Варикап как проверить – особенности проверки, прозвонка на исправность термистора и позистора

Содержание

Как проверить варикап? — Diodnik

Варикап – полупроводниковый прибор, который изменяет свою емкость в зависимости от обратного напряжения. В двух словах, варикап — это диод, имеющий непостоянную емкость в p-n-переходе. Эти радиокомпоненты нашли свое применения в различных радиоустройствах с электрическим управлением подстройкой частоты контуров, таких, как: передатчики, приемники и различные блоки телевизионной радиоаппаратуры.

Как проверить варикап?

Простая проверка варикапа ничем не отличается от проверки диода или стабилитрона. Для этого необходим мультиметр с режимом проверки диодов или простой омметр. Включив мультиметр в режим проверки диодов, варикап проверяют в прямом режиме и в обратном.

Как видно на фото, в одном из вариантов подключения варикап открывается, а в другом – нет.

Простая проверка варикапа на этом окончена, если под рукой есть мультиметр с возможностью измерения емкости в несколько пикофарад, тогда можно продолжать и проверять емкость варикапа. Учитывая, что варикапы обладают очень небольшой переменной емкостью, необходимо производить проверку лишь не касаясь руками контактов варикапа

.


Емкость варикапа величина не постоянная, и сильно зависит от подаваемого напряжения. Зачастую емкость варикапов колеблется от единиц до десятков пикофарад. Убедившись в наличии емкости варикапа и измерив ее величину, на этом этапе проверку варикапа мультиметром можно считать законченной.

Также, часто встречаются различные схемы приставок к мультиметру, для измерения емкости варикапов. Их необходимо использовать, если измерения емкости мультиметра не отличаются хорошей точностью.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как проверить варикап? — Diodnik

Варикап – полупроводниковый прибор, который изменяет свою емкость в зависимости от обратного напряжения. В двух словах, варикап – это диод, имеющий непостоянную емкость в p-n-переходе. Эти радиокомпоненты нашли свое применения в различных радиоустройствах с электрическим управлением подстройкой частоты контуров, таких, как: передатчики, приемники и различные блоки телевизионной радиоаппаратуры.

Как проверить варикап?

Простая проверка варикапа ничем не отличается от проверки диода или стабилитрона. Для этого необходим мультиметр с режимом проверки диодов или простой омметр. Включив мультиметр в режим проверки диодов, варикап проверяют в прямом режиме и в обратном.

Как видно на фото, в одном из вариантов подключения варикап открывается, а в другом – нет.

Простая проверка варикапа на этом окончена, если под рукой есть мультиметр с возможностью измерения емкости в несколько пикофарад, тогда можно продолжать и проверять емкость варикапа. Учитывая, что варикапы обладают очень небольшой переменной емкостью, необходимо производить проверку лишь не касаясь руками контактов варикапа

.


Емкость варикапа величина не постоянная, и сильно зависит от подаваемого напряжения. Зачастую емкость варикапов колеблется от единиц до десятков пикофарад. Убедившись в наличии емкости варикапа и измерив ее величину, на этом этапе проверку варикапа мультиметром можно считать законченной.

Также, часто встречаются различные схемы приставок к мультиметру, для измерения емкости варикапов. Их необходимо использовать, если измерения емкости мультиметра не отличаются хорошей точностью.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Проверка варистора: нахождение неисправности мультиметром

Как проверить варисторРемонт и диагностика неисправностей радиоэлектронных устройств происходит путём нахождения вышедших из строя элементов с последующей их заменой. Визуально определить, какая радиодеталь неисправна, часто не представляется возможным, поэтому для выявления поломок используют измерительные приборы — тестеры. С их помощью проверить варистор обычно не составляет труда.

Назначение и характеристики

Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Принцип работы варистораОбладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток.

Виды устройств

Как можно проверить варистор

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

Для планарного типа используется такая же маркировка, только первыми буквами ставится CN, обозначающая тип изделия.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

Методы проверки мультиметром

Проверка на работоспособность варистораДля проверки варистора, впрочем, как и любого другого радиоэлемента, проще всего использовать специально разработанные для этого приборы. В качестве таких устройств используются мультиметры. Основной параметр, который можно им померить — это внутреннее сопротивление элемента. Но перед тем как непосредственно приступить к проверке варистора, следует подготовиться.

Кроме мультиметра, понадобится:

  • паяльник;
  • припой;
  • флюс;
  • даташит.

Чем проверить варистор

Измерение сопротивления элемента можно проводить и без его выпаивания из схемы, но для получения достоверных данных следует отсоединить от платы хотя бы один его вывод. Вся подготовка сводится к тому, что полупроводниковый элемент сначала визуально осматривается на отсутствие: расколов, почернений, трещин. Если сразу видно лопнувший корпус, то проверку можно дальше не проводить. Такой варистор явно неисправен.

Паяльник, флюс и припой понадобится для того, чтобы отпаять один из выводов элемента или даже снять его целиком, а после проверки при необходимости запаять обратно. Даташит на элемент представляет собой официальный документ, выпускаемый производителем. В нём указываются все основные данные и характеристики.

Даташит используется для того, чтобы точно знать, какое рабочее сопротивление в состоянии покоя у радиодетали. Если при замере мультиметром сопротивление варистора не отличается более чем на 10%, то он считается исправным. Если сопротивление значительно меньше указанного в даташите, то его понадобится заменить. Важно отметить, что в обычном состоянии сопротивление варистора достигает нескольких сотен мегаом, поэтому и тестер должен иметь возможность измерять в этом пределе.

Измерения стрелочным прибором

Проверка варистора мудльмиметромТакое устройство считается аналоговым. В его конструкции используется электромеханическая головка. Она представляет собой рамку, помещаемую в магнитное поле. В зависимости от силы тока стрелка в рамке отклоняется, останавливаясь в определённом положении. Диапазон отклонения стрелки проградуирован числами, согласно которым и вычисляется сопротивление.

Перед тем как приступить к проверке варистора, стрелочный мультиметр понадобится настроить. Для этого выполняется его калибровка. Её суть сводится к выставлению нулевого положения стрелки путём вращения специальной ручки при замыкании щупов друг с другом.

Для этого кнопкой переключения выбирается режим работы, соответствующий значку «Ω», а галетный переключатель устанавливается на самый большой предел измерения сопротивления тестером. Чаще всего он обозначается как «х100», что соответствует мегаомам. Измерение сопротивления происходит от установленного в устройстве источника питания (батарейки). Поэтому, если выставить стрелку в ноль не получается, то батарейку понадобится заменить.

Проводя непосредственно измерения, одним щупом тестера дотрагиваются до одного вывода варистора, а другим — до другого. В итоге возможно три исхода:

  1. Способы проверки варистораСтрелка отклонится до нуля или покажет сопротивление в районе килоомов. Делается вывод о неисправности элемента (пробой).
  2. Результат измерений лежит в пределах сотни мегаом. Такое показание указывает на исправность варистора.
  3. При прикасании к выводам радиоэлемента стрелка никак на это не реагирует. Возможные причины в следующем: диапазона работы прибора не хватает для измерения величины сопротивления варистора, неисправен прибор, неисправен радиоэлемент (обрыв).

Цифровой тестер

Используя цифровой мультиметр, проверить варистор на работоспособность будет немного проще, чем аналоговым. Это связано с тем, что цифровой тестер в своей конструкции имеет жк-дисплей, на котором наглядно отображается измеренное сопротивление.

В основе работы тестера такого тип лежит аналого-цифровой преобразователь, принцип работы которого построен на сравнение измеряемого сигнала с опорным. Следует отметить, что, если при включении тестера на экране высвечивается значок мигающей батарейки, то элемент питания понадобится заменить. Порядок измерения сопротивления варистора можно представить в виде следующих действий:

  1. Как заменить варистор

    Переключателем устанавливается максимальный предел измерения сопротивления. Обычно этот предел указывается числом и буквой. Если написаны просто числа, то единица измерения — Ом, буква K после числа обозначает килоом, буква M — мегаом.
  2. Щупы фиксируются на двух выводах варистора, а обратные концы проводов со штекерами вставляются в гнёзда тестера, обозначенные Ω и СОМ. Так как полярность приложенного сигнала к варистору значения не имеет, то и неважно, какой провод подключается к тому или иному выводу элемента. Хотя принято, что в разъём СОМ вставляется шнур чёрного цвета.
  3. Устройство включается путём нажатия на тестере кнопки ON/OFF.
  4. Если на индикаторе высвечивается единица, то это обозначает, что выбран малый предел измерений.
  5. Если на экране отображаются цифры отличные от единицы, то это и есть величина измеряемого сопротивления.

При трактовке результата измерений следует учитывать ещё и допуск. Каждый радиоэлемент имеет свой показатель допуска. Например, если допуск составляет 10 процентов, а внутреннее сопротивление варистора указано как 100 МОм, то полученные результаты должны находиться в пределах от 90 до 110 МОм. Если выявляется, что измеренное сопротивление элемента находится ниже или выше этого диапазона, то его можно считать неисправным.

Применение реостата

Замена варистораПроверить варистор возможно не только путем измерения его внутреннего импеданса. Внутреннее значение сопротивления может соответствовать заявленной величине, но при этом пороговое напряжение варистора будет неверным. Для проверки значения пробоя используется мультиметр с лабораторным автотрансформатором или реостатом.

В тестовой схеме к одному из выводов варистора подключается подвижный контакт реостата, а к другому — плавкий предохранитель. Щупы мультиметра фиксируются параллельно выводам полупроводникового элемента, а он сам переключается в режим измерения напряжений. На свободную пару контактов подаётся разность потенциалов, величина которой превышает значение пробоя компонента.

С помощью движимого контакта реостата плавно изменяется напряжение до момента срабатывания варистора. Этот момент определяется по вольтметру. Первоначально показания мультиметра будут расти, а после резко сбросятся до нуля. При этом предохранитель перегорит. Максимальное зафиксированное ненулевое значение и будет являться пороговым напряжением.

Важно отметить, что при измерении, особенно с помощью реостата, возможно поражение организма электрическим током. Поэтому нельзя забывать о технике безопасности, следует неуклонно её соблюдать.

Варикап.

Обозначение, параметры и применение варикапа

В современной электронике появляется всё больше электронных компонентов управляемых напряжением. Это связано с активным развитием цифровой техники. Ранее электронная аппаратура управлялась всевозможными ручками регулировки, кнопками, многопозиционными переключателями, т.е. руками.

Цифровая техника избавила нас от этого, а взамен дала возможность управлять и настраивать устройства посредством кнопок и экранного меню. Всё это было бы невозможно без электронных компонентов, управляемых напряжением. К одному из таких электронных компонентов можно отнести варикап.

Варикап – это полупроводниковый диод, который изменяет свою ёмкость пропорционально величине приложенного обратного напряжения от единиц до сотен пикофарад. Так изображается варикап на принципиальной схеме.

Условное изображение варикапа на схеме

Как видим, его изображение очень напоминает условное изображение полупроводникового диода. И это не случайно. Дело в том, что p-n переход любого диода обладает так называемой барьерной ёмкостью. Сама по себе барьерная ёмкость перехода для диода нежелательна. Но и этот недостаток смогли использовать. В результате был разработан варикап – некий гибрид диода и переменного конденсатора, ёмкость которого можно менять с помощью напряжения.

Как известно, при подаче обратного напряжения на диод, он закрыт и не пропускает электрический ток. В таком случае p-n переход выполняет роль своеобразного изолятора, толщина которого зависит от величины обратного напряжения (Uобр). Меняя величину обратного напряжения (Uобр), мы меняем толщину перехода – этого самого изолятора. А поскольку электрическая ёмкость C зависит от площади обкладок, в данном случае площади p-n перехода, и расстояния между обкладками – толщины перехода, то появляется возможность менять ёмкость p-n перехода с помощью напряжения. Это ещё называют электронной настройкой.

На варикап прикладывают обратное напряжение, что изменяет величину ёмкости барьера p-n перехода.

Отметим, что барьерная ёмкость есть у всех полупроводниковых диодов, и она уменьшается по мере увеличения обратного напряжения на диоде. Но вот у варикапов эта ёмкость может меняться в достаточно широких пределах, в 3 – 5 раз и более.

Положительные качества варикапа.

У варикапов очень маленькие потери электрической энергии и малый ТКЕ (температурный коэффициент ёмкости) поэтому их с успехом применяют даже на очень высоких частотах, где ёмкость конденсатора измеряется долями пикофарад. Это очень важно, так как если бы ёмкость варикапа была нестабильна из-за утечек (потери электрической энергии) и температуры (ТКЕ), то частота колебательного контура «уходила» и «гуляла», т.е. менялась. А это недопустимо! Познакомьтесь с колебательным контуром, и вы сразу поймёте насколько это важно.

Как работает варикап?

На рисунке показана типовая схема управления варикапом.

Типовая схема управления варикапом

R2 — переменный резистор. С помощью винта по рабочей поверхности этого резистора перемещается ползунок, который плавно изменяет сопротивление, а, соответственно, и величину обратного напряжения (Uобр), подаваемого на варикап. Конденсатор С1 препятствует попаданию на индуктивность L1 постоянного напряжения. Постоянный резистор R1 уменьшает шунтирующее действие резистора R2 на контур, что позволяет сохранить резонансные свойства контура. Как видим, ёмкость варикапа входит в состав колебательного контура. Меняя ёмкость варикапа, мы изменяем параметры колебательного контура и, следовательно, частоту его настройки. Так реализуется электронная настройка.

В современных цветных телевизорах есть такая функция – автонастройка (автопоиск) телеканалов. Нажимаем на кнопку, и весь диапазон сканируется на предмет наличия вещательных программ – телеканалов. Так вот этой функции просто бы не существовало, если бы не было варикапа.

В телевизоре управляющей схемой формируется плавно меняющееся напряжение настройки, которое и подаётся на варикап. За счёт этого меняются параметры колебательного контура приёмника (тюнера) и он настраивается на тот или иной телеканал. Затем происходит запоминание напряжения настройки на каждый из найденных телеканалов, и мы можем переключаться на любой из них, когда захотим.

Кроме обычных варикапов очень часто используют сдвоенные и строенные варикапы с общим катодом. Вот такой вид они имеют на принципиальных схемах.

Обозначение варикапных сборок на схемах

Они используются, как правило, в радиоприёмных устройствах, где необходимо одновременно перестраивать входной контур и гетеродин с помощью одного потенциометра. Имеются так же обычные сборки, когда в одном корпусе размещается несколько варикапов электрически не связанные между собой.

Параметры варикапов.

Несмотря на то, что варикап разработан на базе диода, это всё-таки конденсатор и именно параметры, связанные с ёмкостью и являются основными. Вот лишь некоторые из них:

  • Максимальное обратное постоянное напряжение (Uобр. max.). Измеряется в вольтах (В). Это максимальное напряжение, которое можно подавать на варикап. Напомним, что ёмкость варикапа уменьшается при увеличении обратного напряжения на нём.

  • Номинальная ёмкость варикапа (СВ). Это ёмкость варикапа при фиксированном обратном напряжении. Поскольку варикапы выпускаются на различные значения ёмкости, начиная от долей пикофарады и до сотен пикофарад, то их ёмкость измеряют, подавая определённую величину обратного напряжения на варикап. Оно может быть равным 4 и более вольтам, и, как правило, указывается в справочных данных.

    Также может указываться минимальная и максимальная ёмкость варикапа (Cmin и Cmaх). Это связано с тем, что параметры выпускаемых варикапов могут несколько отличаться. Поэтому в справочных данных указывают минимально- и максимально- возможную ёмкость варикапа при фиксированном обратном напряжении (Uобр). Это и есть Cmax и Cmin.

    У импортных варикапов обычно указывается только одна величина Cd (или Cд) – ёмкость варикапа при обратном напряжении, близком к максимальному. Например, для импортного варикапа BB133 ёмкость Cd = 2,6 pF (пФ) при обратном напряжении VR = 28 V.

  • Коэффициент перекрытия по ёмкости (Кс). Этот параметр показывает отношение максимальной ёмкости варикапа к минимальной. Считается так:
  • Формула расчёта коэффициента перекрытия

    Например, для отечественного варикапа КВ109А коэффициент перекрытия Кс равен 5,5. Ёмкость при Uобр = 25 В составляет 2,8 пФ (Это – Cmin). Так как диапазон обратного напряжения для варикапа КВ109А составляет 3 – 25 вольт, то используя формулу, можно узнать ёмкость этого варикапа при обратном напряжении в 3 вольта. Оно составит 15,4 пФ.(Это – Cmax).

    В документации на импортные варикапы так же указывается коэффициент перекрытия. Он называется capacitance ratio. Формула, по которой считается этот параметр, выглядит так (для варикапа BB133).

    Формула Capacitance ratio (тот же Кс)

    Как видим, берётся ёмкость варикапа при обратном напряжении в 0,5 V и в 28 V. Так как ёмкость варикапа уменьшается при увеличении обратного напряжения на нём, то становиться ясно, что эта формула расчёта аналогична той, что применяется для расчёта Кс.

Все остальные параметры можно считать несущественными. В некоторых случаях необходимо обратить внимание на граничную частоту, но это не столь важно, поскольку варикапы уверенно работают во всём радио и телевизионном диапазоне.

 

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как проверить диод мультиметром — показатели, инструкция, тесты

Сегодня при устройстве электронных осветительных систем все чаще используются светодиодные лампочки. Они экономичны, практичны и просты в эксплуатации. Однако, как и любой светоэлемент подобного типа, диоды могут выходить из строя или просто некачественно работать.

Как проверить диод мультиметром

Для устранения поломки нужно определить причину и последствия. В первую очередь речь идет о том, в каком состоянии диод: в рабочем и подлежит ремонту или в нерабочем и проще будет приобрести новый. Поэтому многие пользователи подобных осветительных приборов интересуются, как проверить диод мультиметром.

Классификация

Светодиодные ленты и прочие элементы освещения, которые работают на базе подобных светоэлеметнов, относятся к группе простых полупроводниковых радиоэлементов.

На сегодняшний день выделяют такие типы диодов:

  • выпрямленный;
  • стабилитрон;
  • варикап;
  • высоковольтные диоды;
  • светодиодные источники света.

Теперь попробуем разобраться, как проверить диоды мультиметром.

Проверка выпрямленных диодов и стабилитронов

Защитный светоэлемент, равно как и выпрямленный, проверяется с помощью мультиметра. За неимением такого оборудования можно использовать омметр.

Как проверить конденсатор мультиметром

Как проверить конденсатор мультиметром

Прозванивание светодиода мультиметром заключается в последовательном выполнении следующих действий:

  1. В первую очередь для проверки диода необходимо перевести прибор в режим прозвонки. То есть его нужно «прозвонить».
  2. После этого присоединяем щупы приспособления к выводам светоизлучающего элемента.
  3. При подключении красного проводка «+» к аноду, а черного «-» к катоду, на дисплее измерительного прибора должны отобразиться показания порогового напряжения, проверяемого светоэлемента.
  4. После того, как произвести смену полярности, мультиметр должен показать постоянно низкое сопротивление. И если проверка проходит именно по таком сценарию, то можно быть уверенным в том, что проверяемый светоэлемент полностью исправен.
  5. В том случае, если при обратном подключении прибор показывает утечку, то это означает только одно – светоизлучающее изделие нуждается в ремонте или полной замене.

Данная методика может использоваться и для тестирования светоэлементов на генераторе автомобиля и любого другого транспортного средства.

Контроль стабилитрона выполняется по идентичной схеме, единственное, что стоит отметить, с помощью такого тестирования невозможно определить, выполняется ли стабилизация показателей напряжения на том или ином уровне. В этом случае целесообразно собрать простую схему, которая состоит из источника питания, тестируемого стабилитрона и токоограничителя.

ВИДЕО: Как проверить диод с помощью тестера. Немного о структуре и назначении диодов

Принцип проверки заключается в следующем:

  1. Подключаемся к блоку питания: к «+» ведем провода проверяемого стабилитрона, а к «-» — токоограничителя, который дальше соединяется с испытываемый образцом.
  2. Устанавливаем на приборе режим, который позволяет производить замер постоянного напряжения в рамках 200 В.
  3. Дальше включаем источник питания и поэтапно добавляем напряжение до тех пор, пока амперметр на аккумуляторе не покажет, что он пропускает ток.
  4. После этого нужно подключить мультиметр таким образом, чтоб он как бы отсекал стабилитрон с двух сторон.
  5. Остается только измерить показания напряжения стабилизации и сопоставить их с номинальными.

Как проверить обычный диод и светодиод?

Стандартный диодный источник света является элементом, который проводит электроток только в одном направлении. Если же развернуть это направление, то рассматриваемый источник света закроется. Только при соблюдении этих условий светоизлучатели можно считать рабочими.

Проверка индикаторной отверткой

Проверка индикаторной отверткой

Большая часть мультиметров на своей базе уже имеет аналогичную функцию. Перед проверкой необходимо соединить между собой щупы тестера. Благодаря этому можно удостовериться в том, что прибор полностью исправен. После этого выбираем режим «проверка» и проводим необходимую процедуру.

Если мультиметр аналоговый, то эта операция выполняется в режиме омметра. Проверка диода, светодиода мультиметром проводится достаточно просто, поэтому даже неопытный человек может справиться с этой задачей. Чтоб удостовериться в работоспособности элемента, следует организовать прямое включение: подсоединяем анод к красному щупу («+»), а катод – к черному («-»). Об этом мы говорили немного выше. Если правильно все сделать, то вскоре на дисплее или на шкале появятся значения напряжения светоэлемента. Этот показатель должен быть в рамках от 80 до 750 мВ.

При выполнении обратного включения (при перестановке электродов), тестер должен показать значение, не выше 1. Не сложно сделать выводы, что сопротивление мультиметра большое и электрический ток через него не проходит. Если ваша проверка показала именно такие результаты, то световой элемент полностью работоспособен и готов к дальнейшей эксплуатации.

Иногда во время тестирования при подключении щупов проверяемый источник света пропускает электричество и при прямом подключении, и при обратном. А иногда вообще ток не проходит ни в одном из направлений (показания при протекании тока в обе стороны не превышают 1).

Первый случай говорит о том, что диодный светоэлемент пробит, а второй – он вышел из строя или же оборван от основной цепи. Логично, что такие электроэлементы неисправны и нужно предпринимать меры по устранению неполадки.

Проверка диода мультиметром

В случае с тестированием светодиодных лент принцип идентичен, но при этом в значительной степени упрощает процедуру тот момент, что при прямом подключении такой вид светового источника будет выдавать световой поток. Естественно, что это в разы упрощает проверку работоспособности тестируемого элемента.

Тестим варикапы

В отличие от стандартных диодных светоизлучателей, варикапы p-n обладают своеобразным переходным диодным мостом с емкостью, величина которой пропорциональна показаниям обратного напряжения. Тестирование подобных светоизлучателей выполняется по такому же принципу, как и в случае с обычными источниками света диодного типа. Для реализации проверки диода как варикапа, потребуется все тот же мультиметр, который обладает всеми необходимыми функциями для реализации подобных задач.

Варикапы

Чтоб проверить варикап необходимо установить на приборе соответствующий режим (внизу слева переключатель нужно поставить строго посередине) и установить световой элемент в разъем для конденсаторов.

Проверка высоковольтных диодов

Высоковольтные диодные источники света проверяются несколько по-другому, нежели в случае с тестированием обычных. Это обусловлено особенностями самих светоэлементов. Проверка светодиодов с такими светотехническими характеристиками проводится по специфической схеме, которая подключена к источнику питания в 40-45V. Если в двух словах, то проверяемый образец подключается к токоограничительному элементу и мультиметру, где первый и последний соединяются последовательно, после чего от первого цепь идет на второй.

Проверка высоковольтных диодов

Для контроля можно на мгновение прикасаться щупами «V/Ω/f» мультиметра, а «СОМ» к эмиттеру

Теперь вы знаете, как проверить светодиод мультиметром. Надеемся, эти советы помогут вам протестировать свою осветительную систему.

ВИДЕО: Диагностика и устранение причин поломки

Варикап — Википедия

Материал из Википедии — свободной энциклопедии

Обозначение варикапа на принципиальных электрических схемах.

Варика́п (акроним от англ. vari(able) — «переменный», и cap(acitance) — «[электрическая] ёмкость») — электронный прибор, полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения.

Варикапы с большой рассеиваемой мощностью, предназначенные для умножения частоты в радиопередатчиках, принято называть варакторами.

Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура в частотно-избирательных цепях, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Изменение толщины барьерного обеднённого слоя вблизи p-n-перехода при изменении обратного напряжения, приложенного к структуре. Типичная вольт-фарадная характеристика варикапа.

При отсутствии внешнего приложенного к электродам напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле, возникновение которого обусловлено контактной разностью потенциалов между полупроводниками p-типа и n-типа. Нормальный режим работы варикапа — с обратным смещением. Если к диоду приложить обратное напряжение (то есть катод должен иметь положительный потенциал относительно анода), то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n-перехода, то есть слой полупроводника, лишенный носителей заряда и по сути являющийся диэлектриком. При увеличении обратного напряжения толщина обеднённого слоя увеличивается. Это можно представить в виде плоского конденсатора, в котором обкладками служат необеднённые зоны полупроводника и с переменной толщиной слоя диэлектрика.

В соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено толщиной базы, далее которой толщина обеднённого слоя увеличиваться не может, по достижении этого минимума ёмкости с ростом обратного напряжения ёмкость не изменяется. Другой ограничивающий фактор управляемого снижения ёмкости — электрический лавинный пробой обеднённого слоя.

Так как при изменении обратного напряжения толщина диэлектрика (обеднённого слоя) изменяется в широких пределах, для характеристики изменения ёмкости варикапа от приложенного напряжения применяют динамическую Cd{\displaystyle C_{d}} или дифференциальную ёмкость — ёмкость для малого изменения напряжения на приборе (малосигнальный параметр). Динамическая емкость определяется как[1]:

Cd(U)=dQ/dU,{\displaystyle C_{d}(U)=dQ/dU,}
где dQ{\displaystyle dQ} — приращение электрического заряда конденсатора;
dU{\displaystyle dU} — приращение напряжения.

Дифференциальная ёмкость согласно ГОСТ Р 52002-2003 — это динамическая ёмкость для очень медленного изменения напряжения.

Зависимость динамической ёмкости от напряжения называется вольт-фарадной характеристикой и для варикапа приближённо описывается функцией:

Cd(U)=C0(1+U/U0)n,{\displaystyle C_{d}(U)={\frac {C_{0}}{(1+U/U_{0})^{n}}},}
где C0{\displaystyle C_{0}} — динамическая ёмкость прибора при нулевом напряжении;
U{\displaystyle U} — приложенное обратное напряжение;
U0{\displaystyle U_{0}} — некоторая константа, имеющая размерность напряжения и приближённо равная прямому напряжению p-n-перехода, при небольших прямых токах, для кремниевого прибора около 0,55 В;
n{\displaystyle n} — показатель, характеризующий величину градиента концентрации легирующей примеси в p-n-переходе, для переходов с плавным, например, линейным изменением концентрации n≈0,33{\displaystyle n\approx 0,33}, для резких переходов n≈0,5{\displaystyle n\approx 0,5}, для переходов со ступенчатым легированием n{\displaystyle n} может достигать 2[2].
n Внутренняя структура варикапа.

Обычно варикапы изготавливаются по планарно-эпитаксиальной технологии, позволяющей оптимизировать электрические параметры прибора. На пластине сильнолегированного низкоомного полупроводника (обычно с n-типом проводимости, обозначается n+) выращивается высокоомная плёнка низколегированного полупроводника n-типа. C помощью диффузии акцепторной примеси на поверхности эпитаксиального слоя формируется низкоомный анодный слой p-типа.

Боковая поверхность структуры для защиты выходящего на поверхность p-n-перехода и увеличения обратного пробойного напряжения покрывается легкоплавким стеклом.

Основные электрические и эксплуатационные параметры[править | править код]

  • Общая ёмкость — ёмкость, измеренная между выводами варикапа при заданном обратном напряжении.
  • Коэффициент перекрытия по ёмкости — отношение ёмкостей при двух заданных значениях обратного напряжения на варикапе.
  • Добротность — отношение реактивного сопротивления варикапа на заданной частоте к сопротивлению потерь при заданном значении ёмкости или обратного напряжения.
  • Постоянный обратный ток — постоянный ток, ток утечки, протекающий через варикап при заданном обратном напряжении.
  • Максимально допустимое постоянное обратное напряжение.
  • Максимально допустимая рассеиваемая мощность.
  • Температурные коэффициенты ёмкости и добротности — отношение относительного изменения ёмкости (добротности) варикапа к вызвавшему его абсолютному изменению температуры. В общем случае сами эти коэффициенты зависят от значения обратного напряжения, приложенного к варикапу.
  • Предельная частота варикапа — значение частоты, на которой реактивная составляющая проводимости варикапа становится равной активной составляющей. Измерение предельной частоты производится при конкретных заданных обратном напряжении и температуре, которые, в свою очередь, зависят от типа варикапа.

Промышленностью выпускаются варикапы как в виде дискретных компонентов (например, варикапы производства СССР и России, КВ105, КВ109, КВ110, КВ114, BB148, BB149), так и в виде варикапных сборок (например, КВС111).

Варикапы применяются для перестройки частоты генераторов, управляемых напряжением в синтезаторах частоты и генераторах качающейся частоты, настройки частотноизбирательных цепей с управлением напряжением, в системах автоматической подстройки частоты различных радиоприёмных устройств, в параметрических усилителях, для умножения частоты в умножителях частоты, управляемых напряжением фазовращателях и других.

  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 184—188. — 479 с. — 50 000 экз.
  • Диоды и тиристоры / Чернышев А. А., Иванов В. И., Галахов В. Д. и др.; Под общ. ред. А. А. Чернышева. — 2-е изд., перераб. и доп. — М.: Энергия, 1980. — 176 с. — (Массовая радиобиблиотека. Выпуск 1005). — 190 000 экз.

Варактор — Википедия

Обозначение варактора на электрических схемах (такое же, как у варикапа)

Вара́ктор (от англ. variable — переменный и act — действие, actor — тот, кто действует[1]) — электронный прибор, полупроводниковый диод, реактивное сопротивление которого зависит от приложенного обратного напряжения. Точное определение неоднозначно.

Термин «варактор» по-разному определяется разными авторами. В русскоязычной литературе многими специалистами рассматривается как синоним или частный случай варикапа. Это мнение настолько широко распространено, что для варактора не придумано отдельного от варикапа обозначения на электрических схемах. А иногда слово «варактор» даже не употребляется, и используется только термин «варикап». Возможно, это связано с отсутствием термина «варактор» в государственных стандартах Советского Союза и постсоветских государств.

Есть, однако же, ряд особых мнений, по-своему определяющих понятие «варактор», а некоторые авторы даже считают его более общим, чем «варикап».

Понимание термина «варактор» и его отношение к термину «варикап» в англоязычной литературе, а также литературе на других языках, требует уточнения.

Синоним или частный случай варикапа[править | править код]

Многие считают варактор варикапом[2][3][4]. При этом часто используется только термин варикап. Но есть и авторы, использующие только термин варактор[5][6].

В то же время есть определение варактора как подтипа варикапа — умножительного диода[7], то есть используемого для умножения частоты[8][неавторитетный источник?]. Там же в «Справочнике металлиста» отмечено, что варакторы используются в диапазоне СВЧ в параметрических усилителях. А вот Ю. А. Овечкин[9] не употребляет термин «варактор», но тоже называет подобные варикапы параметрическими. Так же поступает и ГОСТ 15133-77[10].

Таким образом, параметрический диод — это варактор/варикап, используемый в параметрических усилителях.

Ещё стоит упомянуть, что есть авторы, использующие оба термина, но не определяющие их, и по контексту не всегда понятно, эквивалентны они или нет[11].

В описании электрических схем иногда указывают два названия[12], но, возможно, это связано с взаимозаменяемостью разных видов диодов из-за особенностей конкретной схемы. Требует уточнения.

Обобщение варикапа[править | править код]

Это мнение есть в недавно опубликованном учебном пособии ЮФУ[13]. Авторы отдают предпочтение термину «варактор» и дают пояснение, что он является более общим, чем термин «варикап», который пришёл из низкочастотной электроники.

Авторы выделяют подтипы варактора в зависимости от целей использования в электрических схемах:

  • варикап, если «диод используется в качестве переменной ёмкости для электрической перестройки частоты генераторов»;
  • умножительный диод, если используется в умножителях частоты;
  • параметрический диод, если используется для параметрического усиления СВЧ-колебаний.

Особое определение[править | править код]

Это точка зрения выражена коллективом авторов в 1973 году[14]. Авторы отделяют варактор от варикапа областью применения и особенностью работы p‑n-перехода. Однако, поясняют, что их определение не является общепризнанным, и что многие понимают под варактором всего лишь варикап, предназначенный для работы в диапазоне СВЧ.

Конкретнее, варакторы в их понимании предназначены для работы при больших амплитудах, и при этом на части периода колебаний сигнала p‑n-переход находится в открытом состоянии. При этом барьерная емкость перехода в процессе его отпирания может увеличиваться на несколько порядков за счёт добавления так называемой диффузионной ёмкости.

Это приводит к тому, что дифференциальная ёмкость p‑n-перехода перестаёт существенно зависеть от степени нелинейности ёмкости закрытого p‑n-перехода, определяемой его химическим составом. Таким образом, снижение этой степени не ухудшает работу варактора, в отличие от варикапа, а иногда бывает даже полезным, так как ускоряет процесс восстановления закрытого состояния p‑n-перехода и, как следствие, уменьшает потери мощности.

Авторы замечают поэтому тенденцию снижения степени нелинейности при проектировании новых варакторов почти до нуля за счёт использования p‑i‑n-переходов. При этом вольт-кулоновая характеристика варактора приближается к кусочно-линейной функции.

Эта точка зрения в чём-то похожа на мнения других авторов[15][16], считающих что варакторы используют нелинейные свойства p‑n-перехода, в отличие от варикапов, использующих только линейные, хотя остальные свойства у них совпадают.

  1. ↑ Возможно объяснение от словосочетания variable reactance — переменная «реактивность»[источник не указан 1165 дней].
  2. ↑ Определение в БЭС (неопр.).
  3. Дождиков В. Г., Лифанов Ю. С., Салтан М. И. Энциклопедический словарь по радиоэлектронике, оптоэлектронике и гидроакустике. / Под. ред В. Г. Дождикова. — М.: ИАЦ «Энергия», 2008. — С. 57.
  4. ↑ Политехнический словарь-справочник (неопр.).
  5. Зи С. Физика полупроводниковых приборов. — М.: Мир, 1984. — Т. 1. — С. 123—125. — 456 с.
  6. Баранский П. И., Клочков В. П., Потыкевич И. В. Полупроводниковая электроника. Свойства материалов. Справочник. — Киев: Наукова думка, 1975. — С. 457. — 704 с.
  7. ↑ Варикапы и варикапные сборки: Общая информация (неопр.).
  8. ↑ Справочник металлиста. В 5‑ти т. / Под. ред. С. А. Чернавского и В. Ф. Рещикова. — Изд. 3‑е, перераб.. — М.: Машиностроение, 1976. — Т. 1. — С. 140. — 768 с.
  9. Овечкин Ю. А. Полупроводниковые приборы. Учебник для техникумов. — 2‑е изд., перераб. и доп.. — М.: Высшая школа, 1979. — С. 50. — 279 с.
  10. ↑ ГОСТ 15133-77 (неопр.) С. 13.
  11. Шумилин М. С., Головин О. В., Севальнев В. П., Шевцов Э. А. Радиопередающие устройства. Учебник для техникумов. — М.: Высшая школа, 1981. — С. 155, 227. — 293 с.
  12. Граф Р., Шиитс В. Энциклопедия электронных схем. Том 7. Часть II. — М.: «ДМК Пресс». — С. 395. — 416 с.
  13. Нойкин Ю. М., Нойкина Т. К., Усаев А. А. Глава 5: Варакторный диод // Полупроводниковые приборы СВЧ. — Ростов-на-Дону, 2014.
  14. ↑ Радиопередающие устройства на полупроводниковых приборах. Проектирование и расчёт / под. ред. Р. А. Валитова, И. А. Попова. — 1973. — С. 263—264. — 464 с.
  15. ↑ Справочник по элементам радиоэлектронных устройств / Под. ред В. Н. Дулина, М. С. Жука. — М.: Энергия, 1977. — С. 196—198. — 576 с.
  16. Федотов Я. А. Основы физики полупроводниковых приборов. — М.: Советское радио, 1969. — С. 196—198. — 592 с.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *