Вакуумный диод это – Принцип действия и статические характеристики вакуумного диода » hifisound.com.ua

Содержание

Изобретение электровакуумного диода — Control Engineering Russia

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

Опыт Гейтеля и Эльстера

Рис. 1. Опыт Гейтеля и Эльстера

Открытие электрона было сделано в результате изучения катодных лучей, т. е. явления эмиссии электронов с твердого металлического катода при приложении электрического поля высокого потенциала [1]. Однако первыми электронными приборами, нашедшими практическое применение, были ртутно-дуговые выпрямители Купера-Хьюитта с жидким (ртутным) катодом [2]. Эти газонаполненные приборы положили начало современной силовой электронике на базе тиристоров. Почти одновременно возникло и другое направление — информационная электроника на базе электровакуумных приборов с термоэлектронной эмиссией. Явление термоэлектронной эмиссии было открыто в 1873 г. британским ученым и основателем Лондонского физического общества Фредериком Гатри (Frederick Guthrie), который обнаружил, что соединенная с электроскопом пластина, помещенная вблизи раскаленного докрасна металлического шара, заряжалась отрицательно [3]. Более подробно этот эффект исследовали в 1880 г. немецкие ученые Ганс Гейтель (Hans Geitel) и Юлиус Эльстер (Julius Elster), известные также тем, что все детство, годы учебы и исследовательской работы они провели вместе. В их опытах платиновый провод, нагреваемый электрическим током, помещался в колбу с откачанным воздухом либо c газом (рис. 1).

Эффект Эдисона

Рис. 2. Эффект Эдисона

Аналогичные опыты проводил в 1883 г. и Эдисон при отработке конструкции своей знаменитой вакуумной лампы накаливания с угольной нитью, внутренняя поверхность которой, однако, со временем темнела [3–5]. Помощник Эдисона Уильям Хаммер (William Hammer), впоследствии видный организатор электрического освещения, обнаружил на стекле светлую полоску, которую можно было бы объяснить экранирующим действием нити, испускающей частицы углерода. Предположив, что эти частицы несут электрический заряд, Эдисон ввел внутрь баллона лампы (1) с нитью накала (2) дополнительный электрод (3), надеясь притянуть эти частицы и тем самым уменьшить потемнение (рис. 2). И действительно — гальванометр (4), подключенный к положительному электроду накала, показывал наличие тока. Однако уменьшить потемнение лампы таким путем не удалось, и Эдисон эти эксперименты забросил. Полученное явление, названное эффектом Эдисона, — как и другие подобные наблюдения, описанные выше, — утвердило ученых в мысли, что накаленные тела излучают молекулы или атомы, переносящие каким-то образом и отрицательные заряды [3].

Джон Амброз Флеминг (John Ambrose Fleming) (1849–1945)

Рис. 3. Джон Флеминг (1849–1945)

Научное объяснение этому феномену было найдено только в 1902 г. английским ученым Оуэном Ричардсоном (Owen Richardson) после открытия электрона Томсоном в 1897 г. [4, 5]. Ричардсон создал теорию термоэлектронной эмиссии (thermionic emission), за что получил в 1928 г. Нобелевскую премию [6]. Однако ни он, ни другие ученые и изобретатели не смогли предложить никакого практического приложения обнаруженному эффекту. Было очевидно, что энергетическое преобразование напряжения накала в ток электрода было совсем невыгодным, например, по сравнению с ртутно-дуговыми лампами. Только Эдисон, запатентовавший в 1884 г. свой эффект, указал на возможность его использования для обнаружения нестабильности напряжения в сети [4].

Человеком, который открыл широкие возможности применения двухэлектродного вакуумного прибора для детектирования высокочастотных электромагнитных волн и тем самым сделал радио доступным миллионам жителей планеты, стал великий английский ученый и инженер Джон Амброз Флеминг (John Ambrose Fleming, рис. 3), 170-летие которого мы отмечаем в этом году.

Среди выдающихся создателей радио Флеминг отличается долголетием. Многие ученые, заложившие фундамент наших знаний об электромагнетизме и радио, прожили очень мало: творец электромагнитной теории Максвелл — 48 лет; создатель первого радиоприемника Попов — 47 лет; Лебедев, измеривший давление электромагнитной волны, — 46 лет; а Герц, открывший электромагнитные волны Максвелла, всего 37 [5]. Изобретатель первой электронной радиолампы профессор сэр Флеминг прожил долгую творческую жизнь до 95 лет. О первой своей научной работе он доложил Лондонскому физическому обществу в 25 лет, а о последней — в 90 [7, 8, 9].

Флеминг был старшим из семи детей священника, не имевшего средств, чтобы дать сыну хорошее инженерное образование, к которому тот стремился. Поэтому юноше пришлось совмещать обучение в Университетском колледже Лондона, а затем и в университете Кембриджа с работой в различных конторах и учителем в школе [8–10]. В Кембридже он посещал лекции самого Максвелла и работал в его знаменитой Кавендишской лаборатории. Его наставником был также профессор Гатри. После получения докторской степени Флеминг преподавал в нескольких университетах, пока в 1885 г. не был приглашен стать профессором и заведующим первой в Англии кафедрой электротехники Университетского колледжа Лондона, где он успешно проработал 42 года, создав прекрасную лабораторию [8, 9]. Одновременно Флеминг консультировал различные предприятия, одним из которых была английская компания Эдисона, внедрявшая его систему освещения. Имея доступ к документам компании и встречаясь с ее главой, Флеминг обратил внимание на эффект Эдисона и в 1883–1886 гг. изготовил несколько двухэлектродных ламп. Детально их изучив, он установил, в частности, что гальванометр показывал протекание постоянного тока и при питании накала переменным током [3, 4, 11]. Но тогда он оставил эти опыты, не видя в них практического смысла.

В 1897 г. Гульельмо Маркони (Guglielmo Marconi), имея амбициозные планы по развитию запатентованного им в том же году радио, основал в Англии компанию Wireless Telegraph & Signal Company, в которую пригласил Флеминга в качестве консультанта [9, 11]. Ему было поручено сконструировать мощный радио­передатчик на 25 кВт для радиостанции в Польдху (Англия), с помощью которой предполагалось установить первую в мире трансатлантическою беспроволочную связь с Ньюфаундлендом (Канада), находящимся на расстоянии около 3500 км от того места [4, 5]. Когда это фантастическое событие, предвещавшее наступление века радио, свершилось в 1901 г., вся слава досталась лично Маркони [3, 9, 11]. Флеминг открыто выражал свое недовольство, и его контракт с компанией Маркони в конце 1903 г. был разорван [11]. Масла в огонь подлила неудачная публичная лекция Флеминга в том же году, которая должна была продемонстрировать преимущества «синтонической» системы Маркони. Данная система содержала резонансные контуры настройки на передающую радиостанцию, предотвращающую помехи от других источников. Однако в конце лекции приемник зафиксировал оскорбительное для Маркони сообщение неизвестной радиостанции. Это была одна из первых в истории хакерских атак, организованная конкурентом Маркони — изобретателем и фокусником Невилом Маскелайном (Nevil Maskelyne), стремившимся опорочить систему Маркони [11]. И хотя Флеминг в печати назвал это «научным хулиганством», сам Маркони скорее был склонен винить во всем несовершенство демонстрационной аппаратуры Флеминга.

Установка Флеминга

Рис. 4. Установка Флеминга

Желая вернуть расположение шефа, Флеминг попытался улучшить радиоаппаратуру — в частности, найти более эффективный детектор радиосигнала взамен применявшихся тогда когерера или магнитного детектора [11]. Поскольку все измерительные приборы переменного тока для этого явно не подходили, он искал способ преобразования (выпрямления) высокочастотных колебаний в постоянный ток для использования самого чувствительного прибора — зеркального гальванометра. Помимо указанных выше детекторов, тогда также были известны электролитические выпрямители, например предложенный французским инженером Альбертом Нодоном (Albert Nodon) и названный им электролитическим вентилем [3, 11]. Этот прибор представлял собой электролитическую ванночку с двумя погруженными в нее алюминиевыми электродами. Испытав ее, Флеминг с сожалением убедился, что электролитический вентиль не обладает достаточным быстродействием. Тогда он попытался использовать, как показано на рис. 4, свою забытую двухэлектродную лампу (1), включив ее в цепь приемной антенны (2) с гальванометром (3) и батареей питания (4) [3, 4, 11]. Передатчиком служил вибратор Герца (справа) с катушкой Румкорфа (5), искровым разрядником (6), лейденскими банками (конденсаторами) (7), излучающий радиоволну с помощью антенны (8) [5].

Вентиль Флеминга

Рис. 5. Вентиль Флеминга

По аналогии с изобретением Нодона Флеминг назвал свою лампу термоэлектронным, или частотным вентилем, известным впоследствии как вентиль Флеминга, вакуумный вентиль, или лампа, кенотрон и т. д. (рис. 5 и 6) [3, 4, 6, 11, 12]. В России сначала употреблялся термин «пустотная лампа». С 1920-х гг. за ним закрепилось название «диод», образованное от греческих слов δύο (два) и ὁδός (путь) [13].

Подобно лампе Эдисона (рис. 2), вентиль содержал баллон (1) с нитью накала (катод) (2), питаемой батареей, однако отличался формой цилиндрического дополнительного электрода (анода) (3), подключаемого к гальванометру (4) через антенну радиоприемника (5) c трансформатором (6). Поскольку гальванометр был соединен с отрицательным выводом батареи, анодный ток наблюдался только при положительном полупериоде принимаемого антенной сигнала. К этому времени Флеминг, опираясь на электронную теорию, уже правильно объяснил эффект Эдисона потоком электронов между катодом и анодом [3, 11].

Первые вентили Флеминга

Рис. 6. Первые вентили Флеминга

Убедившись в работоспособности своего устройства и оформив в 1904 г. английский патент [12] (а в 1905 г. и патент США), Флеминг сразу сообщил о своем изобретении Маркони, который с энтузиазмом его воспринял, попросил образец вентиля и провел собственные исследования, заменив гальванометр телефоном [11]. Причина, по которой сам Флеминг использовал в качестве индикатора гальванометр, состояла в том, что он был глуховат и не мог воспринимать принимаемый сигнал на слух [3, 4, 11]. С другой стороны, он хотел применять эту установку в метрологических целях, например для измерения мощности, излучаемой антеннами радиостанций, что и отражается в названии его английского патента.

Маркони удостоверился в преимуществах детектора Флеминга, ввел его в свою радиоаппаратуру и с 1905 г. возобновил контракт с Флемингом на условиях передачи компании всех его патентных прав, которые пришлось неоднократно защищать в суде. Их плодотворное сотрудничество продолжалось до 1914 г. [9, 11]. Однако в 1943 г. Верховный суд США признал патент Флеминга на диод недействительным по причине расширительной формулировки областей применения.

В дальнейшем вакуумный диод в радиотелеграфии и телефонии был вытеснен кристаллическим детектором и триодом Ли де Фореста, о котором пойдет речь в следующей статье. Однако до изобретения полупроводниковых приборов электровакуумные диоды широко применялись для силовых выпрямителей с напряжением до 100 кВ и выходной мощностью до 10 кВт, что, конечно, гораздо ниже, чем у ртутно-дуговых выпрямителей [2, 3].

Правило правой руки

Рис. 7. Правило правой руки

Флеминг был непревзойденным лектором и демонстратором научных опытов [9]. Он тщательно готовился к каждому занятию, использовал световые проекционные слайды и проводил репетиции. Когда в 1895 г. Рентген открыл свои знаменитые Х-лучи, Флеминг приготовил специальную лекцию, к которой привлек ассистента с пулевым ранением руки. В начале лекции его рука просвечивалась портативным рентгеновским аппаратом, пластина проявлялась и в конце лекции пуля в руке демонстрировалась проектором. Флеминг также известен своими работами по трансформаторам и измерительной технике, он написал девятнадцать известных книг и учебников по электромагнетизму и электротехнике [8, 9]. До сих пор инженеры и студенты используют правило Флеминга для определения направлений механической силы (движения), тока в проводнике и действующего магнитного поля в генераторах и электродвигателях. На рис. 7 приведено изображение для правой руки (1), созданное самим Флемингом для генератора с направлениями: 2 — движения проводника, 3 — магнитного поля, 4 — индуцированного в проводнике тока [14].

В СССР, правда, эти правила широко применялись в измененном виде без упоминания имени автора.

Флеминг был удостоен многих научных медалей и наград, в 1929 г. получил рыцарское звание и титул сэра [4, 8–10]. Будучи человеком религиозным, он активно занимался благотворительностью и участвовал в движении протеста против эволюционной теории Дарвина. Последнее, чем удивил сэр Джон Флеминг современников, была его вторичная женитьба в 84-летнем возрасте на молодой популярной певице [7, 9, 14]. 


  • Изобретение электровакуумных приборов явилось результатом обнаружения Готье в 1873 г. явления испускания раскаленными металлическими телами отрицательных зарядов.

  • В 1883 г. Эдисон продемонстрировал в замкнутой цепи с двухэлектродной лампой электрический ток, названный эффектом Эдисона, который был объяснен только после открытия электрона и создания Ричардсоном в 1902 г. теории термоэлектронной эмиссии.

  • Возможности практического применения двухэлектродных приборов для радиосвязи, СВЧ-измерения и выпрямления были открыты Флемингом в 1904 г.

  • Флеминг также остался в памяти современников как умелый педагог и замечательный популяризатор электромагнетизма, электротехники и связи.

Facebook

Twitter

Вконтакте

Google+

Литература
  1. Микеров А. Г. Начало электроники – открытие электрона // Control Engineering Россия. 2018. № 5(77).
  2. Микеров А. Г. Газооразрядные лампы – первые электронные приборы // Control Engineering Россия. 2018. № 6 (78).
  3. Fleming J. A. The thermionic valve and its developments in radiotelegraphy and telephony. London, New York: The Wireless press. 1919.
  4. Пестриков В. М. История первой радиолампы // IT news. 2004. №22.
  5. Микеров А. Г., Вейнмейстер А. В. История науки и техники в области управления и технических систем. СПб.: Изд-во СПбГЭТУ «ЛЭТИ». 2016.
  6. Guarnieri M. The Age of Vacuum Tubes: Early Devices and the Rise of Radio Communications // IEEE Industrial Electronics Magazine. March 2012.
  7. Fleming John Ambrose. Complete dictionary of scientific biography. Detroit: Charles Scribner’s Sons. 2008. V.5.
  8. https://en.wikipedia.org/wiki/John_Ambrose_Fleming.
  9. Eccles W. H. John Ambrose Fleming. 1849-1945. Obituary Notices of Fellows of the Royal Society. 1945. N5 (14).
  10. https://interestingengineering.com/who-was-sir-john-ambrose-fleming-all-about-the-father-of-electronics.
  11. Sungook Hong. Inventing the history of invention: Fleming’s Route to the valve // Exposing electronics. NMSI Trading Ltd. 2003.
  12. Fleming J. A. Improvements in Instruments for Detecting and Measuring Alternating Electric Currents. Patent GB190424850(A). Nov. 16. 1904.
  13. https://ru.wiktionary.org/wiki/диод.
  14. famousscientists.org/john-ambrose-fleming/.

Вакуумный диод Википедия

several vacuum rectifier valves (WI1 5/20, PY88, EY51)

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Электровакуумный диод — это… Что такое Электровакуумный диод?

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

ВАХ

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика электровакуумного диода имеет 3 участка:

  1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.
  2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается , где первеанс g — постоянная, зависящая от конфигурации и размеров электродов. В простейшей модели первеанс не зависит от состава и температуры катода, в действительности первеанс растёт с ростом температуры из-за неравномерного его нагрева.
  3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся в этом режиме анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана: , где  — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ:  — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление:
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Способны кратковременно выдерживать большие перегрузки (полупроводниковые «выгорают» сразу[источник не указан 1008 дней]). Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Электровакуумный диод — Википедия. Что такое Электровакуумный диод

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Электровакуумный диод Википедия

several vacuum rectifier valves (WI1 5/20, PY88, EY51)

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство[ | ]

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы[ | ]

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика[ | ]

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при

Электровакуумный диод — Википедия

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Электровакуумный диод — Википедия

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц[1].

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Видео по теме

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика

Участки вольт-амперной характеристики диода

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua=0{\displaystyle U_{a}=0} очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

j=g⋅Ua3/2,{\displaystyle j=g\cdot U_{a}^{3/2},}

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

j=AT2exp⁡(−eφkT),{\displaystyle j=AT^{2}\exp \left(-{e\varphi \over kT}\right),}

где A=4πmek2h4=120Acm2K2{\displaystyle A={4\pi mek^{2} \over h^{3}}=120{{\text{A}} \over {{\text{cm}}^{2}{\text{K}}^{2}}}} — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S=dIadUa{\displaystyle S={dI_{a} \over dU_{a}}} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: Ri=1S{\displaystyle R_{i}={1 \over S}}
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Примечания

  1. Батушев, В. А. Электронные приборы. — М.: Высшая школа, 1969. — С. 52. — 608 с. — 90,000 экз.

Литература

  1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
  2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *