Вах вакуумного диода – Вольт-амперная характеристика вакуумного диода | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Содержание

Электровакуумный диод — Википедия

several vacuum rectifier valves (WI1 5/20, PY88, EY51)

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами[править | править код]

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.
  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Вакуумный диод-вольт амперная характеристика, устройство диода

Вакуумом называется настолько разреженное скопление газа, которое практически исключает соударение молекул, что сводит электропроводность вакуума к минимуму.

Вакуумный диод — это металлокерамический или диодный баллон, во внутренней полости которого отсутствует воздух. Как результат, показания по давлению внутри таких баллонов составляет 10 -6 — 10 -7 миллиметров ртутного столба.

Структура диода вакуумного типа

Во внутренней вакуумной полости баллона размещается пара электродов:

  • Катодный электрод.

Изготавливаемый из металлов, вертикально расположенный элемент цилиндрической формы. На поверхности сформировано напыление из металлических оксидов (используются металлы земельно-щелочной группы) поэтому катод называется оксидным. Катоды данного типа отличаются тем, что в момент повышения температуры электроны отделяются от них гораздо активнее, чем от стандартных катодов металлического типа. По катоду проводится изолированный проводниковый элемент, который нагревается посредством тока переменной или постоянной частоты. Отделяющиеся от элемента отрицательно заряженные частицы находятся в потоке и притягиваются в сторону анодного электрода.

Катоды диодов вакуумного типа  выполняются преимущественно по подобию W и V литер. Это позволяет увеличить размер устройства по длине.

  • Анодный электрод.

Округлый или элиптоидный цилиндрический элемент. Расположен на одной горизонтали с катодом.

Аноды выполняются по форме кубообразные элементы с отсутствующими боковыми гранями. Если рассматривать его в разрезе, то можно увидеть закруглённый на углах четырёхугольник. Видимая конструкция обусловлена тем, что промежуток катод-анод по всем векторам направлений должен быть одинаковым. По этой причине и катоды, и аноды контуром похожи на эллипс.

Для уменьшения нагреваемости анода, в его конструкцию обычно включаются специальные теплоотводные «ребра».

Закрепление катодов и анодов осуществляется посредством особых держателей.

Электровакуумный диод

Помимо вакуумных полупроводников были созданы также электровакуумные диоды.

Под этим названием подразумевается двухэлектродная вакуумная электронная лампа. Конструкция этого устройства сходна с диодом вакуумного типа. На деле они практически не отличаются. Единственный несовпадающий момент заключается в том, что в электровакуумном диоде роль катодного электрода исполняет w-подобная, либо ровная нить.

 

vakuumnyj-diod

 

В процессе функционирования диода температурный уровень нити должен подниматься, пока не достигнет определённого градуса. В этот момент запускается процесс термоэлектронной эмиссии. Когда аноды электроды получают напряжение со знаком «минус», происходит перенаправление электронов в обратную сторону, к катоду. В момент, когда на анод начинает поставляться напряжение со знаком «плюс», отсоединившиеся электроны вновь движутся к анодному электроду. Это провоцирует возникновение тока.

Сферы применения

Вакуумные и аналогичного типа диоды применяются в качестве выравнивателей частоты приложеного напряжения. Данное свойство качество является базовым для вакуумных выпрямителей. Они применяются как фиксаторы высокочастотных волн и выпрямители электронных потоков переменного характера.

Диоды электровакуумного типа обладают односторонней электропроводностью. Причина этому в том, что электроны могут двигаться лишь по направлению катод-анод. Это позволяет эксплуатировать вакуумный диод в роли инвертера.

 

vakuumnyj-diod

 

Применение вакуумных диодов позволяет питать радиотехнику от сети с переменным током.

Параметры вакуумного диода определяют качество и назначение механизма, в котором он установлен.

Однако вакуумные диоды имеют ограничения по рабочей частоте напряжения: 500 МГц.

Принцип работы

Диоды вакуумного типа работают следующим образом:

  • Катод разогревается, начинается отделение отрицательно заряженных частиц.
  • Развивается процесс термоэлектронной эмиссии.
  • Уже свободные частицы блокируют отделение других частиц, происходит образование электронного облака.
  • Электроны с самой низкой скоростью перемещения притягиваются обратно к катоду.
  • При строго фиксированной температуре происходит стабилизация электронного облака. То есть количество отлетающих электронов совпадает с количеством оседающих

При возникновении нулевого напряжения (короткого замыкания) частицы движутся к в сторону анодного электрода. Это происходит за счёт преодоления быстрыми электронами потенциальной ямы. Ток отсекается, если пустить по аноду напряжение со знаком «минус» на 1В или даже менее того.

Если подать положительное напряжение, то произойдёт формирование ускоряющего поля, увеличивающего анодный ток. На уровне близком к предельной катодной эмиссии рост тока снижает скорость и стабилизируется. Это называется эффектом «насыщения».

Вольт-амперная характеристика (ВАХ)

Вольт-амперная характеристика диодов вакуумного типа состоит из трёх участков:

  1. Начальный, нелинейный.

Характеризуется медленным возрастанием тока и повышением уровня напряжения на анодном электроде, что рассматривается как следствие оказываемого электронным облаком (с отрицательным зарядом) сопротивления. Уровень тока на аноде весьма низок, но он увеличивается по экспоненте вместе с напряжением. Это происходит благодаря неоднородности скоростей движущихся электронов. Чтобы прекратить анодный ток потребуется отрицательное, запирающее напряжение на аноде.

  1. Закон степени 3/2-х. Второй участок.

Проявляется взаимозависимость тока и напряжения на аноде в соответствии с законом степени 3/2-х, где одна из переменных находится в зависимости от роста катодной температуры.

  1. Последний, насыщение.

Если уровень напряжения продолжает увеличиваться, то происходит замедление, а затем и прекращение роста тока, поскольку все электроны приникают к аноду, эмиссионный потенциал катода израсходован.Ток, который при этом устанавливается на аноде, называется током насыщения.

 

vakuumnyj-diod

 

Основные характеристики вакуумного диода

Охарактеризовать вакуумный диод можно по следующим параметрам:

  1. Крутизне ВАХ;
  2. Дифференциальному сопротивлению;
  3. Максимально допустимому обратному напряжению;
  4. Запирающему напряжению;
  5. Максимально допустимой рассеиваемой мощности;

Вычисление крутизны и внутреннего сопротивления осуществляется через анодное напряжение и уровень температуры на катоде.

 

Поделиться ссылкой:

Вакуумный диод: характеристика, принцип работы

 

Собирая различные электрические приборы в своей домашней лаборатории, многие люди не только экономят деньги на приобретении новой техники, но и чинят вышедшие из строя электроизделия. Для полноценной работы многих приборов требуются диоды, которые сегодня представлены самыми разнообразными экземплярами. В сегодняшней статье речь пойдет о таком элементе, которые довольно часто встречается в электрических схемах – вакуумный диод.

Чтобы правильно использовать такую детальку, необходимо знать ее устройство, а также какая схема и принцип работы для нее характерны. Обо всем этом вы узнаете из этой статьи.

Что представляет собой устройство

Современный диод вакуумного типа представляет собой баллон, выполненный из металлокерамики или стекла, лишенный воздуха. Их этого баллона выкачивают воздух до давления, находящегося на уровне 10-6 — 10-7 мм рт. ст. Отсюда и название данного элемента электросхем.

Устройство вакуумного диода

Строение диод вакуумного типа

Внутри такой баллон размещены два электрода. Одним из них является катод. Он имеет вид металлического вертикального цилиндра, который покрыт слоем оксида щелочно-земельных металлов (кальция, стронция, бария). Благодаря такому напылению данный элемент получил название оксидный катод.

Обратите внимание! При его нагревании с поверхности происходит значительно большее испускание электродов, чем с обычного металлического элемента аналогичного вида.

Катод внутри содержит изолированный проводник, нагреваемый переменным или постоянным током. При нагревании, катод испускает электроны, которые движутся и достигают второго элемента вакуумного диода – анода.

Анод имеет вид овального или круглого цилиндра. Он с катодом имеет общую ось. Схема диода вакуумного типа имеет следующий вид.

Устройство диодов вакуумного типа

Схема диода вакуумного типа

Кроме вакуумного диода существует еще такое понятие, как электровакуумный диод.
Под собой электровакуумный диод подразумевает двухэлектродную вакуумную электронную лампу. Ее строение аналогично диоду вакуумного типа. По сути это одно и тоже. Здесь катод представляет собой W-образную или прямую нить. Он, в процессе работы такой лампы, нагревается до определенной температуры. В результате нагрева возникает термоэлектронная эмиссия. В ходе подачи на анод отрицательного напряжения относительно катода, электроны возвращаются обратно на катод. Когда на анод подается положительное напряжение, часть из эмитированных электронов начинает двигаться в нему. В результате возникает ток.

В результате своей работы вакуумные диоды и их аналоги способны на выпрямление приложенного к ним напряжения. Таким основным своей свойством обладают вакуумные выпрямители, поэтому они используются в качестве детекторов сигналов высокой частоты и выпрямления переменного тока.
Такое устройство характерно для всех изделий подобного типа. При этом данное устройство и определяет основные характеристики изделия, а также то, какое применение оно будет иметь.

Обратите внимание! Частотный диапазон для диода вакуумного типа несколько ограничен и не превышает 500 МГц. При этом интегрированные в волноводы дисковые диоды, способны на детектирование частоты до 10 ГГц.

Формы основных элементов диода

Элементы вакуумного диода

Форма катода и анода

Катод, входящий в состав диода вакуумного типа, зачастую имеет вид латинских букв W или V. Такая форма используется для увеличения длины изделия. В тоже время анод будет более выгодным, если станет изготавливаться в виде коробки, лишенной боковых граней. В сечении анод имеет форму прямоугольника с закругленными углами.

Такая форма анода определяется необходимостью для того, чтобы он во всех направлениях по возможности находился на одинаковом расстоянии от нагреваемого катода. По этой причиной наиболее выгодной формой для обоих элементов является эллиптическая.
Чтобы снизить степень нагрева анода в его устройстве часто фигурируют ребра (крылышки). Благодаря их наличию, анод имеет более качественное отведение тепла.
И катод и анод в баллоне крепятся при помощи специальных держателей. Для большего удобства в эксплуатации, внизу лампы устанавливается цоколь, состоящий из изоляционного материала. Он оснащен металлическими ножками-штырьками. Эти штырьки обеспечивают контакт лампы при включении ее в гнезда ламповой панели.
Вот такое устройство имеет электровакуумная лампы или диод вакуумного типа.

 

Принцип функционирования диода вакуумного типа

Чтобы схема, в которую входит выпрямитель вакуумного типа, работала как надо, следует понимать принцип работы такой детали.

Функционирование диода

Принцип работы диода

Принцип работы вакуумных диодов представляет собой следующую картину:

  • в ходе разогрева катода, электроны с его поверхности начнут отделяться;
  • их отделение происходит за счет формирования термоэлектронной эмиссии;
  • освобожденные с поверхности электроны начинают препятствовать вылету других электронов. В следствии этого вокруг поверхности катода образуется облако электронов;
  • часть электронов этого облака, обладающие наименьшими скоростями, опускается обратно на поверхность катода;
  • в ситуации, когда задается определенная температура, облако электронов стабилизируется. Это означает, что с катода вылетает столько же электронов, сколько потом на него опускается;
  • при наличии нулевого напряжения, например, при ситуации короткого замыкания анода на катоде, в лампе начинает течь ток электронов по направлению от катода к аноду. В данной ситуации наиболее быстрые электроны способны преодолеть имеющуюся потенциальную яму, из-за чего они и притягиваются к аноду. Отсечка тока происходит в той ситуации, когда на анод подается отрицательное запирающее напряжение. Это напряжение должно иметь один вольт или ниже.
  • в ситуации подачи положительного напряжения на анод, в диоде формируется ускоряющее поле, которое способствует возрастанию на аноде тока. Когда ток на этом элементе достигает значений, которые близки в пределу эмиссии катода, происходит замедление роста тока и его стабилизация. Т.е. наблюдается эффект «насыщения».

Вот по такому принципу работают диоды вакуумного типа.

Важная характеристика диодного элемента – ВАХ

Все диоды, в не зависимости от того, вакуумные оны или нет, обладают таким параметром, как вольт амперная характеристика или сокращенно ВАХ.

Графическое отображения ВАХ

ВАХ вакуумного диода

Чтобы разобраться, что же это за вольт амперная характеристика, рассмотрим график на примере происходящих в лампе процессов.
В самом начале, когда на аноде отсутствует напряжения, вокруг катода в следствие его нагрева формируется электронное облако. Когда на аноде возникает положительное небольшое напряжение, самые быстрые электроны, входящие в электронное облако катода, начинают устремляться к аноду. В результате можно регистрировать анодный ток небольшой величины. В ситуации, когда анодное напряжение будет продолжать увеличиваться, из электронного облака все большее число электронов будут перетекать к аноду в плоть до полного «рассасывания» катодного электронного облака. Это состояние соответствует точке В на графике, приведенном выше. Такое напряжение означает, что всех вылетающие из катода электроны будут немедленно притягиваться к аноду.
Обратите внимание! Дальнейшее нарастание анодного тока при сохранении величины накала не происходит. Чтобы добиться увеличение данного показателя необходимо использовать дополнительные электроны. А они здесь отсутствуют. Для этого увеличения показателя можно повысить накал катода, но такой способ не используется поскольку приводит к уменьшению срока службы катодного элемента.
Таким образом вся эмиссия катода при конкретной температуре накала будет исчерпана. В результате анод достиг ситуации «насыщения током».
Все эти процессы, поэтапно, отращены на вольт амперной характеристики, приведенной выше. Такой параметр, как вольт амперную характеристику в высшей точке, можно рассматривать как предел возможностей диода.
Как видим принцип работы изделия неотделим от ВАХ. При этом последняя является его отражением.

Где используются такие изделия

Применение электровакуумных ламп определяется их основными возможностями или свойствами, а именно способностью пропускать ток только в одном направлении. Это связано с тем, что в диоде движение электронов возможно только от катода к аноду. Иногда такое свойство диодных выпрямителей называется односторонней проводимостью. Благодаря такому свойству, вакуумные диоды применяются в качестве преобразователя постоянного тока в переменный (его выпрямления). Такие способности данного рода изделий обеспечили им обширное применение в радиоаппаратуре.

Обратите внимание! Использование диода вакуумного типа позволит решить проблему питания радиоаппаратуры от промышленной сети переменного тока.

Схема, по которой можно использовать диода в качестве выпрямителя для переменного тока, довольно проста.

Принцип использования диода как выпрямитель

Схема диода, работающего как выпрямитель

В данной ситуации между анодом и катодом следует включить источник переменного тока. Вверху графика отражено напряжение источника переменного тока. Здесь имеется периодическое его изменение с определенной частотой по типу синусоиды. С такой же чистотой меняется напряжение на аноде по отношению к катоду. Часть времени анод будет положительным (верхняя часть графика), а часть – отрицательным (нижняя часть графика).
При положительных полупериода на аноде будет положительное напряжение. В такой ситуации ток будет течь, а при противоположном значении полупериода – он будет отсутствовать. В результате получаться импульсы, равные по частоте переменному току.

Заключение

Зная особенности функционирования диодов вакуумного типа, можно максимально полно использовать их особенности в работе радиоэлектронных приборов. Помните, что каждый вид диодов имеет свои особенности и способен оптимально работать в определенных условиях. Учет всех параметров его работы, а также ВАХ, позволит выжать из изделия максимум без нарушения принципов его функционирования.

 

устройство, принцип работы, вольт амперная характеристика

Вакуумным диодом называется лампа, преобразующая переменный ток в постоянный. Этот радиоэлемент способен работать с достаточно высоким напряжением и частотой. Преимущество перед полупроводниковыми диодами – отсутствие обратного тока. Недостаток – более низкий КПД.

Устройство

Вакуумный диод – самая простая электронная лампа в виде стеклянного или металлокерамического баллона без воздуха. В емкость с вакуумом размещаются 2 электрода. У катода форма цилиндра, он покрывается оксидом бария, стронция или кальция, увеличивающих количество электродов, испускаемых при нагревании. Анод изготавливается овальной или круглой формы, устанавливается на одну ось с катодом.

Выводы электродов выводятся сквозь стенки баллона. Если емкость металлокерамическая, в ней сверлятся отверстия, в которые впаиваются бусинки из стекла. В баллоне из стекла выводы впаиваются в основной материал. У анода один вывод. Если катодом служит нить какала, то выводов два (от каждого конца). При встраивании подогревного катода выводов три (2 от нити, один – от вещества, выделяющего электроны).

Электровакуумный диод тоже лампа электронного типа, по строению мало отличающаяся от вакуумного варианта. Основная особенность – строение катода. В электровакуумных моделях он прямой, W-образный или V-образный. При использовании двух последних вариантов удлиняется нить накала.

Форма анода вакуумного диода – прямоугольник с круглыми углами. Основное преимущество – одинаковое расстояние любой точки поверхности до минусового электрода. Для отвода избытка тепла анод может быть оснащен «крылышками». Чтобы увеличить удобство использования, такие лампочки оснащаются цоколем, изготовленным из диэлектрика, со штырьками, обеспечивающими контакт с ламповой панелью.

Принцип устройства и работы вакуумного диода

Особенностью электронных ламп является их пригодность для работы с переменными токами различнейших частот вплоть до самых высоких. Вследствие практического отсутствия инерции электронные лампы могут работать при таких высоких частотах, которые недоступны каким-либо другим устройствам.

Простейшей электронной лампой является диод. Слово «диод», основой которого служит греческий корень «ди» — два, означает, что в этой лампе имеются два электрода.

Первый из этих электродов нам уже знаком – это катод, служащий для получения потока электронов и необходимый в каждой электронной лампе, к какому бы типу она ни относилась. Вторым электродом является металлическая пластика – анод. Таким образом, диод – двухэлектродная электронная лампа – представляет собой стеклянный или металлический баллон, из которого выкачан воздух и внутри которого находятся катод и анод. От этих электродов сквозь стенки баллона проходят выводы. Если баллон стеклянный, то выводы впаиваются в стекло. Если же баллон металлический, то выводы можно сделать, например, через стеклянные бусинки, впаянные в металл.

От анода делается один вывод. Если нить накала одновременно является и катодом, то от нее делаются два выводы (от концов нити). Если катод подогревный, то у него делают три вывода – два от подогревающей нити и один – от излучающего слоя, т. е. от собственного катода.Внутри баллона лампы создается очень высокий вакуум, вполне достаточный для того, чтобы электроны могли беспрепятственно вылетать из раскаленного катода. Поэтому, если катод диода нагреть до нужной температуры, из него начнется электронная эмиссия и электроны образуют вокруг катода своего рода электронное облачко. Образование из катода, испытывают отталкивающее действие со стороны ранее вылетевших электронов, поэтому они не могут отлететь на значительное расстояние от катода. Часть электронов, имеющих наименьшие скорости, падает обратно на катод. В конце концов электронное облачко стабилизируется: на катод попадает столько же электронов, сколько из него вылетает. Облачко представляет собой запас свободных электронов в вакууме, пригодный для использования.

Второй находящийся в баллоне диода электрод – анод – предназначен для использования электронов вылетающих из катода, и для управления ими. С этой целью к катоду и аноду лампы подводится электрическое напряжение, например от батареи.

Очевидно, это напряжение можно подвести к лампе двумя способами: минус источника питания к катоду и плюс к аноду или наоборот.

Если мы присоединим плюс источника питания к катоду, минус к аноду, то электроны, вылетающие из раскаленного катода, нельзя будет использовать по двум причинам. Во-первых, электроны, покинувшие катод с небольшой скоростью, будут, очевидно, возвращаться обратно на катод, который в этом случае имеет положительный заряд и поэтому будет стремится притянуть к себе отрицательно заряженные электроны. Во-вторых, электроны, получившие при вылете достаточно большую скорость и концентрирующиеся в виде электронного облачка вокруг катода, окажутся бесполезными, так как отрицательно заряженный анод лампы не только не будет их притягивать, но и наоборот – станет их отталкивать обратно к катоду.

Иначе будет обстоять дело тогда, когда мы присоединим плюс источника напряжения к аноду, а минус – к катоду. Одновременно в цепь батареи включим миллиамперметр. В этом случае включенный в цепь миллиамперметр отметит прохождение тока. Этот ток будет течь по следующей цепи: батарея – катод лампы – пространство между катодом и анодом лампы – миллиамперметр – батарея. Ток в цепи возникает тогда, когда плюс батареи присоединен к аноду, а минус – к катоду. Этим и объясняется название второго электрода лампы: «анод» (в электротехнике анодом принято называть электроды, соединенные с положительным полюсом источника тока, а катодом – соединенные с отрицательным полюсом). В соответствии с этим текущий через лампу ток, образованный потоков электронов, несущихся от катода к аноду, называют анодным током. Анодный ток обозначается обычно символом Іа, а напряжение на аноде Uа. В отличие от него напряжение накала лампы обозначается символом Uн.

Чем же определяется величина Іа?

Чтобы ответить на этот вопрос, произведем такой опыт. Раскалим катод до нужной температуры и будем подавать на анод положительное напряжение, начиная с самого небольшого и постепенно увеличивая его. При каждом изменении анодного напряжения будем по миллиамперметру отмечать величину тока в цепи. Если мы затем по записанным отсчетам построим график, откладывая на горизонтальной оси величины напряжения на аноде, а на вертикальной – соответствующие величины анодного тока, то получим кривую, подобную показанной на рисунке:При отсутствии анодного напряжения, т. е. при Uа=0, электроны к аноду не притягиваются, анодный ток будет равным нулю (Іа=0). Анодный ток возникает после того, как на анод будет подано положительное напряжение. По мере его увеличения анодный ток будет возрастать, причем рост его вначале до точки А идет медленно, а затем быстрее. Такое быстрое возрастание тока продолжается, пока он не достигнет некоторого значения, соответствующего точке Б. При дальнейшем повышении анодного напряжения рост анодного тока замедляется. Наконец, в точке В он достигает наибольшей величины. Дальнейшее повышение анодного напряжения уже не сопровождается увеличением анодного тока.

Кривая, показывающая зависимость величины анодного тока двухэлектродной лампы от напряжения на ее аноде, называется характеристикой лампы и служит для технических расчетов, связанных с использованием лампы.

Чем же объясняется такая форма вольт-амперной характеристики (ВАХ) вакуумного диода?

Чтобы понять это, проследим за происходящими в лампе процессами.

Вначале, при отсутствии на аноде напряжения, излучаемые катодом электроны скапливаются вокруг него, образуя электронное облачко. При появлении на аноде небольшого положительного напряжения некоторые электроны обладающие большей скоростью, чем остальные, начинают отрываться от облачка и устремляться к аноду, создавая небольшой анодный ток. По мере увеличения анодного напряжения все большее количество электронов будет отрываться от облачка и притягиваться анодом. Наконец при достаточно большом напряжении на аноде все электроны окружающие катод, будут притянуты, электронное облачко совершенно «рассосется». Этот момент соответствует точке В вольт-амперной характеристики диода. При таком анодном напряжении все вылетающие из катода электроны будут немедленно притягиваться анодом. Дальнейшее увеличение анодного тока при данной величине накала невозможно. Для этого потребовались бы дополнительные электроны, а их взять негде. Вся эмиссия катода, соответствующая данной его температуре, зависящей от величины накала, исчерпана.

Анодный ток такой величины, какая устанавливается при полном использовании всей эмиссии катода, называется током насыщения. Увеличить этот ток можно только одним способом – повысить накал катода, но этот способ не применяется, потому что он сокращает срок службы катода.

До сих пор мы говорили об аноде, как о металлической пластинке находящейся внутри баллона лампы и имеющий вывод наружу. Делать анод действительно в виде пластинки было бы невыгодно, так как катод излучает электроны во всех направлениях, а пластинку можно поместить только с одной его стороны. В практических конструкциях диодов анод обычно имеет форму цилиндра, окружающего катод (см. рисунок вначале). При таком устройстве лампы все излучаемые катодом электроны с одинаковой силой притягиваются анодом.

Цилиндрическая форма анода наиболее выгодна тогда, когда катод имеет прямолинейную форму. Если катод имеет вид латинских букв V или W, что часто делается для увеличения его длинны, то анод оказывается более выгодно делать в виде коробки без двух противоположных боковых стенок. Такой анод в сечении имеет прямоугольную форму, часто с закругленными углами.

У ламп с подогревным катодом аноду придают такую форму, чтобы он во всех направлениях отстоял по возможности на одинаковом расстоянии от катода. Наиболее широко применяется цилиндрический подогревный катод и соответственно цилиндрический анод. Очень выгодной оказывается эллиптическая форма катода и анода.

Для уменьшения нагрева анода его часто снабжают ребрами, или крылышками, которые способствуют лучшему отводу от него тепла.

Электроды лампы крепятся внутри ее баллона на стеклянной стойке при помощи держателей. Для удобства пользования лампой к ее нижней части прикрепляется цоколь из изоляционного материала, снабженный металлическими ножками штырьками. Эти штырьки при установке лампы в аппарат входят в гнезда ламповой панельки, чем достигается, с одной стороны, крепление лампы в аппарате и, с другой, соединение электродов лампы с нужными частями схемы. Электроды лампы соединяются со штырьками выводными проводниками, впаянными в стеклянную стойку. Лампы небольших размеров делают без цоколей, укрепляя штырьки непосредственно в стеклянном дне баллона.Для каких целей может быть использована двухэлектродная вакуумная лампа?

Возможности использования этой лампы определяются ее основным свойством – способностью пропускать ток только в одном направлении, так как движение потока электронов возможно в лампе лишь от катода к аноду. Это свойство диода, которое иногда называют односторонней проводимостью, является весьма ценным. Оно позволяет использовать диод для преобразования переменного тока в постоянный или, как чаще говоря, для выпрямления переменного тока. Способность диода выпрямлять переменный ток в свое время широко использовалось в радиоаппаратуре, в частности эта способность диода вместе с применением подогревного катода позволила решить проблему питания радиоаппаратуре от промышленной сети переменного тока.

Схема использования диода как выпрямителя переменного тока очень проста. Между катодом и анодом включен источник переменного тока. Понять процессы, происходящие в этой схеме, лучше всего при помощи графика, показанного на рисунке:Верхняя часть графика изображает напряжение источника переменного тока. Оно изменяется периодически с определенной частотой: характер изменения может быть выражен кривой, носящей название синусоиды. С такой же частотой изменяется и напряжение на аноде лампы относительно ее катода. В течении половины каждого периода напряжение на аноде будет положительным, а в продолжение второй полуволны периода – отрицательным. Положительные полупериоды синусоиды на графике сверху.

Во время положительных полупериодов на аноде лампы будет положительное напряжение и через лампу будет течь ток. Во время отрицательных полупериодов, когда анод заряжается отрицательно, электроны отталкиваются от анода и ток через лампу не течет. Измерительный прибор, включенный в анодную цепь лампы, будет регистрировать отдельные импульсы или толчки тока, по одному в течении каждой положительной половины периода; следовательно, число таких импульсов в секунду окажется равным частоте переменного тока.

Нормально в цепи переменного тока происходит, как известно, движение электронов то в одну то в другую сторону. Так как движение электронов представляет собой электрический ток, то можно сказать, что в такой цепи ток течет попеременно то в одну, то в другую сторону. Но если в цепь переменного тока включен диод, то характер движения электронов (тока) изменяется. Ток будет течь лишь в одну сторону, но отдельными импульсами или толчками. Во время каждого периода будет один толчок тока. Эти толчки тока будут чередоваться с промежутками, в течение которых тока не будет.

Если источником переменного тока является промышленная сеть, то частота будет равна 50 Гц. Значит, 50 раз в секунду на аноде диода окажется положительное напряжение и по цепи пройдет толчок или импульс тока. Такой ток называется пульсирующим, в данном случае частота пульсации равна 50 Гц.

Применение диодов не ограничивается выпрямлением переменного тока для питания радиоаппаратуры. Диоды могут выпрямлять токи высокой частоты, т. е. применяться для так называемого детектирования. Ниже показано, как в детекторном приемнике можно заметь полупроводниковый диод вакуумным кенотроном.Фактически в простейших детекторных приемниках ламповые диоды для детектирования не применяются, так как это значительно усложнило бы приемник и привело бы к необходимости применения батареи накала. Но зато в ламповых радиоприемниках для детектирования применяются почти исключительно диодные детекторы. Кроме того, диоды применяются в приемниках для устройства автоматических регулировок и некоторых других целей.

Принцип работы кенотронов для выпрямления промышленного переменного тока и диодов для детектирования высокочастотных сигналов одинаков, но по конструкции эти лампы существенно отличаются один от других.

У высокочастотного диода собственная емкость между катодом и анодом должна быть сведена к возможно меньшей величине. Размеры электродов и расстояние между ними также должны быть минимальными. Токи, выпрямляемыми детекторными диодами, обычно очень малы м измеряются долями или единицами миллиампера.

У кенотронов электроды должны быть порядочных размеров, чтобы обеспечить возможность получения достаточно большого выпрямленного тока и рассеяния на своих анодах той мощности, которая выделяется на них вследствие их бомбардировки электронами.

Возможно, вам это будет интересно:

Вакуумный диод Википедия

several vacuum rectifier valves (WI1 5/20, PY88, EY51)

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство[ | ]

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы[ | ]

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика[ | ]

Электровакуумный диод — Википедия

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *