Ветряные электростанции – Ветрогенератор для дома — минусы и минусы. Расклад по ценам и киловаттам. Цена за 1квт от ветряка.

Содержание

Список ветряных электростанций России — Википедия

Материал из Википедии — свободной энциклопедии

В списке перечисляются действующие ветряные электростанции России. Также отдельно приводится информация о строящихся ВЭС и выведенных из эксплуатации и закрытых ВЭС.

Установленная мощность и структура собственности электростанций приводится в соответствии с официальными годовыми отчётами генерирующих компаний. Полные перечни действующих ВЭС по регионам России, как правило, приводятся в Схемах и программах развития электроэнергетики соответствующего региона, разрабатываемых в соответствии с Постановлением Правительства РФ от 17.10.2009 № 823 «О схемах и программах перспективного развития электроэнергетики».

По данным СО ЕЭС — системного оператора единой электроэнергетической системы России — суммарная установленная электрическая мощность ветряных электростанций ЕЭС России на 1 января 2019 года составляет 183,9 МВт или всего 0,08 % от установленной мощности электростанций энергосистемы[1].

Крупнейшие ВЭС России

ЕЭС России[править | править код]

НазваниеУстановленная
мощность, МВт
РегионСобственникВ реестреИсточник
1 Адыгейская ВЭС 150 Адыгея АО «НоваВинд» [9]
2 Ульяновская ВЭС-2 50,4 Ульяновская область ООО «Первый Ветропарк ФРВ» [3][1]
3 Ульяновская ВЭС 35 Ульяновская область Фортум [3][6]
4
Останинская ВЭС
25 Крым[7] ООО «Ветряной парк Керченский» [8]
5 Тарханкутская ВЭС 22,45 Крым[7] ГУП РК «КГС» [8]
6 Сакская ВЭС 20,82 Крым[7] ГУП РК «КГС» [8]
7 Пресноводненская ВЭС 7,39 Крым[7]
ГУП РК «КГС»
[3][8]
8 Донузлавская ВЭС 6,78 Крым[7] ГУП РК «КГС» [8]
9 Ушаковская ВЭС 5,1 Калининградская область ОАО «Калининградская генерирующая компания» [1][2]
10 Судакская ВЭС 3,76 Крым[7] ГУП РК «КГС»
[8]
11 Восточно-Крымская ВЭС 2,81 Крым[7] ГУП РК «КГС» [8]
12 ВЭС с. Тамар-Уткуль 2,725 Оренбургская область ООО «ЭкоСельЭнерго» [3][4]
13 ВЭС Тюпкильды 1,65 Республика Башкортостан Башкирская генерирующая компания [3]
14 ВЭС г. Орск 0,4 Оренбургская область ООО «Автотранс-М» [4]
15 ВЭС ООО «АльтЭнерго» 0,1 Белгородская область ООО «АльтЭнерго» [3][5]

Изолированные энергосистемы[править | править код]

По результатам конкурсных отборов ВИЭ[править | править код]

  1. 1 2 3 4 Единая энергетическая система России: промежуточные итоги. Декабрь 2018 (рус.). АО «СО ЕЭС». Дата обращения 26 января 2019.
  2. ↑ Схема и программа перспективного развития электроэнергетики Калининградской области на 2020-2024 годы (неопр.). Министерство развития инфраструктуры Калининградской области. Дата обращения 18 июня 2019.
  3. 1 2 3 4 5 6 Перечень квалифицированных генерирующих объектов, функционирующих на основе возобновляемых источников энергии (ред. на 14.01.2019) (рус.). Ассоциация «НП Совет рынка». Дата обращения 26 января 2019.
  4. 1 2 3 4 Схема и программа перспективного развития электроэнергетики Оренбургской области на период 2017—2021 годы (неопр.). Министерство экономического развития, промышленной политики и торговли Оренбургской областиlang=ru.
    Дата обращения 13 августа 2016.
  5. ↑ Постановление Губернатора Белгородской области от 12 мая 2015 года № 46 «Об утверждении схемы и программы развития электроэнергетики Белгородской области на 2016—2020 годы» (неопр.). Официальный сайт Губернатора и Правительства Белгородской области. Дата обращения 13 декабря 2015.
  6. ↑ Отчет о функционировании ЕЭС России в 2017 году (рус.). АО «СО ЕЭС». Дата обращения 15 февраля 2018.
  7. 1 2 3 4 5 6 7 8 Данный объект расположен на территории Крымского полуострова, бо́льшая часть которого является объектом территориальных разногласий между Россией, контролирующей спорную территорию, и Украиной, в пределах признанных международным сообществом границ которой спорная территория находится. Согласно федеративному устройству России, на спорной территории Крыма располагаются субъекты Российской Федерации — Республика Крым и город федерального значения Севастополь. Согласно административному делению Украины, на спорной территории Крыма располагаются регионы Украины — Автономная Республика Крым и город со специальным статусом Севастополь.
  8. 1 2 3 4 5 6 7 Реестр лиц, подлежащих обязательному обслуживанию ГУП РК «Крымэнерго» при оказании услуг по оперативно-диспетчерскому управлению (рус.). ГУП РК «Крымэнерго». Дата обращения 13 августа 2016.
  9. ↑ АО «ВетроОГК» получило разрешение на строительство ветроэлектростанции (ВЭС) в Адыгее общей мощностью 150 МВт (неопр.). АО «НоваВинд» — Росатом. Дата обращения 27 февраля 2019.
  10. ↑ Об утверждении схемы и программы развития электроэнергетики Чукотского автономного округа на 2016—2020 годы (неопр.). Портал государственных органов Чукотского автономного округа. Дата обращения 13 августа 2016. (недоступная ссылка)
  11. 1 2 Схема и программа развития электроэнергетики Камчатского края на 2016—2020 гг. (утверждена распоряжением Губернатора Камчатского края от 14.07.2016 № 790-Р) (неопр.). Министерство жилищно-коммунального хозяйства и энергетики Камчатского края. Дата обращения 15 августа 2016.
  12. ↑ Схема и программа развития электроэнергетики Камчатского края на 2018—2022 гг. (утверждена распоряжением Губернатора Камчатского края от 28.04.2018 № 482-Р)
     (неопр.)
    . Министерство жилищно-коммунального хозяйства и энергетики Камчатского края. Дата обращения 11 сентября 2018.
  13. ↑ РусГидро ввело в эксплуатацию уникальную ветряную электростанцию в арктическом поселке Тикси (неопр.). ПАО «РусГидро». Дата обращения 8 ноября 2018.
  14. ↑ ВЭУ в селе Новиково (неопр.). ПАО «Передвижная энергетика». Дата обращения 11 сентября 2018.
  15. ↑ ВЭУ в г. Лабытнанги (неопр.). ПАО «Передвижная энергетика». Дата обращения 11 сентября 2018.
  16. 1 2 Перечень проектов ВИЭ, отобранных по результатам ОПВ, проведенного в 2016 году (рус.). АО «АТС». Дата обращения 13 августа 2016.
  17. ↑ Перечень проектов ВИЭ, отобранных по результатам ОПВ, проведенного в 2014 году (рус.). АО «АТС».
    Дата обращения 13 августа 2016.
  18. 1 2 3 4 5 6 7 Перечень проектов ВИЭ, отобранных по результатам ОПВ, проведенного в 2013 году (рус.). АО «АТС». Дата обращения 13 августа 2016.
  19. 1 2 3 4 5 6 7 8 9 10 11 Перечень проектов ВИЭ, отобранных по результатам ОПВ, проведенного в 2017 году (рус.). АО «АТС». Дата обращения 8 июля 2017.
  20. ↑ Малая Курская энциклопедия. Статья «Ветроэлектростанция»
  21. Дмитриев Г. С. [https://ecoteco.ru/id903/ Что несет с собой развитие ветроэнергетики (экологические аспекты)] // Энергия. — 2004. — № 8. — С. 11—19.
  22. ↑ Ветроэнергетика в Коми потерпела полный крах — уникальная станция превратится в металлолом (рус.). Воркутинский городской портал. Дата обращения 11 сентября 2018.
  23. ↑ Схема и программа развития электроэнергетики Республики Калмыкия на 2017-2021 годы (рус.). Республика Калмыкия. Дата обращения 11 сентября 2018.

самая мощная и интересная из них, её плюсы и минусы

Возрастающая роль ветроэнергетики в мире вызвала неоднозначное отношение у населения. С одной стороны, приветствуется экологическая чистота и отсутствие вредных выбросов в атмосферу, с другой — муссируются различные домыслы об отрицательном воздействии ветроэнергетических установок на человеческий организм. Такое отношение не всегда объяснимо, ведь для некоторых регионов ветроэнергетика — единственный способ получить электроэнергию в своих домах.

Рост числа установок вызвал объединение их в ветровые электростанции, обеспечивающие энергией целые страны и крупные регионы.

Виды ветровых электростанций

Основным и единственным видом ветровых электростанций является объединение в единую систему нескольких десятков (или сотен) ветроэнергетических установок, производящих энергию и отдающих ее в единую сеть. Практически все эти установки имеют одну и ту же конструкцию с некоторыми изменениями у отдельных турбин. Как состав, так и все остальные показатели у станций вполне единообразны и зависят от суммарной мощности отдельных агрегатов. Различия между ними имеются только в способе размещения. Так, существуют:

  • наземные
  • прибрежные
  • шельфовые
  • плавающие
  • парящие
  • горные

Такое обилие вариантов связано с условиями, потребностями и возможностями компаний, эксплуатирующих те или иные станции в различных регионах земного шара. Большинство точек размещения связаны с необходимостью. Например, лидер в мировой ветроэнергетике Дания попросту не имеет других возможностей. С развитием отрасли неминуемо появление других вариантов размещения агрегатов, извлекающих максимальную выгоду из местных ветряных условий.

Плюсы и минусы ВЭС

На сегодняшний день в мире насчитывается более 20 000 ветроэлектростанций разной мощности. Большинство из них установлены на побережье морей и океанов, а также в степных или пустынных районах. Ветроэлектростанции обладают массой преимуществ:

  • нет необходимости в подготовке площадей для монтажа установок
  • ремонт и обслуживание ВЭС обходятся значительно дешевле, чем любых других станций
  • потери на передачу энергии значительно ниже вследствие близости от потребителей
  • отсутствие вреда для окружающей природы
  • источник энергии совершенно бесплатный
  • земли между установками можно использовать для сельскохозяйственных целей

К плюсам можно отнести также отсутствие четкой привязки к определенной точке, как это наблюдается у ГЭС.

При этом, имеются и минусы:

  • нестабильность источника вынуждает использовать большое количество аккумуляторных батарей
  • установки при работе издают шум
  • мерцание от лопастей ветряков весьма отрицательно воздействует на психику
  • стоимость энергии намного выше, чем при использовании других методов производства

Дополнительным недостатком можно назвать высокую инвестиционную стоимость проектов таких станций, складывающуюся из цены техники, стоимости транспортировки, монтажа и эксплуатации. Учитывая срок службы отдельной установки — 20-25 лет, многие станции являются неокупаемыми.

Недостатки достаточно существенные, но отсутствие иных возможностей снижает их влияние на принимаемые решения. Для многих регионов или государств ветроэнергетика является основным способом получать собственную энергию, не зависеть от поставщиков из других стран.

Самые крупные ветровые электростанции мира: виды, плюсы и экономическое обоснование строительства

Самые крупные ветровые электростанции мира: виды, плюсы и экономическое обоснование строительства

Экономическое обоснование строительства ветровых электростанций

Перед тем, как принимать решение о строительстве в данном участке местности ВЭС, производятся тщательные и обширные изыскания. Специалисты выясняют параметры местных ветров, направление, скорости, прочие данные. Примечательно, что метеорологические сведения в данном случае пользы приносят мало, так как они собираются в разных уровнях атмосферы и преследуют различные цели.

Некоторые страны (например, Канада) имеют специальную карту ветров, собранную для всей территории страны и значительно облегчающую проектирование станций для бизнесменов. Такие карты имеются у 19 стран, с каждым годом это число увеличивается.

Полученная информация дает основание для расчетов эффективности, ожидаемой производительности и мощности станции. Учитываются, с одной стороны, все расходы на создание станции, включая приобретение оборудования, доставку, монтаж и пусковые работы, эксплуатационные издержки и т.п. С другой стороны, подсчитывается прибыль, которую может принести работа станции. Полученные значения сопоставляются между собой, сравниваются с параметрами других станций, после чего выносится вердикт о степени целесообразности строительства станции в данном регионе.

Самые крупные ветровые электростанции мира: виды, плюсы и экономическое обоснование строительства

Самые крупные ветровые электростанции мира: виды, плюсы и экономическое обоснование строительства

Самая мощная ВЭС

Создание небольшой электростанции невыгодно. В этой отрасли четко действует правило — выгодно либо иметь частный ветряк для обслуживания дома, фермы, небольшого поселка, либо строить большую электростанцию регионального значения, действующую на уровне энергосистемы страны. Поэтому в мире постоянно создаются все более мощные станции, вырабатывающие большое количество электроэнергии.

Крупнейшей в мире ВЭС, вырабатывающей почти 7,9 ГВт энергии в год, является китайская «Ганьсу». Потребности почти двухмиллиардного Китая в энергии огромны, что заставляет строить большие станции. К 2020 году запланирован выход на мощность 20 ГВт.

В 2011 году была задействована индийская станция «Муппандал», установленная мощность которой составляет 1,5 ГВт.

Третей по мощности станцией с объемом производства 1,064 ГВт в год, является индийская Jaisalmer Wind Park, работающая с 2001 года. Изначально мощность станции была ниже, но, после серии модернизаций, достигла сегодняшнего значения. Такие параметры уже приближаются к показателям средней ГЭС. Достигнутые объемы производства электроэнергии начинают выводить ветроэнергетику из разряда второстепенных в основные направления энергетической отрасли, создают широкие перспективы и возможности.

Рекомендуемые товары

Ветряная электростанция — это… Что такое Ветряная электростанция?

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС.[1] Офшорная ветряная электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире Карта потенциала ветроэнергетики США

Ветряная электростанция — несколько ветрогенераторов, собранных в одном или нескольких местах. Крупные ветряные электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветряные электростанции называют ветряными фермами (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветряные электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветряных электростанций: эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветряные электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветряных электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветряные электростанции прекращают работу во время сезонного перелёта птиц.

Типы ветряных электростанций

Наземная

Наземная ветряная электростанция в Испании. Построена по вершинам холмов. Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветряных электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветряной фермы может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветряной электростанцией является электростанция в городе Роско (Roscoe), штат Техас, США. ВЭС Роско была запущена 1 октября 2009 года немецким энергоконцерном E.ON. Станция состоит из 627 ветряных турбин производства Mitsubishi, General Electric и Siemens. Полная мощность — около 780 МВт. Площадь электростанции не менее 400 км².[2]

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветряные электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветряные электростанции строят в море: 10—60 километров от берега. Шельфовые ветряные электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией является электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[3].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[4]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров.

Панорамы ВЭС

ВЭС в России

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт[5]. Одна из крупнейших ветровых станций России — Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[6].

См. также

Примечания

Литература

Методы разработки ветроэнергетического кадастра.//АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.

Ссылки

Ветроэнергетика России — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 октября 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 октября 2019; проверки требуют 2 правки. Ветряная электростанция в Мурманске рядом с гостиницей Omni

Ветроэнергетика России отсчитывает свою историю с 1920-х годов, когда ЦАГИ разработал первые ветро-электрические станции и ветряки для сельского хозяйства. Мощность подобного «крестьянского ветряка» варьировалась от 3 л. с., 8 л. с. до 45 л. с., установка могла освещать 150—200 дворов или приводить в действие мельницу[1]. В 1931 году в Курске была построена ветроэлектростанция Уфимцева, первая в мире ветроэлектрическая станция с инерционным аккумулятором, она является объектом культурного наследия федерального значения. В том же году в Балаклаве вошла в строй ветроэлектростанция мощностью 100 киловатт, на тот момент самая мощная в мире, разрушена в 1941 году во время боёв Великой Отечественной войны[2]. В настоящее время ветроэнергетика используется преимущественно в сельской местности с малой плотностью населения, где доступ к основным источникам энергии ограничен. На 1 января 2018 года суммарная мощность ветроэлектростанций в стране составляла 134,36 МВт или всего 0,06 % от установленной мощности электростанций энергосистемы[3].

Ветряной насос «Ромашка» производства СССР — первая серийная ветроэнергетическая установка после более чем 30-ти летнего забвения этой темы

Технический потенциал ветроэнергетики России составляет 80 000 ТВтч/год, из которых экономически выгодными являются 6218 ТВтч/год[4]. Большая часть ветровых зон России — это степи на юге России (Нижняя и Средняя Волга, Дон), морские побережья (побережье Северного Ледовитого океана от Кольского полуострова до Камчатки, побережья Каспийского, Чёрного, Азовского, Балтийского и Охотского морей) и некоторые отдельные ветровые зоны (Карелия, Алтай, Тува, Байкал). Максимальная средняя скорость ветра приходится в этих районах на осень и зиму. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири. Плотность населения во многих ветровых зонах не превышает 1 чел. на 2 км²[5].

Суммарная мощность проектов ветроэлектростанций в России насчитывает 1700 МВт. К концу 2010 года реальная мощность из них составляла не более 17 МВт. Ассоциация ветроиндустрии России предсказывает, что в случае достижения доли возобновляемой энергетики в 4,5% к 2020 году мощность ветряных электростанций будет составлять 7 ГВт[6]. В 2010 году было объявлено о начале ряда проектов, в том числе о возведении ВЭС в Ейске с мощностью от 50 до 100 МВт[7], и о начале переговоров Siemens с российскими предпринимателями о строительстве ветряных электростанций[8]. Однако к 2015 году вместо планируемой мощности 1250 МВт[6] она составила всего 15,4 МВт[9].

Динамика ветроэлектрической мощности
год 2006 2009 2014 2018
МВт 15[10] 18 83 134

Самые крупные ветроэлектростанции России находятся в Крыму — это Донузлавская (18,7 МВт), Останинская («Водэнергоремналадка», 26 МВт), Тарханкутская (15,9 МВт) и Восточно-Крымская. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт. Разрабатываются проекты следующих станций:

  • Азовская ВЭС (90 МВт)[11]
  • Ленинградская ВЭС (Ленинградская область, 75 МВт)
  • Калининградская морская ВЭС (50 МВт)
  • Морская ВЭС (Карелия, 30 МВт)
  • Приморская ВЭС (Приморский край, 30 МВт)
  • Магаданская ВЭС (Магаданская область, 30 МВт)
  • Чуйская ВЭС (Республика Алтай, 24 МВт)
  • Усть-Камчатская ВДЭС (Камчатская область, 16 МВт)
  • Новиковская ВДЭС (Республика Коми, 10 МВт)
  • Дагестанская ВЭС (Дагестан, 6 МВт)
  • Анапская ВЭС (Краснодарский край, 5 МВт)
  • Новороссийская ВЭС (Краснодарский край, 5 МВт)
  • Валаамская ВЭС (Карелия, 4 МВт)

В 2003—2005 годах в рамках РАО ЕЭС были проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[12]. Также предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка». В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Список некоторых ветряных электростанций[править | править код]

Ветряные электростанции
Наименование Координаты Географическое положение Мощность, МВт Производитель Примечания[13]
Анадырская ВЭС 64°46′00″ с. ш. 177°33′15″ в. д.HGЯOL Чукотский автономный округ 2,5[14] Строительство и обслуживание — ООО «АЛТЭН» и Vensys-Elektrotechnik Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч
Приютненская ВЭС 46°12′32″ с. ш. 44°09′26″ в. д.HGЯOL Приютненский район, Калмыкия 2,4 (в планах 51 МВт)[15] Суммарная выработка составляет 10 млн кВт⋅ч в год
Зеленоградская ВЭУ 54°56′01″ с. ш. 20°21′00″ в. д.HGЯOL посёлок Куликово Зеленоградского района Калининградской области 5,1 SEAS Energi Service A.S. (21 установка)
Мурманская ВЭС 68°59′35″ с. ш. 33°07′06″ в. д.HGЯOL Мурманск 0,2 В здании ООО «Контакт-Дизель», работает в комплексе с Кислогубской ПЭС
Сеть-Наволокская ВЭС мыс Сеть-Наволок Кольского полуострова 0,1 Ветродизельная
Оренбургская ВЭС 51°46′59″ с. ш. 55°06′00″ в. д.HGЯOL Оренбургская область 1
Ростовский ВЭГ 57°12′ с. ш. 39°27′ в. д.HGЯOL Ростовская область 0,3 Ветроэлектрогенератор
ВЭС Тюпкильды 54°36′00″ с. ш. 53°43′47″ в. д.HGЯOL д. Тюпкильды Туймазинского района, Башкортостан 2,5 Hanseatische AG (4 ветроагрегата типа ЕТ 550/41 мощностью по 550 кВт) Экспериментальная ВЭС. Годовая выработка в 2008—2010 годах не более 0,4 млн кВт⋅ч
Ейская ВЭС 46°28′ с. ш. 38°19′ в. д.HGЯOL Краснодарский край 72
ВЭС на острове Беринга 55°11′40″ с. ш. 166°01′16″ в. д.HGЯOL Командорские острова 1,2
Заполярная ВДЭС около Воркуты, Республика Коми 3 (в планах)
1,5 (де-факто)
Недостроена, на 2006 год действовали 6 установок по 250 кВт (итого 1,5 МВт)

применение крупнейших ВЭС, их эффективность и перспективы развития

Постоянно возрастающая потребность в электроэнергии вынуждает внимательнее присматриваться к дополнительным возможностям ее производства. Один из вариантов, доступный как для промышленного, так и частного воспроизводства электрического тока — ветроэнергетика.

В России этот метод используется редко и в мелких масштабах, но его возможности привлекательны, позволяют решать проблему с энергообеспечением самостоятельно. Рассмотрим перспективы этого направления и варианты его реализации на практике.

Развитие ветроэнергетики в России

Несмотря на большое количество ГЭС, действующих в России, есть немало населенных пунктов, не имеющих подключения к централизованным сетям. Выходом из положения являются дизельные электростанции, но они требуют топлива и ремонта. Как постоянный источник электроэнергии такой вариант затратен и несамостоятелен. Кроме того, мощность дизельной электростанции ограничена, из-за чего появление новых потребителей затруднено.

Использование альтернативных источников энергии в России развито слабо. Причиной такой ситуации являются:

  • энергетическая избыточность, присутствующая в стране в целом
  • отсутствие возможности самостоятельного решения вопроса у населения, особенно во времена СССР
  • недостаток инициативы и специальных знаний, препятствующий развитию дополнительных направлений энергетики

Одним из наиболее привлекательных направлений альтернативной энергетики является ветроэнергетика. Она имеет массу преимуществ, основным из которых следует считать неограниченность источника, независимость от времени суток или сезона. При этом, широкого распространения ветроэнергетика пока не получила, поскольку основной упор уже давно сделан на более производительную и удобную для России гидроэнергетику.

Использование энергии ветра до сих пор рассматривалась как интересный физический эксперимент, наглядное пособие для студентов ВУЗов.

Тем временем, жители других стран, не имеющие возможности для строительства ГЭС, успешно развивают ветроэнергетику и получают немалое количество энергии. Например, в Германии, которая лидирует по количеству выработки энергии ветрогенераторами в Европе, ежегодно производится около 45 Гвт электроэнергии, что составляет значительный процент от общей выработки.

Другие страны Европы, расположенные на побережье Атлантики, успешно используют шельфовые ветроэлектростанции. Такая ситуация во многом вынужденная, возникшая из-за неимения других возможностей, но эффект от методики вполне реален и неоспорим.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Состояние и перспективы

Ветроэнергетика имеет намного меньшую эффективность по сравнению с гидроэнергетикой. Стабильность и вырабатываемая мощность самого большого ветряка сильно уступают одному агрегату средней ГЭС.

География России, обилие крупных рек и удачный рельеф местности позволили создать массу гидроэлектростанций, обеспечивающих промышленность и население в достаточной степени.

Россия считается энергоизбыточной страной, что свидетельствует о состоянии энергетики в целом.

При этом, уровень потребления электроэнергии постоянно возрастает. Имеющиеся мощности не готовы к скачкообразному повышению спроса, появление новых приборов и оборудования, как промышленного, так и бытового, предполагают потребление дополнительной энергии.

Кроме того, состояние электросетей достаточно сложное, в некоторых участках оно неудовлетворительное. Общая изношенность имеет высокий процент, на замену и обновление материальной базы требуются немалые средства. Решать вопрос путем увеличения расценок за электроэнергию — означает вызвать волну критики и вопросов от населения и предпринимателей, вполне справедливых.

Использование ветрогенераторов как альтернативной энергетической отрасли государственного масштаба в России нецелесообразно. Причиной этого являются относительно слабые и нестабильные ветра, невысокая эффективность направления в сравнении с традиционным методом производства энергии.

Наиболее выгодным и полезным представляется использование ветрогенераторов для обеспечения частных домов, усадеб, фермерских хозяйств, расположенных вдали от сетевых источников и не имеющих возможности подключения.

Основная проблема, возникающая перед пользователями — стоимость оборудования. Цены на устройства заводского изготовления слишком высоки для населения, что резко ограничивает возможности спроса и окупаемость. При этом, самостоятельное изготовление ветряков обеспечивает экономию денег в 10 и более раз при таком же качестве. Это обстоятельство является ключевым условием развития ветроэнергетики на бытовом уровне — при появлении доступных по цене образцов спрос увеличится в десятки раз.

Наибольшие перспективы у ветроэнергетики имеются в степных регионах, на юге России, в местностях, где строительство дополнительных ГЭС или АЭС невозможно.

Основным импульсом в развитии стало бы решение правительства о строительстве крупных ВЭС, но на сегодня их параметры не могут в достаточной степени конкурировать с ГЭС или АЭС ни по мощности, ни по производительности. Кроме того, нестабильность источника энергии — ветра — является достаточно серьезным аргументом против использования этого направления в промышленных масштабах.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Применение энергии ветра

На сегодняшний день использование энергии ветра имеет мелкие масштабы. Гидро- и ядерная энергетика в связке с угольными или мазутными ТЭЦ практически полностью закрывают потребность населения, а регионы, не имеющие подключения, пока обходятся дизельными или бензиновыми генераторами. Поэтому реализация программ альтернативных способов выработки энергии и, в частности, ветроэнергетики, еще не созрела для реального воплощения в жизнь.

Необходимо учитывать, что речь идет о промышленном производстве энергии, способном обеспечивать, как минимум, населенные пункты.  Существующие относительно небольшие ветроэлектростанции пока нельзя считать существенным вкладом в энергетику страны, скорее, это варианты использования существующих возможностей при отсутствии подключения или недостатке имеющихся ресурсов.

Наибольший эффект в условиях России способны показывать именно небольшие ветряки, используемые для обеспечения одного дома или усадьбы. Для отдаленных поселков, дачных или коттеджных, где подключение стоит очень дорого, а состояние сетей допускает частые и внезапные отключения и перебои, использование собственного ветрогенератора способно стать неплохим вариантом дополнительного или основного источника питания бытовой техники и маломощного оборудования.

Для освещения или водоснабжения уже сегодня достаточно активно используются ветряки, созданные из подручных материалов. Они вполне справляются со своей задачей, имеют высокую ремонтопригодность и неприхотливы в обслуживании.

Такие преимущества привлекают широкий круг пользователей, желающих установить комплект ветрогенератора у себя на участке. Это позволит разгрузить имеющиеся электросети и сэкономить на счетах за электричество. Таким образом может быть частично или полностью решена проблема энергоснабжения отдаленных населенных пунктов, экспедиций или прочих участков.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Самая крупная ветровая электростанция в России

На сегодняшний день самой крупной из действующих в России является Ульяновская ВЭС. Ее установленная мощность составляет 35 МВт, что относительно немного в сравнении с имеющимися ГЭС. Станция совсем новая, запущена в эксплуатацию в январе 2018 года. ВЭС принадлежит компании Фортум, строительство комплекса продолжалось два года. В состав станции входят 14 ветротурбин по 2,5 МВт мощностью.

Поставщиком комплекса является китайская компания DongFung, выигравшая тендер на поставку проектного оборудования. Проектные работы начались в феврале 2016 года, а непосредственное строительство стартовало в мае 2017. Примечательно, что основными участниками создания проекта и строительных работ являлись компании из России, хотя были и зарубежные представители. При этом, доля российского оборудования составляет 28 %, т.е. большинство технического обеспечения создано в Китае.

Данная ВЭС не долго будет являться самой крупной в России. В планах компании Фортум в партнерстве с компанией Вестас (мировым поставщиком ветротурбин и оборудования для ВЭС) строительство большого количества турбин суммарной мощностью до 1000 МВт. Предполагаемый процент российского оборудования в этих проектах — 65%.

Крупнейшие ВЭС в стране

Количество ветроэлектростанций в России не так уж и мало, хотя их мощность относительно невелика. Имеются агрегаты в Калининградской области, в Оренбургской области, в Башкортостане, Калмыкии, на Чукотке, в Белгородской области.

Большой список ВЭС имеется в Крыму, где ветроэнергетика имеет большую эффективность из-за географического положения и особенностей атмосферных потоков ветра. Изолированная энергосистема Крыма во многом опирается на ветрогенераторы, позволяющие использовать собственную энергию, а не поставляемую с материка.

Имеющиеся на сегодняшний день ВЭС являются, по сути, первыми пробными комплексами, созданными в том числе для получения практического опыта эксплуатации подобных сооружений и для сбора статистики, дающей информацию о возможностях ВЭС в условиях российских регионов.

В планах значится строительство намного более производительных и мощных ветростанций, предполагаемый ввод в эксплуатацию — 2020-2022 гг. Мощность каждого комплекса будет составлять от 15 до 300 МВт, что сможет в значительной степени разгрузить обветшалые сети, позволит стабилизировать работу энергостистем регионов, сделает возможной подачу электроэнергии в отсталые районы.

Рекомендуемые товары

Почему СССР был лидером в ветроэнергетике, а сейчас нам приходится всех догонять

Самым неожиданным пируэтом на пути человечества к ветровой энергетике может похвастаться Россия. Когда ВЭС были непопулярны на Западе, они были на подъеме у нас. Когда в мире их стали активно развивать, в стране появились просто толпы экспертов из энергетической отрасли, которые указывали: «Место для ветряков в Европе кончилось». Правда, с тех пор, как у нас начали это говорить, мощность ВЭС у европейцев выросла в десятки раз и продолжает расти. Видимо, до них мнение наших экспертов не довели.

Ну а в 2016 году мы внезапно еще раз поменяли мнение, так сказать, вернулись в добрежневский СССР. Первым на государственном уровне сказал свое веское слово Росатом. Его замгендиректора Вячеслав Першуков честно отметил: после выполнения имеющихся заказов на строительство новых АЭС за рубежом Росатом может остаться без зарубежных строек, поскольку этот рынок быстро сокращается. Атомная генерация за пределами России, действительно, переживает упадок, и никаких перспектив выхода из него не видно.

Главная причина проста: энергия АЭС западной постройки стоит дорого. Энергия АЭС российской постройки дешевле, но все равно не настолько, как у новых западных ветряков. Да, для компенсации их непостоянства нужно немного газовых ТЭС, но для АЭС они тоже нужны. Ведь реактор всегда дает одинаковую выработку, а люди потребляют днем куда больше, чем ночью. При равной цене и равных проблемах западный покупатель, на которого вечно давят «зеленые», никогда не выберет атомную генерацию.

Вот Першуков и констатирует: возможности строительства новых крупных АЭС за рубежом практически исчерпаны. «Мы должны зарабатывать не на рынке ядерных технологий. Все. Иначе не получается», – верно отмечает он.

Конечно, если сперва забрасывать какое-то дело на десятилетие, а потом браться за него, когда у конкурентов уже есть отработанные годами технологии, то сразу на лидерские позиции рассчитывать не стоит. Поэтому Росатом пошел по уже проторенному Петром I пути и начал учиться новому (а точнее — хорошо забытому у нас старому) у голландцев. С помощью дочерней структуры он создал партнерство с Lagerwey. До 2020 года госкорпорация планирует построить 26 небольших ВЭС на 610 мегаватт — начиная с Ульяновской области уже в 2018 году. Да, это меньше одной сотой от ежегодного мирового ввода, но на этих крохах Росатом учится. К тому же в 2020 году предполагается локализовать производство ветряков в России на 65 процентов.

Сложнее будет потом, когда придется выйти на большие масштабы. С прибылью производить ветряки общей мощностью лишь на сотни мегаватт в год нельзя. Это большой бизнес, без массового производства низкой цены в нем не будет. Поэтому надо расширять как строительство ветряков у нас, так и выходить на мировой рынок. Однако, здесь конкурировать будет очень тяжело.

Гиганты типа Vestas потратили десятки лет на отработку своих технологий и построили совершенно уникальные мощности. Например, завод по выпуску титанических лопастей в десятки тонн, расположенный на острове специально для того, чтобы проще было вывозить такой сложный для сухопутных дорог груз. Где Росатом построит такое, и сможет ли он угнаться за постоянно совершенствующимся рынком ветряков — вопрос, и непростой.

Ветряные электростанции — перспективные источники энергии

Энергия ветраНе каждый человек сможет быстро ответить на вопрос – что же такое ветер? С точки зрения физики это довольно сложное природное явление. Но есть у этого понятия и экономическое толкование, и важность его в современном мире все возрастает от года к году. Энергия ветра, дешевая и возобновляемая, вот причина привлекательности этого явления природы. Точно такая же энергия получается при использовании течения воды, приливов и отливов, солнечных лучей. Но у ветряной энергии есть свои особенности, которые мы и рассмотрим в этой статье.

История использования энергии ветра

Ветряная мельница известна много вековВ древнем городе Вавилон в третьем тысячелетии до нашей эры уже пользовались энергией ветра. Расцвет экономики этого региона наступил в 6-ом веке до нашей эры, и именно на эту эпоху приходится самое большое число технических открытий. Тогда было создано первое устройство, которое позволяло осушать болотистые местности. В древнем Египте с помощью ветра были созданы первые ветряные мельницы для производства муки из зерна. В Китае пошли еще дальше, там в это же время велась откачка воды с рисовых полей механизированным способом. И вращали лопасти этих устройств именно ветряные потоки. Европа в этом отношении не была в первых рядах, ветряные технологии дошли сюда только в 12-ом веке нашей эры.

Но все эти три тысячи лет были только подготовкой к существенному рывку технического прогресса, который произошел в 20-ом веке. Человечество придумало, каким образом не просто заставлять ветер вращать какие-либо лопасти, а как вырабатывать электроэнергию, чтобы обеспечивать работу самых разных машин. Такое открытие стало по-настоящему прогрессивным, оно перевернуло всю историю использования ветра. На данный момент на Земле работают электростанции, которые являются представителями далеко не первого поколения. Современные, технологичные, экономичные станции украшают многочисленные районы нашей планеты, способствуя улучшению экологии и здоровья людей.

Преимущества ветряных электростанций

Плюсы и минусы ветряных электростанцийУстановить ветряную электростанцию где угодно не получится. Для этой цели подходят только те районы, где наблюдаются постоянные сильные ветра. Но и здесь есть свои нормативы. Если в местности преимущественно дует ветер со скоростью от 4,5 м/с, то строительство ветряной станции будет эффективным. Причем, такую электростанцию можно строить как отдельно стоящую, так и несколько станций, объединенных в систему, то есть каскад станций. Такие сети станций называют ветряными фермами, в этом случае несколько ветряков работают на один энергоблок. Таким образом достигается максимальный энергетический эффект при существенной экономии на строительстве и оснащении.

На данный момент наибольшее количество ветряной энергии производят в Соединенных Штатах. Если же говорить о Европе, то лидерами в этой сфере являются Дания, Нидерланды, Германия и Великобритания. Причем, в Германии работает наиболее мощная электростанция, которая в электроэнергию преобразует силу ветра. Она вырабатывает ежегодно до 7 миллионов кВт/часов энергии. Ветряная ферма Aeolus II поставляет электроэнергию в 2 тысячи домов. Если учесть, что на планете на сегодняшний день работает более 20 тысяч ветряных ферм, то можно представить, сколько электричества производится с помощью обычного природного явления – ветра. Такое широкое развитие отрасль получила благодаря массе преимуществ. Есть и недостатки, но они легко устраняются, а вот плюсы работают долго и эффективно. Итак, ветряные электростанции ценятся человечеством по нескольким причинам.

Стоимость эксплуатации ветроэлектростанции очень низкая. Для ее успешной работы не нужен многочисленный персонал, не требуется его обучение. Покупка и регулярная замена дорогостоящих блоков также не требуется.

Однажды правильно выбранное место расположения для электростанции гарантирует несколько десятилетий бесперебойной и качественной работы, получение должного объема энергии. Точность выбора места требует огромного внимания: подробный и тщательный анализ обеспечит в дальнейшем и экологичность процесса и его финансовую выгоду для собственника.

Электростанция, работающая при помощи ветра, это практически совершенно чистый объект в плане экологии. Чистота окружающей среды выражается и в системе работы, и в процессе передачи энергии, и в ее использовании. Кроме того, ветряная станция не может навредить окружающей среде даже в случае ее разрушения, что нельзя сказать о гидроэлектростанции или о станции атомной. Ветряная электростанция не производит выбросов в окружающую среду, она не изменяет ландшафт, не нарушает природную экосистему. Никаких вредных воздействий ни на территорию, ни на озоновую оболочку Земли нет.

Топливо или источник энергии у ветряной станции – возобновляемое. Это ветер, который не нужно где-либо добывать и транспортировать на место расположения станции. Поэтому финансовый эффект от работы ветряков максимальный. Транспортировать электрическую энергию приходится только до источника потребления. Практика показывает, что потребитель практически всегда находится рядом, поэтому не приходится тратить большие деньги на строительство коммуникаций. Кроме того, не происходит потерь энергии во время транспортировки, а они иногда приносят очень серьезные убытки компании-собственнику.

Вблизи от ветряной электростанции не надо выстраивать «мертвую» зону, как около других станций. Все земли можно использовать в сельскохозяйственных целях, ведь ветряки никак не вредят окружающей среде.

Расходы на получение ветряной энергии хоть и минимальны, но все же существуют. Преимущество этих расходов – их стабильность. А вот стоимость энергии для продажи постоянно растет. Следовательно, размер чистой прибыли владельцев ветряных станций постоянно растет. Причем конкурентоспособность на рынке энергии ветряной ресурс имеет очень высокую. Стоимость энергии в разы дешевле, чем та, которая получена на ГЭС, АЭС.

Недостатки ветряных электростанций

Недостатков немного, но противники строительства ветряков их активно муссируют в прессе. Но все эти недостатки скорее всего представляют собой трудности при ведении этого бизнеса, которые можно минимизировать.

Высокий входной барьер в бизнес. Для того, чтобы начать получать ветровую энергию, надо построить ветряную ферму. Предстоят затраты на высокоточные расчеты для определения местности постройки, также надо будет вложить деньги в покупку оборудования и его монтаж на выбранной территории. Именно стоимость ветряной электростанции, стоимость оборудования являются основной строкой затрат, но здесь можно воспользоваться услугами инвесторов, банковским кредитованием и пр.

Весьма существенный недостаток ветряной станции – невозможность точного прогноза, сколько электроэнергии будет получено в определенный отрезок времени. Предугадать, насколько сильным будет ветер, и будет ли он дуть вообще, невозможно. Поэтому при ведении данного вида бизнеса существуют существенные риски. Но минимизировать их можно, если тщательно выверить координаты расположения станции на стадии ее планирования. Такой анализ основывается на многолетних показаниях скорости ветра.

Многие противники ветряных станций утверждают, что лопасти издают сильный шум, который негативно влияет на окружающую среду. Но современные технологии позволили измерить уровень шума и изучить его воздействие. Оказалось, громкий звук от работы лопастей действительно присутствует, но уже на расстоянии 30 метров от источника он слышен только на уровне фона. Для сведения: фон – это уровень шума естественной окружающей среды.

Защитники птиц выступают активно против строительства ветряных станций. В этом случае аргументы также легко разбиваются об анализ вреда, наносимого другими техногенными объектами птицам. Подсчет показал, что количество птиц, попадающих под лопасти ветряков, ничем не отличается от числа пернатых, которые погибают в других местах, к примеру, на высоковольтных линиях передач.

Еще одна весьма сомнительная гипотеза противников ветряной энергии – искажение телевизионного сигнала вблизи от фермы. В современном мире все большую популярность приобретает спутниковое ТВ, цифровое ТВ, эфирного телевидения остается все меньше и меньше, поэтому приему сигнала в квартирах и домах ничто помешать не может.

Ветряные электростанции делают жизнь немцев невыносимой :

Достижения ветряного направления в энергетике

ШотландияВетроэнергетика в мире получила в последние годы значительное развитие. Показательны результаты ветряной энергетики в Шотландии. Здесь ветряками вырабатывается электроэнергии на 25% больше, чем потребляют все жилые объекты страны, а это более трети всего энергопотребления. И самое интересное, что правительство Шотландии поставило задачу – к 2020 году все потребности в электричестве удовлетворять за счет работы ветряных электростанций. И шотландцы готовы на это потратить почти 46 миллиардов фунтов стерлингов. Взята стратегия на закрытие атомных станций и на развитие солнечных и ветряных электростанций.

Недавно в Канаде установили юбилейную ветряную станцию. Порядковый номер этого объекта – 1500! Полмиллиона жилых домов можно снабжать электроэнергией ветряных станций. Причем первая ветряная турбина в этой стране была установлена всего 10 лет назад. И если на данный момент доля ветряной энергетики занимает 3% в экономике Канады, то к 2025 году планируется увеличить этот объем до 20%.

Испанский остров Эль Хьерро давно заявил о своей энергетической независимости. Ветро-приливная электростанция вырабатывает более 20% всего электричества. Столько же дает атомная энергетика, чуть меньше – ТЭЦ и ГЭС. Солнечные батареи вырабатывают около 5% электричества, потребляемого на острове.

На Ямайке построена гибридная станция, которая одновременно работает и на энергии ветра и на солнечной энергии. Ее мощность – более 110 кВт/ч в год. Владелец электростанции – производитель оборудования для таких станций. Собственник утверждает, что окупается довольно дорогое оборудование за 4 года, а затем за 25 лет эксплуатации станция даст экономию 2 миллиона долларов.

Российская ветроэнергетика

Все перечисленные плюсы ветроэнергетики, которые присутствуют в других странах, в России работают слабо. Стоимость киловатта электроэнергии ветровой в 3-8 раз превышает цену обычного традиционного электричества. Причин тому много, но главная – слабое внимание к этому альтернативному источнику энергии. Следствием такого отношения является то, что за год в России производится ветряными фермами столько электричества, сколько в Китае, например, за 2 часа. Ветроэнергетика в России – очень обширная тема, и ее мы обсудим в следующей статье.

Почему в России не строят ветряные электростанции :

Отправить ответ

avatar
  Подписаться  
Уведомление о