подручными средствами проверить, устоит ли закон сохранения энергии.
Для испытаний ООО «Группа Константа» предоставила свой ГВТГ с электрическим насосом мощностью 4 кВт, пригодный для отопления загородного дома площадью 100 м2. Генератор работал по замкнутому циклу и за 27 минут нагрел 18 л воды от 11 до 80°С.
На основании полученных данных мы построили график изменения температуры с течением времени. Одного взгляда на него достаточно, чтобы понять, что дополнительного выделения тепла не наблюдается. Пока вода была сравнительно холодной, температура росла линейно. При достижении 60°С одновременно стали изменяться и теплоемкость воды, и расти давление в системе. Темп нагрева стал падать. Все по классическому сценарию.
По результатам измерений мы произвели расчеты эффективности преобразования энергии. И тоже получили вполне согласованные с традиционной научной парадигмой, но весьма впечатляющие результаты. А именно: за 0,45 часа 4−х киловаттный насос должен был потребить 1,8 кВт*ч электрической энергии. При этом тепловая энергия системы, согласно расчетам, составила 1,44 кВт*ч.
Таким образом, был на практике достигнут коэффициент прямого преобразования больше 80%. Но на самом деле он выше. И если учесть, что напряжение в сети чуть ниже, чем 220 В, а тепло рассеивалось и шло на нагревание не только воды, но и самого металла, то можно, видимо, добиться и цифры 90%.
Закон сохранения энергии устоял. Но 80−90% – это очень высокий показатель эффективности и прекрасная заявка на то, чтобы дать положительный ответ на вопрос о том, можно ли эффективно отапливать дом с помощью ГВТГ.
Принцип действия
Теперь о самом устройстве. Геометрические параметры генератора привязаны к емкости системы. Чем больше объем теплоносителя, тем длиннее должна быть трубка Ранка. В нашем случае всю конструкцию вместе с насосом можно вписать в параллелепипед 70х60 см. То есть ГВТГ вполне компактен и пригоден для отопления загородного дома. А для подключения достаточно его просто врезать в существующую систему.
Что касается шумности, то главный шум производит не электродвигатель насоса. Сильнее всего шумит вода в вихревых трубах. Но по ощущениям – не сильнее, чем котел на солярке. И это, пожалуй, единственный существенный эргономический минус.
Однако «Группа Константа» оснащает ГВТГ системой поддержания постоянной температуры, причем ее можно настроить и на температуру теплоносителя, и на температуру воздуха в помещении. Так что насос постоянно работать не будет.
Важно также сказать, что в ГВТГ не обязательно использовать только воду. Подойдет любой распространенный теплоноситель. В том числе и все популярные незамерзающие составы на основе глицерина.
Еще одна особенность установки ГВТГ в том, что его нельзя просто купить в магазине. Гидрогенератор нужно заказывать. Однако для такой инновационной техники это, может быть, даже хорошо. Специалисты выедут на место, точно рассчитают параметры новой или возможности подключения генератора к старой системе.
Кстати говоря, ООО «Группа Константа» на основе своих вихревых технологий разработала еще и эффективное устройство для очистки систем теплоснабжения от минеральных отложений.
Эту статью мы также размещаем в блоге редакции и приглашаем всех желающих обсудить работу ГВТГ и поделиться опытом эксплуатации подобных устройств.
Благодарим ООО «Группа Константа» за предоставленное оборудование.