В каких единицах измеряется электрическое напряжение: в каких единицах измеряют электрическое напряжение

Содержание

в каких единицах измеряют электрическое напряжение

Измерение объема тел правильной и неправильной формыАквариум длиной 80 см и шириной 0,5 м был заполнен водой до высоты 35 см. Каков объем воды ваквари … уме?1400 м30,14 см0,14 м31400 см3​

Определите количество теплоты, необходимое для того чтобы воду объёмом 1л и температурой 20°С превратить в пар при температуре 100°С.(плотность воды 1 … 000кг/м3)

Яка кількість теплоти виділиться при нагріванні 400 г олії від 15°С до 34°С​

Вопрос 2/25 2. Три моля одноатомного идеального газа при изобарическом нагревании от 20oС до 30оС изменили свою внутреннюю энергию на (R=8,31Дж/моль К … ): ВАРИАНТ ОТВЕТА 520 Дж 420 Дж 623 Дж 330 Дж 270 Дж​

вопрос 1/25 1. Термодинамической системе передано количество теплоты а = 800 Дж. Если при этом внутренняя энергия системы увеличилась на 500Дж, то тер … модинамическая система совершила работу равную … ВАРИАНТ ОТВЕТА А) 700 Дж В) 100 Дж 300 Дж 200 Дж​

чему равно изменение скорости за 10с ,если в начальный момент скорость была 20м/с ,а через 10с , стала 40м/спомогите пожалуйста ​

В безветренную погоду парашютист с высоты 558 м равномерно опускался 3 мин 10 с. Чему равна скорость парашютиста? Помогите пожалуйста

Щоб охолодити 5 л води від 200С до 9,2 0С, у воду кинули шматок льоду, що мав температуру 0 0С. Яка маса вкинутого льоду? Питома теплоємність води 420 … 0 Дж/кг0С, питома теплота плавлення льоду 332 кДж/кг.ПЖ ДАНО И РЕШЕНИЕ ​

. У латунний калориметр масою 160 г, у якому було 400 г води при температурі 250С, вкинули шматок льоду при температурі 0 0С, після чого встановилася … температура 140С. Визначте масу льоду. Питома теплоємність води 4200 Дж/кг0С, питома теплоємність льоду 2100 Дж/кг0С, питома теплоємність латуні 376 Дж/кг0С.ПЖ ДАНО И РЕШЕНИЕ ​

На поверхню льоду при температурі 0 0С ставлять мідну гирю масою 200 г, нагріту до температури 1000С. Яка кількість льоду розтане під гирею, поки вона … не охолоне до 0 0С? Питома теплоємність міді 400 Дж/кг0С, питома теплота плавлення льоду 332 кДж/кгПЖ ДАНО И РЕШЕНИЕ ​

Что такое ЭДС, разность потенциалов и напряжение

Что такое ЭДС, разность потенциалов и напряжение

В этой статье ЭлектроВести расскажув вам, что такое ЭДС, разность потенциалов и напряжение , какая между ними разницаю

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.

И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует 

электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.

Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Если сторонние силы отсутствуют, то работу совершит лишь потенциальное электрическое поле, и в этом случае электрическое напряжение между точками А и В цепи будет численно в точности равно разности потенциалов между данными точками, то есть отношению работы по переносу заряда из точки А в точку В к величине заряда q:

Однако в общем случае напряжение между точками A и B отличается от разности потенциалов между этими точками на работу сторонних сил по перемещению единичного положительного заряда:

Эту работу сторонних сил как раз и называют электродвижущей силой на данном участке цепи, сокращенно — ЭДС:

Электродвижущая сила — ЭДС

Электродвижущая сила — ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

ЭДС является скалярной физической величиной, характеризующей работу непосредственно действующих сторонних сил (любых сил за исключением электростатических) в цепях постоянного или переменного тока. В частности, в замкнутой проводящей цепи ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Здесь при необходимости вводят в рассмотрение электрическую напряженность сторонних сил Еex, являющуюся векторной физической величиной, равной отношению величины действующей на пробный электрический заряд сторонней силы к величине данного заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Можно говорить об электродвижущей силе на любом участке электрической цепи. Это будет, по сути, удельная работа сторонних сил лишь на рассматриваемом ее участке. ЭДС гальванического элемента, к примеру, есть ни что иное, как работа сторонних сил при перемещении единичного положительного заряда только внутри этого гальванического элемента, а именно — от одного его полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит (!) от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока за пределами данного источника равна нулю.

Ранее ЭлектроВести писали, что дожди могут стать новым источником возобновляемой и предельно дешевой энергии: ученые из Гонконга придумали новый тип электрогенератора с высоким КПД и удельной мощностью в тысячу раз большей, чем у существовавших до сих пор других подобных устройств. Их изобретение позволяет получать из падения одной капли воды с высоты 15 см напряжение свыше 140 вольт, а энергии этого падения хватит для питания 100 небольших светодиодных ламп.

По материалам: electrik.info.

Конспект к уроку «электрическое напряжение. Единицы напряжения»

Урок 34.

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Цель урока: дать понятие напряжение как физической величины характеризующей электрическое поле, создающее электрический ток, вести единицу напряжения.

Оборудование: амперметр, вольтметр, соединительные провода, ключ, источник тока (батарейка на 4 В,

Ход урока

I. Актуализация знаний.

Проверка домашнего задания. 

  1. Что такое сила тока? Какой буквой она обозначается?

  2. По какой формуле находится сила тока?

  3. Как называется прибор для измерения силы тока? Как он обозначается в схемах?

  4. Как называется единица силы тока? Как она обозначается?

  5. Какими правилами следует руководствоваться при включении амперметра в цепь?

  6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?

  7. Решить задачи:

1) Через поперечное сечение проводника в 1 с проходит 6*10-19 электронов. Какова сила тока в проводнике? Заряд электрона 1,6*10-19Кл.
2) Определите силу тока в электрической лампе, если через нее за 10 мин проходит электрический заряд, равный 300 Кл.  
3) Какой электрический заряд протекает за 5 мин через амперметр при силе тока в цепи 0,5 А.

  1. Проверочная работа

1.Сколько миллиампер в 0,25 А?

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Выразите 0,25мА в микроамперах.

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 1 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.1

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

II. Изучение нового материала.

На прошлых уроках мы узнали о том, что такое сила тока, и о том, что эта величина характеризует действие электрического тока. Мы уже рассмотрели несколько факторов, от которых она зависит, теперь рассмотрим другие параметры, которые на нее влияют. Для этого достаточно провести простой эксперимент: подключить к электрической цепи сначала один источник тока, потом последовательно два одинаковых, а затем и три одинаковых источника, при этом каждый раз измеряя силу тока в цепи. В результате измерений будет видна простая зависимость: сила тока растет пропорционально количеству подключаемых источников. Почему же так получается? Функция источника тока – создавать электрическое поле в цепи, соответственно, чем больше включено последовательно в цепь источников, тем более сильное электрическое поле они создают. Из этого можно сделать вывод, что электрическое поле влияет на силу тока в цепи. При этом при перемещении зарядов по проводнику совершается работа электрического тока, что говорит о том, что работа электрического поля определяет силу тока в цепи.

С другой стороны, можно вспомнить аналогию между протеканием электрического тока в проводнике и воды в трубе. Когда речь идее о массе воды, протекающей через сечение трубы, то это можно сравнивать с величиной заряда, который прошел через проводник. А перепад высоты в трубе, который и формирует напор и течение воды, можно сравнить с таким понятием, как электрическое напряжение.

Для характеристики работы электрического поля по перемещению заряда введена такая величина, как электрическое напряжение.

ОпределениеЭлектрическое напряжение – физическая величина, которая равна работе электрического поля по перемещению единичного заряда из одной точки в другую.

Обозначение.  напряжение.

Единица измерения.  вольт.

Названа единица измерения напряжения в честь итальянского ученого Алессанро Вольта (1745–1827) (рис. 1).

Рис. 1. Алессанро Вольта (Источник)

Если привести стандартный пример о смысле всем известной надписи на любых домашних бытовых приборах «220 В», то она означает, что на участке цепи совершается работа 220 Дж по перемещению заряда 1 Кл.

Формула для расчета напряжения:

Где:

 работа электрического поля по перенесению заряда, Дж;

 заряд, Кл.

Следовательно, единицу измерения напряжения можно представить так:

 Дольные и кратные единицы:

1 мВ = 0,001 В; 
1 мкВ = 0, 000 001 В;
1 кВ = 1 000 В.

Между формулами для вычисления напряжения и силы тока существует взаимосвязь, на которую следует обратить внимание:  и . В обеих формулах присутствует величина электрического заряда , что может оказаться полезным при решении некоторых задач.

 2. Вольтметр

Для измерения напряжения используют прибор, который называется вольтметр (рис. 2).

Рис. 2. Вольтметр (Источник)

Существуют различные вольтметры по особенностям их применения, но в основе принципа их работы лежит электромагнитное действие тока. Обозначаются все вольтметры латинской буквой , которая наносится на циферблат приборов и используется в схематическом изображении прибора.

В школьных условиях используются, например, вольтметры, изображенные на рисунке 3. С их помощью проводятся измерения напряжения в электрических цепях при проведении лабораторных работ.

Рис. 3. Вольтметры (Источник) (Источник) (Источник)

Основными элементами демонстрационного вольтметра являются корпус, шкала, стрелка и клеммы. Клеммы обычно подписаны плюсом или минусом и для наглядности выделены разными цветами: красный – плюс, черный (синий) – минус. Сделано это с целью того, чтобы заведомо правильно подключать клеммы прибора к соответствующим проводам, подключенным к источнику. В отличие от амперметра, который включается в разрыв цепи последовательно, вольтметр включается в цепь параллельно.

Безусловно, любой электрический измерительный прибор должен минимально влиять на исследуемую цепь, поэтому вольтметр имеет такие конструктивные особенности, что его через него идет минимальный ток. Обеспечивается такой эффект подбором специальных материалов, которые способствуют минимальному протеканию заряда через прибор.

 3. Вольтметр в электрических схемах

Схематическое изображение вольтметра (рис. 4):

 

 

Рис. 4.

Изобразим для примера электрическую схему (рис. 5), в которой подключен вольтметр.

 

 

 

 

 

 

 

Рис. 5.

В цепи почти минимальный набор элементов: источник тока, лампа накаливания, ключ, амперметр, подключенный последовательно, и вольтметр, подключенный параллельно к лампочке.

Замечание. Лучше начинать сборку электрической цепи со всех элементов, кроме вольтметра, а его уже подключать в конце.

 4. Виды вольтметров

Существует множество различных видов вольтметров с различающимися шкалами. Поэтому вопрос о вычислении цены прибора в данном случае очень актуален. Очень распространены микроамперметры, миллиамперметры, просто амперметры и т. д. По их названиям понятно, с какой кратностью производятся измерения.

Кроме того, вольтметры делят на приборы постоянного тока и переменного тока. Хотя в городской сети и переменный ток, но на данном этапе изучения физики мы занимаемся постоянным током, который подают все гальванические элементы, поэтому нас и будут интересовать соответствующие вольтметры. То, что прибор предназначен для цепей переменного тока, принято изображать на циферблате в виде волнистой линии (рис. 6).

Рис. 6. Вольтметр переменного тока (Источник)

Замечание. Если говорить о значениях напряжений, то, например, напряжение 1 В является небольшой величиной. В промышленности используются гораздо большие значения напряжений, измеряемые сотнями вольт, киловольтами и даже мегавольтами. В быту же используется напряжение 220 В и меньшее.

III. Закрепление изученного материала.

  1. Выразите в вольтах напряжение, равное:

А) U =2 000 мВ =
Б) U = 100 мВ =
В) U = 55 мВ =
Г) U = 3 кВ =
Д) U = 0,5 кВ =
Е) U = 1,3 кВ =

2. Выразите в мВ напряжение, равное:

А) U = 0,5 В =
Б) U = 1,3 В =
В) U = 0,1 В =
Г) U = 1 В =
Д) U = 1 кВ =
Е) U = 0,9 кВ =

3. Решим задачки: С

А) На участке цепи при прохождении электрическогозаряда25 Кл совершена работа 500 Дж.Чему равно напряжении на этом участке?

Б) Напряжение на концах проводника 220 В. Какая работа будет совершена при прохождении по проводнику электрического заряда, равного 10 Кл?

4. Вопросы на закрепление:

1) Что показывает напряжение в электрической цепи?
2) В каких единицах измеряется напряжение?
3) Кто такой Алессандро Вольта?
4) Как называют прибор для измерения напряжения?
5) Назовите правила включения вольтметра для измерения напряжения на участке цепи?

IV.

Домашнее задание.

§ 39 – 41. Упр.16.

V. Итог урока.

Вольтметр. Измерение напряжения

на прошлых уроках мы с вами выяснили что электрический ток можно охарактеризовать такой физической величиной как сила тока прибор для измерения силы тока называется амперметр амперметр надо включать в разрыв электрической цепи и вы знаете еще есть правила по которым нужно этот амперметр включать сейчас мы не будем этого повторять лучше пойдем дальше я хотел бы начать урок не с того чтобы записывать тему урока а с небольшой демонстрации у меня вот здесь на столе приготовлено обычная настольная лампа лампочка от карманного фонаря они соединены одна за другой и выводы подключены вот к этой вилки которую я сейчас включу осветительную сеть для того чтобы было понятно что происходит давайте оставим место для тема урока и в рисунок даже не схему рисунок того что сейчас лежит у нас на столе и так оставляем не оставили темы вот большая лампочка вот и и патрон но и точнее цоколь вот выводы а вот маленькая лампочка от карманного фонарика вот и и цоколь эти две лампочки мы включаем одну за другой вот так смотрите вывод от цоколя этой большой лампы я подключаю к источнику тока у нас источником тока будет осветительная сеть поэтому я здесь просто напишу источник тока затем вот этот средний вывод большой лампе я присоединяю к цоколю маленькая лампа а средний вывод маленькой лампы присоединяю к источнику тока допустим здесь у нас положительный полюс здесь отрицательный но хочу сразу сказать что на самом деле у нас сеть переменного тока там 50 раз в секунду плюс и минус меняются местами но для этой задачи это обстоятельство не имеет значения нам проще рассуждать если у нас источник постоянного тока который течет все время в одну сторону и сейчас мы этот эксперимент с вами проведем и так две лампочки вот такое соединение называется последовательным мы соединяем последовательно здесь есть выключатель на настольной лампе он сейчас разомкнут я включаю эту электрическую цепь подключаю к источнику тока и замыкаю выключатель тут он не нарисован что мы видим и эта лампа горит ярко правда а эта лампа горит света от какой лампы больше вот от этой от этой света меньше ребята а сила тока в какой лампе больше сила тока одинаковая но несмотря на то что сила тока в этой лампе и в этой одна и та же почему-то эта лампа светит ярче а это светит тускло давайте это обстоятельство сейчас отметим на нашем рисунке светит ярко а эта лампочка светит тускло а сила тока одна и та же здесь сила тока примерно мы измеряли силу тока в этой лампочке на прошлом уроке у нас получилось помните там 026 ампера 028 ампера значит будем писать сила тока в этой лампе и равняется 0 мы например 3 ампера вот этот ток втекает в лампочку большую протекает по ней здесь поскольку заряды не накапливаются какой заряд входит в большой лампу такой и выходит и здесь сила тока будет та же самая заряда не накапливаются 0 3 ампер здесь сила тока тоже 0 3 ампер но почему-то эта лампа светит ярко а это лампа светит тускло значит есть какая-то разница в режимах работы этих двух ламп и вот оказывается эта разница определяется физической величиной которая является характеристикой поля и носит название электрическое напряжение давайте запишем наконец тема урока тема электрическое напряжение . единицы напряжение . вольтметры электрическое напряжение единицы напряжения вольтметр на сегодня два урока домашнее задание сразу по двум уроком будет таким конспект по учебнику перышкина параграф из 39 по 41 prograf и 39-41 далее с сайта нашего класса или сайта ришельевского лицея библиотеки или из библиотеки нашего класса скачайте пожалуйста задачник скачать задачник кирик 8 у него там название самостоятельные и контрольные работы по физике но я условно называем кирик 8 для 8 класса из этого задачника после того как вы его скачаете выполнить задание с номерами 5-6 достаточного уровня на странице ада и 2 высокого уровня эти задачи находятся на странице 38 а также задачи 56 достаточного уровня и один высокого уровня эти находятся на странице 40 это на завтра завтра у нас с вами тоже урок записали а теперь давайте попробуем разобраться в том какого же разница в этих двух ситуациях один и тот же ток то есть за каждую секунду через эту лампочку протекает три десятых кулона и через эту лампочку протекает три десятых кулонов электрического заряда раз сила тока три десятых ампера но здесь лампочка светится ярче а здесь она светится тускло а почему лампа светится вот эта лампа лампа накаливания мы говорили с вами что за это отвечает тепловое действие тока ток протекая через спираль электрической лампочки нагревает ее настолько сильно что она начинает светиться скажите пожалуйста когда электрический заряд перемещается по спирали на него действует какая-то сила на него действуют силы со стороны электрического поля которая создает источник тока это сила проталкивает электрические заряды через спираль эту и через спираль этой лампочке если на тело или на частицу в нашем случае этой электронной действует сила и тела при этом перемещается то мы можем сказать что сила это совершает работу эта работа здесь идет на нагрев нити и здесь идет на нагрев нити но раз здесь нет нагревается сильнее ярче светит лампа значит тут электрическая сила или как принято говорить электрическое поле или говорят еще электрический ток но на самом деле работа всегда привязаны к силе значит здесь совершается большая работа а здесь совершается меньшая работа хотя через эту спираль и через эту спираль прошел один и тот же электрический заряд каждую секунду три десятых кулона и так получается что здесь электрическая сила будем варить электрическое поле совершает большую работу по перемещению того же электрического заряда чем здесь похожего ситуацию мы можем встретить и принят на рассмотрение движения жидкостей вот давайте рассмотрим hydra динамическую аналогию мы уже с вами говорили о том что электрический ток можно уподобить течению воды проводник эта труба вода это электрические заряды и вот сейчас я с конструирует такое устройство сейчас мы выключим это и смотрите вот у нас баг в нем есть отверстие здесь вода это вода вытекает и пройдя достаточно большое расстояние по вертикали крутит крыльчатку турбинку вот такую она вращается значит поток воды совершает работу по вращению этой турбинки вот эта высота пусть будет аж большое дальше эта вода попадает похоже сосуд внизу тоже есть отверстие здесь вода тоже накапливается течет дальше и тут уже поблизости не на такой большой высоте они далеко мы располагаем вещи ладно турбинку это турбина вращается вот этим потоком воды это турбинка вращается этим же потоком воды потом эта жидкость накапливается у нас в каком-то бассейне вот так высота которую проходит вода перед маленькой дубинкой меньше обозначим ее аж малая аж большой больше h-moll и скажите пожалуйста если здесь протекает например один килограмм в секунду 1 килограмм в секунду и здесь протекает через поперечное сечение вот этой струи один килограмм секунду как вы думаете работа которую совершит вода вращая вот эту турбинку и работа которую совершит вода вращая вот эту турбинку будет одинаковая нет значит одна и та же масса воды один и тот же электрический заряд падая с разной высоты может совершать разную работу то есть электрическое поле можно охарактеризовать величиной которая является аналогом высоты с которой падает жидкость одно и то же количество в зависимости от того с какой высоты эта жидкость падает может совершать разную работу одно и то же количество электричества один и тот же электрический заряд проходя в электрическом поле через эту ламповый через эту лампу может совершать разную работу и он мы будем с вами говорить что напряжение между выводами этой лампочке больше чем напряжение между доме этой лампочке точно также как высота между вот этим сосудам и этой турбин кай больше чем высота между разность высот лучше сказать между этим сосудам и от турбин гай вот только нам нужно ещё дополнить эту картину тем что здесь есть здесь есть источник тока что делает источник тока он заставляет циркулировать электрические заряды по замкнутому контуру здесь мы можем сделать то же самое давайте возьмём отсюда воду и будем ее с помощью насоса закачивать самый верхний сосуд вот и у нас организовался таким образом замкнутый цикл здесь вода поднимается потом она падая совершают работу скажите пожалуйста какая сила здесь совершает работу сила тяжести совершенно вверх какая сила здесь совершает работу электрическая сила сила с которой электрическое поле действует на заряды а теперь внимание вопрос на засыпку какая сила совершает работу в насосе против силы тяжести сила давления создаваемого насосом совершает работу против силы тяжести и какая сила совершает работу по перемещению заряда против электрической силы мы называли эту силу сторонняя сила молодцы итак смотрите какая получается аналогию здесь работу совершает сила тяжести работу совершает сила тяжести а вот здесь начинает их у двух участках здесь и здесь а здесь работу совершает сила давления где бы это написать работу совершает сила давление создаваемое насосом здесь на этих участках работу совершает электрическая сила или будем говорить электрическое поле работу совершает электрическое поле а здесь в источнике тока работу совершает или сторонняя сила в источнике тока сторонняя сила совершает работу против электрической силы или против электростатической силы можно сказать вот здесь во внешнем участке цепи за пределами источника тока работу совершает электрическое поле здесь работу совершает сила тяжести а в насосе работу совершать против силы тяжести сила давления создаваемого насосом а теперь смотрите что если здесь пройдет построение один килограмм а 10 килограмм что можно сказать о работе силы тяжести она будет увеличиваться в 10 раз а если мы эту работу разделим на массу протекших воды будет то же самое потому что если массу увеличить в 10 раз той работы увеличивается в 10 раз помните формулу для работы силы тяжести mch во сколько раз увеличилась масса во столько раз увеличилось работа а если вы работу разделите на массу останется же аж который не зависит от массы а теперь смотрим сюда если допустим здесь электрический ток протекал не одну секунду прошло три десятых кулона а 10 секунд пройдет три кулона 10 раз больше но если мы разделим работу совершенную электрическим полем по перемещению 3 десятых кулона за секунду или 3 кулон за 10 секунд у нас получится одна и та же величина отношении работы электрического поля к величине заряда которые протекает между двумя точками электрической цепи вот этой и этой во внешней цепи отношении не зависит от того какой заряд протек это отношения является характеристика электрического поля которая создает электричка источник тока и вот именно эта величина и носит название электрического напряжения мог теперь пора записать формулу которая является определением этой физической величины электрическое напряжение или просто напряжение всегда задается между какими-то двумя точками как разность высот задается между какими-то двумя точками здесь одна здесь другая точно также электрическое напряжение задается между какими-то двумя точками электрической цепи можно задать здесь можно задать здесь можно задать здесь обозначается электрическое напряжение буквой u и как я только что сказал это физическая величина равна отношению работы электрического поля по переносу заряда между двумя точками электрической цепи к величине этого заряда работу мы обозначаем буквой а перенесенный заряд буквой p вот эта формула отвечает на вопрос что такое электрическое напряжение пояснит здесь а работа электрического поля по переносу заряда между двумя точками цепи между двумя точками цепи q величина перенесенного заряда величина перенесенного заряда эта формула а теперь давайте сформулируем словами напряжением я буду варить просто напряжением не буду говорить электрическим напряжением между двумя точками электрической цепи записываем напряжением а между двумя точками электрической цепи называется физическая величина равная напряжением между двумя точками электрической цепи называется физическая величина равная отношению работы электрического поля равна и отношению работы электрического поля по переносу заряда между этими точками отношению работы электрического поля по переносу заряда между этими точками к величине перенесенного заряда отношению работы электрического поля по переносу заряда между этими точками к величине перенесенного заряда теперь в каких единицах измеряется электрическое напряжение единицы измерения электрического напряжения единицы работы в каких единицах измеряется работа все в джоулях в джоулях электрический заряд в кулонах и так напряжение измеряется в джоулях на кулон но это настолько важная физическая величина что для нее выбрана специально единицы измерения она называется вольт обозначается большой буквой v и называется вольт в честь итальянского физика алессандро вольта я о нем уже говорил когда мы обсуждали с вами источники тока итак если вас спросят в каких единицах измеряется напряжение вы скажете в вольтах а если вас спросят а что такое 1 вольт чтобы ответить на этот вопрос давайте посмотрим на эту формулу смотрите если работа по переносу заряда в 1 кулон равна одному джоуль то 1 делить на 1 будет 1 то тогда напряжение между этими двумя точками равно 1 вольт поэтому запишем 1 вольт это такое напряжение между двумя точками электрической цепи 1 вольт это такое напряжение между двумя точками электрической цепи при котором для переноса заряда в 1 кулон при котором для переноса заряда в 1 кулон между этими точками для это такое напряжение между двумя точками электрической цепи при котором для переноса заряда в 1 кулон между этими точками полем совершается работа в 1 джоуль для переноса заряда в 1 кулон между этими точками полем совершается работа в 1 джоуль и вот что такое 1 вольт если вы почитаете надписи на этой лампочке то вы найдете 220 вольт а если вы почитаете надпись на этой лампочке здесь написано три с половиной вольта поэтому когда один кулон проходит через эту лампу он совершает работу 220 джоулей а когда тот же самый кулон проходит через эту лампу он совершает работу всего три с половиной джоуля понятное дело что эта лампочка должна светиться гораздо ярче чем эта лампочка и работу по переносу электрического заряда легко найти если вы знаете эту формулу чтобы найти работу электрического поля мацуда можем выразить ее нужно умножить заряд который прошел по электрической цепи на напряжение вот так можно рассчитать работу электрического поля мы говорим электрического поля мы говорим электрического тока но на самом деле эта работа электрической силы которая заставляет упорядочена двигаться носители зарядов в проводнике но теперь раз существует физическая величина то должен существовать и прибор для измерения этой физической величины понятное дело что он называется вольтметр вольтметр обозначается вот так вампир metris действий буква а вольтметре здесь it латинская буква в вольтметр но бывают и более мелкие единицы например милливольт и тогда прибор для измерения таких небольших напряжений обозначается вот так м латинская маленькая в милливольтметр миль или вольтметр ну и давайте вспомним что один милливольт это сколько вольт 1 делить на 10 3 одна тысячная или 10 в минус 3 степени вольт бывает очень маленькие напряжения которые можно измерять прибором называемым микро вольтметр вот выводы микро вольтметра вот его обозначение латинская греческая буквами латинская буква в микро вольтметр один микро вольт сколько это вольт 10 минус 6 1 миллион и 10 минус 6 вольт и наконец в линиях электропередач которые передают энергию между городами напряжения например в одесской области это 110 тысяч вольт электростанции иногда вырабатывает напряжение которое потом доводится до 550 750 тысяч вольт или кило вот такие огромные напряжения измеряются киловольт метрами обозначается кило вольтметр вот так латинская буква к латинская буква в кило вольтметр один киловольт это 1000 вольт или 10 в третьей степени вольт пожалуйста накаливания смотри какой умница ребята нить накаливания длине и значит большее расстояние проходит заряды под действием электрического поля значит работа больше поэтому больше действительно электрическое напряжение молодец чем длиннее и проводник тем при той же силе тока через него напряжение на его концах будет больше мы об этом ещё будем говорить с вами в дальнейшем а пока что как же выглядят эти замечательные приборы давайте посмотрим на несколько вольтметров которая есть у нас в кабинете физики вот самый обыкновенный школьный вольтметр какое максимальное напряжение можно измерять с помощью этого вольтметра 6 вольт а вот другие приборы вот вольтметр которые устанавливают на электрических счетах его надо ставить вертикально об этом говорит вот этот знак такой вот перпендикуляр его предел измерения 50 вольт вот вольтметр с пределом измерения 15 вольт видимо это вольтметр очень точный потому что у него смотрите зеркальная шкала это не случайно сделали вот еще вольтметр он интересен тем что он позволяет мерять напряжение в двух пределах от 4 до 15 вольт и от 15 до 50 для этого у него есть общий вывод он обозначен звездочкой вот сейчас я крупнее покажу идите звездочка нарисована вот и вывод на котором написано 15 и вывод на котором написано 50 это для того чтобы измерять напряжение до 15 вольт вы используете два вот этих выводов и два вот этих чтобы измерять напряжение более высокие теперь каким же образом нужно подключать вольтметр в электрическую цепь и мы говорили с вами что напряжение характеризует электрическое поле между двумя точками электрической цепи скажите пожалуйста вот этот вольтметр измеряет напряжение где между какими двумя точками электрической между своими клеммами точно также как амперметр измеряет силу тока протекающего через него точно также вольтметр измеряет напряжение между вот этими двумя точками электрической цепи поэтому если вы хотите измерить напряжение на каком-то потребителя например на электрической лампочки вы должны проводниками соединиться с выводами этой электрической лампочки давайте нарисуем схему измерения напряжения с помощью вольтметра вот например источник тока батарейка вот лампочка я хочу измерить напряжение на лампочки для этого вольтметр подключается прямо к лампочке можно подключить вот сюда мы можно подключить и сюда вот так измеряют напряжение на лампочки на каждом вольтметре есть выводы плюс и минус я вам чуть позже их покажу как нужно подключать вольтметр чтобы он правильно работал смотрите вот здесь на вольтметре написано плюс здесь минус здесь на источнике тока написано плюс и минус клемма вольтметра со значком плюс соединяется тем участкам цепи который присоединён к положительному полюсу источника тока клемма на которой написан знак минус соединяется по электрической цепи с тем полюсом источника тока на котором написан знак минус и последнее скажите пожалуйста а можно ли вольтметр подключать непосредственно к источнику тока да или нет амперметр ни в коем случае потому что амперметр он ведет себя как просто проводник амперметр своим присутствием не должен влиять на электрическую цепь вот например я могу здесь разорвать электрическую цепь и сюда включить амперметр и никто ничего не заметит если хороший амперметр тогда мы за но измерим и силу тока и напряжения на лампочки а вольтметр он измеряет напряжение между двумя точками электрической цепи вот между этой от и если я лампочку уберу что-то изменится ничего вольтметр устроен так что он практически не потребляет электрического тока ток через него не течет поэтому если у вас почти не течет если у вас хороший вольтметр то от того что вы его подключаете напряжение на выводах лампочки не меняется можете даже лампочку не подключать вы можете подключить вольтметр непосредственно к источнику тока и вы измерите на решение характеристику электрического поля между полюсами источника тока вот у меня есть несколько источников тока давайте мы сейчас с вами немножко поиграемся воспользуемся в нашем школьном вольтметром сейчас я соберу электрическую цепь которое сначала будет предназначено для измерения напряжения на электрической лампочки и так у нас есть вольтметр вот он пока в сторонку его подключим сначала электрическую лампочку вот источник тока вот электрическая лампочка подключаем без всяких переключателей что было проще электрическую лампочку прямо к источнику тока один полюс это у нас какой минус к одному выводу лампочки другой полюс в другому выводу лампочка светится все отлично а теперь мы хотим измерить напряжение на лампочки берем вольтметр смотрим где у него положительный где у него отрицательный полюс вот плюс вот минусы значит этот нужно подключить к отрицательному полюсу батарейки точнее с той стороны где отрицательный полюс вот включаем сюда а этот вывод включаем сюда вольтметр показывает напряжение около четырех вольт значит напряжение на лампочки около четырех вольт а теперь смотрите убираем лампочку она нас больше не интересует и попробуем измерить напряжение непосредственно на выводах батарейки смотрим больше четырех вольт почему так мы узнаем немного позже но во всяком случае мы видим что напряжение между выводами этой батареи 4,4 вольт а теперь возьмем какие-нибудь другие источники тока которые у нас есть я тут заготовил несколько разных например гальванические элементы вот один вот другой видите они имеют одинаковое внутреннее устройство но видите сильно различаются в размерах как вы думаете напряжение создаваемая каким источникам тока будет больше ребята если это источники у которых одинаково и внутреннее строение там протекает одна и та же химическая реакция там одни и те же вещества используются оказывается что они будут давать одно и то же напряжение например вот этот гальванический элемент сейчас я сделаю крупнее вот этот гальванический элемент создает напряжение это у нас минус минус к минусу привоз к плюсу создает напряжение порядка 1,35 четыре десятых а теперь возьмем такое же тут только маленький он устроен внутри точно так же ну просто более миниатюрный и вы видите что практически точно такое же напряжение значит напряжение создаваемая источником тока зависит от его устройство не важно как и он имеет размеры но большой источник тока больших размеров он способен просто большей электрический заряд через себя пропустить говорят он имеет большую электрическую емкость вот такой гальванический элемент это литиевый гальванический элемент вот тут можем увидеть значок + значит его мы подключаем к положительному полюсу а этот улицу и вы видите литиевый гальванический элемент создает напряжение чуть больше 3 вольт хотя это всего лишь гальванический элемент но там у нас другие химические процессы там происходит другая химическая реакция и поэтому напряжение на выводах этого источника тока будет другим пока перерыв нам еще предстоит сегодня встретиться отдыхать [музыка]

Электрическое напряжение.

Единицы напряжения. Вольтметр. Измерение напряжения. 8-й класс

Цель урока: дать понятие напряжение как физической величины характеризующей электрическое поле, создающее электрический ток, вести единицу напряжения.

Оборудование: амперметры двух видов, вольтметры двух видов, портрет Алессандро Вольта.

Ход урока

I. Актуализация знаний.

Проверка домашнего задания. Слайд 2.

  1. Что такое сила тока? Какой буквой она обозначается?
  2. По какой формуле находится сила тока?
  3. Как называется прибор для измерения силы тока? Как он обозначается в схемах?
  4. Как называется единица силы тока? Как она обозначается?
  5. Какими правилами следует руководствоваться при включении амперметра в цепь?
  6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?
  7. Индивидуальные задания:

1) Через поперечное сечение проводника в 1 с проходит 6*10-19 электронов. Какова сила тока в проводнике? Заряд электрона 1,6*10-19Кл.
2) Определите силу тока в электрической лампе, если через нее за 10 мин проходит электрический заряд, равный 300 Кл.
3) Какой электрический заряд протекает за 5 мин через амперметр при силе тока в цепи 0,5 А.

  1. Проверочная работа (по карточкам):

Вариант I

1.Сколько миллиампер в 0,25 А?

а) 250 мА;
б)25мА;
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Выразите 0,25мА в микроамперах.

а) 250 мкА;
б)25мкА;
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 1 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.1

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

Вариант II

1.Выразите 0,025 А в амперметрах.

а) 250 мА;
б)25мА;
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Сколько микроампер в 0,025мА?

а) 250 мкА;
б)25мкА;
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 2 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.2

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

9) Проверка теста. Слайд 3

II.

Изучение нового материала.

1. Диск Виртуальная школа Кирилла и Мефодия. Уроки физики Кирилла и Мефодия, 8 класс.

1) Что такое электрический ток?

Ответ учащихся: Электрический ток – это направленное движение заряженных частиц.

2) Каковы условия существования электрического тока?

Ответ учащихся: 1 условие – свободные заряды,

2 условие – должен быть в цепи источник тока.

3) Объяснение учителя:

Направленное движение заряженных частиц создаётся электрическим полем, которое при этом совершает работу. Работа, которую совершает электрический ток при перемещении заряда в 1 Кл по участку цепи, называется электрическим напряжением (или просто напряжением).

U = A/q,

где U – напряжение (В)

А – работа (Дж)

q – заряд (Кл)

Напряжение измеряется в вольтах (В): 1В = 1Дж/Кл.

4) Сообщение ученика: Историческая справка об Алессандро Вольта.

ВОЛЬТА Алессандро (1745-1827), итальянский естествоиспытатель, физик, химик и физиолог. Его важнейшим вкладом в науку явилось изобретение принципиально нового источника постоянного тока, сыгравшее определяющую роль в дальнейших исследованиях электрических и магнитных явлений. В честь него названа единица разности потенциалов электрического поля – вольт.

Вольта был членом-корреспондентом Парижской академии наук, членом-корреспондентом академии наук и литературы в Падуе и членом Лондонского Королевского общества.

В 1800 г. Наполеон открыл университет в Павии, где Вольта был назначен профессором экспериментальной физики. По предложению Бонапарта ему была присуждена золотая медаль и премия первого консула. В 1802 г. Вольта избирается в академию Болоньи, через год – членом-корреспондентом Института Франции и удостаивается приглашения в Петербургскую академию наук (избран в 1819). Папа назначает ему пенсию, во Франции его награждают орденом Почетного Легиона. В 1809 Вольта становится сенатором Итальянского королевства, а в следующем году ему присваивается титул графа. В 1812 г. Наполеон из ставки в Москве назначает его президентом коллегии выборщиков.

С 1814 г, Вольта – декан философского факультета в Павии. Австрийские власти даже предоставляют ему право исполнять обязанности декана без посещения службы и подтверждают законность выплаты ему пенсий почётного профессора и экс-сенатора.

5) Дольные и кратные единицы:

1 мВ = 0,001 В;
1 мкВ = 0, 000 001 В;
1 кВ = 1 000 В.

6) Работа с учебником.

Работа с таблицей №7 в учебнике на стр.93.

7) Рабочее напряжение в осветительной сети жилых домов, социальных объектов – 127 и 220 В.

Опасность тока высокого напряжения.

Правила безопасности при работе с электричеством и электроприборами. Слайд 4.

8) Прибор для измерения напряжения называется вольтметром.

На схемах изображается знаком:

Правила включения вольтметра в цепь найдите в учебнике.

Слайд 5:

1. Зажимы вольтметра присоединяются к тем точкам цепи, между которыми надо измерить напряжение (параллельно соответствующему участку цепи).

2. Клемму вольтметра со знаком “+” следует соединять с той точкой цепи, которая соединена с положительным полюсом источника тока, а клемму со знаком “ – ” с точкой, которая соединена с отрицательным полюсом источника тока.

Демонстрация двух типов вольтметров.

Отличие вольтметра от амперметра по внешнему виду.

Определение цены деления демонстрационного вольтметра, лабораторного вольтметра.

9) Работа с учебником: (задание по вариантам)

Найдите в учебнике (§ 41) ответы на вопросы:

А) Как с помощью вольтметра измерить напряжение на полюсах источника тока?

Б) Какой должна быть сила тока, проходящего через вольтметр, по сравнению с силой тока в цепи?

III.

Закрепление изученного материала.

Слайд 6.

  1. Выразите в вольтах напряжение, равное:

А) U =2 000 мВ =
Б) U = 100 мВ =
В) U = 55 мВ =
Г) U = 3 кВ =
Д) U = 0,5 кВ =
Е) U = 1,3 кВ =

2. Выразите в мВ напряжение, равное:

А) U = 0,5 В =
Б) U = 1,3 В =
В) U = 0,1 В =
Г) U = 1 В =
Д) U = 1 кВ =
Е) U = 0,9 кВ =

3. Решим задачки: Слайд 7. (работа у доски)

А) На участке цепи при прохождении электрическогозаряда25 Кл совершена работа 500 Дж.Чему равно напряжении на этом участке?

Б) Напряжение на концах проводника 220 В. Какая работа будет совершена при прохождении по проводнику электрического заряда, равного 10 Кл?

4. Вопросы на закрепление:

1) Что показывает напряжение в электрической цепи?
2) В каких единицах измеряется напряжение?
3) Кто такой Алессандро Вольта?
4) Как называют прибор для измерения напряжения?
5) Назовите правила включения вольтметра для измерения напряжения на участке цепи?

IV.

Домашнее задание.

§ 39 – 41. Упр.16. Подготовиться к лабораторной работе №4 (с.172).

V. Итог урока.

Литература:

  1. Пёрышкин А.В. Физика. 8кл.: учеб. для общеобразоват. учеб. заведений. – М.:Дрофа, 2007.
  2. Шевцов В.А. Физика. 8кл.: поурочные планы по учебнику А.В.Пёрышкина.-Волгоград: Учитель, 2007. – 136с.
  3. Марон А.Е. Физика. 8кл.: учебно-методическое пособие /А.Е.Марон, Е.А.Марон.-6-е изд., стереотип. – М.:Дрофа, 2008.-125с.:ил.-(Дидактические материалы)
  4. Учебный диск “Кирилла и Мефодия”. Физика.8 класс.

Презентация

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения

Электрическое напряжение.
Единицы напряжения.
Вольтметр. Измерение
напряжения
8 класс
900igr.net
Фронтальный опрос.
Какой величиной определяется сила
тока в цепи?
Как выражается сила тока через
электрический заряд и время?
Что принимают за единицу силы тока?
Как называется эта единица?
Какие дольные и кратные амперу
единицы силы тока вы знаете?
Как выражается электрический заряд
через силу тока в проводнике и время
его прохождения?
Как называют прибор для измерения
силы тока?
В каких единицах градуируют шкалу
амперметра?
Как включают амперметр в цепь?
Электрическое напряжение.
ток – это движение заряженных частиц: ионов или
электронов. Именно они являются носителями
(переносчиками) заряда. Упорядоченное движение создается
электрическим полем, которое в свою очередь совершает
работу.
Работу сил электрического поля, создающего
электрический ток, называют работой тока.
От чего она зависит?
• от силы тока (т.е. электрического заряда, протекающего по цепи в 1с) и не
только. Рассмотрим опыт:
8 класс
Напряжение, это физическая
величина, характеризующая
электрическое поле.
Обозначение: U
Единицы измерения: 1В
(вольт)
Напряжение показывает, какую работу
совершает электрическое поле при
перемещении единичного
положительного заряда из одной точки в
другую.
A
U
q
A
A Uq, q
U
За единицу напряжения принимают
такое электрическое напряжение на
концах проводника, при котором работа
по перемещению электрического заряда
в 1Кл по этому проводнику равна 1Дж.
Дж
1В 1
Кл
Кроме вольта применяют дольные и
кратные ему единицы:
3
1мВ 0,001В 10 В
1кВ 1000 В 10 В
3
1МВ 1000000 В 10 В
6
Измерение напряжения.
Для измерения напряжения
используют специальный
прибор – вольтметр. Его всегда
присоединяют параллельно к
концам того участка цепи, на
котором хотят измерить
напряжение. Внешний вид
школьного демонстрационного
вольтметра показан на рисунке
справа.
31.03.2021
Подключение вольтметра.
Вольтметр подключают в
электрическую цепь параллельно.
Зажимы вольтметра подсоединяют
к тем точкам цепи, между
которыми надо измерить
напряжение.
Измерим напряжение на различных участках
цепи, состоящей из реостата и лампочки.
Сначала измерим напряжение на реостате: …
Затем измерим напряжение на лампочке: … И,
наконец, напряжение на всем соединении …
Измерим теперь напряжение на различных участках
цепи с параллельным соединением проводников,
например, лампочек.
Измерения покажут, что в цепи с параллельным
соединением проводников напряжение на каждом из
проводников равно напряжению на всем соединении:
ЭТО ИНТЕРЕСНО !
В 1979 г. в США было получено в лабораторных
условиях самое высокое напряжение.
Оно составило 32 ± 1,5 млн В.
Напряжение, считающееся безопасным для человека в
сухом помещении, составляет до 36 В. Для сырого
помещения это значение опускается до 12 В.
ЭТО НАДО ЗНАТЬ ВСЕМ !
Что будет с человеком, который окажется рядом с
упавшим оголенным кабелем,
находящимся под высоким напряжением ?
Так как земля является проводником электрического тока,
вокруг упавшего оголенного кабеля, находящегося под
напряжением, может возникнуть опасное для человека шаговое
напряжение. Шаговое напряжение, обусловленное электрическим током,
протекающим в этом случае в земле, равно разности потенциалов между
двумя точками поверхности земли, находящимися на расстоянии одного
шага человека. Возникает замкнутая электрическая цепь в теле человека
по пути нога-нога. Поражение электрическим током по этому
пути считается наименее опасным, т.к. в этом случае через сердце
проходит не более 0,04 от общего тока, и на практике не зарегистрировано
ни одного случая смертельного поражения человека шаговым
напряжением. При попадании под шаговое напряжение даже небольшого
значения возникают непроизвольные судорожные сокращения мышц ног.
Обычно человеку удается в такой ситуации своевременно выйти из
опасной зоны. Однако не пытайтесь выбегать оттуда огромными шагами,
шаговое напряжение при этом только увеличится! Выходить надо
обязательно быстро, но очень мелкими шагами
или скачками на одной ноге!
Если же рефлекторное действие тока всё-таки успевает проявиться,
то человек падает на землю, и возникает более тяжелая
ситуация: образуется более опасный путь тока от рук к ногам, и
создается угроза смертельного поражения.
Напряжение между облаками во время грозы может
достигать 100 миллионов вольт.
СПАСАЙСЯ, КТО МОЖЕТ !
Когда человек касается провода, находящегося под
напряжением выше 240 В,ток пробивает кожу. Если по
проводу течет ток, величина которого еще не смертельна,
но достаточна для того, чтобы вызвать непроизвольное
сокращение мышц руки (рука как бы “прилипает” к
проводу), то сопротивление кожи постепенно
уменьшается, и в конце концов ток достигает
смертельной для человека величины в 0,1 А. Человеку,
попавшему в такую опасную ситуацию, нужно как
можно скорее помочь, стараясь “оторвать” его от
провода, не подвергая при этом опасности себя.

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Физика, 8 кл

Тема:Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Цель урока: дать понятие напряжение как физической величины характеризующей электрическое поле, создающее электрический ток, вести единицу напряжения.

Оборудование: амперметры двух видов, вольтметры двух видов, портрет Алессандро Вольта.

Ход урока

I. Актуализация знаний.

Проверка домашнего задания. Слайд 2.

  1. Что такое сила тока? Какой буквой она обозначается?

  2. По какой формуле находится сила тока?

  3. Как называется прибор для измерения силы тока? Как он обозначается в схемах?

  4. Как называется единица силы тока? Как она обозначается?

  5. Какими правилами следует руководствоваться при включении амперметра в цепь?

  6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?

  7. Индивидуальные задания:

1) Через поперечное сечение проводника в 1 с проходит 6*10-19 электронов. Какова сила тока в проводнике? Заряд электрона 1,6*10-19Кл.
2) Определите силу тока в электрической лампе, если через нее за 10 мин проходит электрический заряд, равный 300 Кл. 
3) Какой электрический заряд протекает за 5 мин через амперметр при силе тока в цепи 0,5 А.

  1. Проверочная работа (по карточкам):

Вариант I

1.Сколько миллиампер в 0,25 А?

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Выразите 0,25мА в микроамперах.

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 1 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.1

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

Вариант II

1.Выразите 0,025 А в амперметрах.

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2. Сколько микроампер в 0,025мА?

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 2 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.2

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

9) Проверка теста. Слайд 3

II. Изучение нового материала.

1. Диск Виртуальная школа Кирилла и Мефодия. Уроки физики Кирилла и Мефодия, 8 класс.

1) Что такое электрический ток?

Ответ учащихся: Электрический ток – это направленное движение заряженных частиц.

2) Каковы условия существования электрического тока?

Ответ учащихся: 1 условие – свободные заряды,

2 условие – должен быть в цепи источник тока.

3) Объяснение учителя:

Направленное движение заряженных частиц создаётся электрическим полем, которое при этом совершает работу. Работа, которую совершает электрический ток при перемещении заряда в 1 Кл по участку цепи, называется электрическим напряжением (или просто напряжением).

U = A/q,

где U – напряжение (В)

А – работа (Дж)

q – заряд (Кл)

Напряжение измеряется в вольтах (В): 1В = 1Дж/Кл.

4) Сообщение ученика: Историческая справка об Алессандро Вольта.

ВОЛЬТА Алессандро (1745-1827), итальянский естествоиспытатель, физик, химик и физиолог. Его важнейшим вкладом в науку явилось изобретение принципиально нового источника постоянного тока, сыгравшее определяющую роль в дальнейших исследованиях электрических и магнитных явлений. В честь него названа единица разности потенциалов электрического поля – вольт.

Вольта был членом-корреспондентом Парижской академии наук, членом-корреспондентом академии наук и литературы в Падуе и членом Лондонского Королевского общества.

В 1800 г. Наполеон открыл университет в Павии, где Вольта был назначен профессором экспериментальной физики. По предложению Бонапарта ему была присуждена золотая медаль и премия первого консула. В 1802 г. Вольта избирается в академию Болоньи, через год – членом-корреспондентом Института Франции и удостаивается приглашения в Петербургскую академию наук (избран в 1819). Папа назначает ему пенсию, во Франции его награждают орденом Почетного Легиона. В 1809 Вольта становится сенатором Итальянского королевства, а в следующем году ему присваивается титул графа. В 1812 г. Наполеон из ставки в Москве назначает его президентом коллегии выборщиков.

С 1814 г, Вольта – декан философского факультета в Павии. Австрийские власти даже предоставляют ему право исполнять обязанности декана без посещения службы и подтверждают законность выплаты ему пенсий почётного профессора и экс-сенатора.

5) Дольные и кратные единицы:

1 мВ = 0,001 В; 
1 мкВ = 0, 000 001 В;
1 кВ = 1 000 В.

6) Работа с учебником.

Работа с таблицей №7 в учебнике на стр.93.

7) Рабочее напряжение в осветительной сети жилых домов, социальных объектов – 127 и 220 В.

Опасность тока высокого напряжения.

Правила безопасности при работе с электричеством и электроприборами. Слайд 4.

8) Прибор для измерения напряжения называется вольтметром.

На схемах изображается знаком:

Правила включения вольтметра в цепь найдите в учебнике.

Слайд 5:

1. Зажимы вольтметра присоединяются к тем точкам цепи, между которыми надо измерить напряжение (параллельно соответствующему участку цепи).

2. Клемму вольтметра со знаком “+” следует соединять с той точкой цепи, которая соединена с положительным полюсом источника тока, а клемму со знаком “ – ” с точкой, которая соединена с отрицательным полюсом источника тока.

Демонстрация двух типов вольтметров.

Отличие вольтметра от амперметра по внешнему виду.

Определение цены деления демонстрационного вольтметра, лабораторного вольтметра.

9) Работа с учебником: (задание по вариантам)

Найдите в учебнике (§ 41) ответы на вопросы:

А) Как с помощью вольтметра измерить напряжение на полюсах источника тока?

Б) Какой должна быть сила тока, проходящего через вольтметр, по сравнению с силой тока в цепи?

III. Закрепление изученного материала.

Слайд 6.

  1. Выразите в вольтах напряжение, равное:

А) U =2 000 мВ =
Б) U = 100 мВ =
В) U = 55 мВ =
Г) U = 3 кВ =
Д) U = 0,5 кВ =
Е) U = 1,3 кВ =

2. Выразите в мВ напряжение, равное:

А) U = 0,5 В =
Б) U = 1,3 В =
В) U = 0,1 В =
Г) U = 1 В =
Д) U = 1 кВ =
Е) U = 0,9 кВ =

3. Решим задачки: Слайд 7. (работа у доски)

А) На участке цепи при прохождении электрическогозаряда25 Кл совершена работа 500 Дж.Чему равно напряжении на этом участке?

Б) Напряжение на концах проводника 220 В. Какая работа будет совершена при прохождении по проводнику электрического заряда, равного 10 Кл?

4. Вопросы на закрепление:

1) Что показывает напряжение в электрической цепи?
2) В каких единицах измеряется напряжение?
3) Кто такой Алессандро Вольта?
4) Как называют прибор для измерения напряжения?
5) Назовите правила включения вольтметра для измерения напряжения на участке цепи?

IV. Домашнее задание.

§ 39 – 41. Упр.16. Подготовиться к лабораторной работе №4 (с.172).

V. Итог урока.

Если Вы являетесь автором этой работы и хотите отредактировать, либо удалить ее с сайта — свяжитесь, пожалуйста, с нами.

единиц электрического поля и напряжения

единиц электрического поля и напряжения

Единицы для электрический потенциал и поля

Электрические силы измеряются в Ньютонах ( Н ), электрические потенциальные энергии выражены в Джоулях ( Дж ), а электрический заряд равен измеряется в кулонах ( C ). Поскольку электрические поля и потенциалы получаются делением силы и потенциала энергии зарядом, они измеряются в единицах N / C и J / C соответственно.Но «Джоуль на кулон »( Дж / К ) также известен как вольт ( V ), а электрический потенциал, таким образом, часто обозначается как напряжение , напряжение . Следовательно, электрическое поле также может быть выражено в вольтах на метр, поскольку В / м = Н / З .

Пары эквивалентных единиц

Электрическое поле

В / м

Н / К

Электрический потенциал

В

Дж / К

Усилие

CV / м

N

Потенциальная энергия

CV

Дж

Удобная единица потенциальная энергия для описания микроскопической физики, например энергия электрона в атоме электронвольт ( эВ ). Один электрон вольт — это изменение потенциальной энергии, вызванное перемещением одного электрона стоимость заряда, e , через разность электрических потенциалов один вольт. Следовательно, один электрон-вольт равен 1,602E-19 Дж . Связанные единицы: кэВ, МэВ, ГэВ, и ТэВ, , которые представляют 10 3 , 10 6 , 10 9 , и 10 12 эВ . Эти единицы будут использоваться в Ядерная физика и физика элементарных частиц позже в семестре.


Примеры Электрические поля индекс

Что такое основная мера электроэнергии?

Все, что стоит измерить, связано с единицей измерения. В США мы используем дюймы и футы для измерения высоты объекта, фунты и унции для измерения веса объекта и градусы Фаренгейта для измерения температуры объекта. А как насчет электричества? Какие единицы измерения или используются, чтобы говорить об электричестве?

Прежде чем мы поговорим о том, как измерить электричество, нам сначала нужно понять, что это такое. На базовом уровне электричество — это движение электронов. Ваш компьютер, ваш свет, ваш телевизор, ваш холодильник и т. Д. — все работают с использованием одного и того же основного источника энергии — движения электронов.

Когда мы говорим о силе электричества, на самом деле мы говорим о заряде, создаваемом движущимися электронами.

Основными единицами измерения электричества являются ток, напряжение и сопротивление.

Ток (I)

Ток, измеряемый в амперах, — это скорость протекания заряда — скорость движения электронов.Амперы, или амперы, являются основной единицей измерения электричества и измеряют, сколько электронов проходит через точку каждую секунду. Один ампер равен 6,25 х 1018 электронов в секунду.

Напряжение (В)

Напряжение, измеряемое в вольтах, представляет собой разницу заряда между двумя точками. Проще говоря, это разница в концентрации электронов между двумя точками.

Сопротивление (R)

Сопротивление — это способность материала сопротивляться прохождению заряда (тока). Измеряется в омах.

Аналогия с водопроводной трубой

Теперь давайте воплотим эти идеи в жизнь. Наиболее распространенная аналогия, используемая для понимания этих идей, — это вода в трубе. Когда вы думаете о том, как быстро вода может двигаться по трубе, необходимо учитывать три основных компонента: давление воды, скорость потока и размер трубы. Чтобы объединить эти две идеи, напряжение эквивалентно давлению воды, ток — это скорость потока, а сопротивление — это размер трубы.

Итак, когда мы говорим об этих величинах, мы на самом деле описываем движение заряда и, следовательно, поведение электронов.Цепь — это замкнутая петля, которая позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Закон Ома

Закон

Ома — это основное и очень важное уравнение, которое используется для определения взаимодействия тока, напряжения и сопротивления. В нем говорится, что ток равен напряжению, деленному на сопротивление, или I = V / R. Закон Ома можно использовать для точного описания проводимости большинства электропроводящих материалов.Если вы знаете два значения, можно определить третье. Три варианта этого уравнения: I = V / R, V = IR, R = V / I

Вт

Есть еще один термин, который вы, возможно, слышали применительно к электричеству: ватты. Ватты измеряют скорость использования или передачи энергии, а не только для электроники. Ватт — это основная единица измерения электрической, механической или тепловой мощности. Один ватт равен одному амперу при давлении в один вольт. (Ватт = Ампер x Вольт)

Для более глубокого изучения напряжения, тока, сопротивления и закона Ома прочтите этот пост.

ампер, ватт и вольт: руководство по измерению мощности

Опубликовано 17 мая, 2019 автором Oozle Media


В октябре 2018 года мы написали статью на тему Хэллоуина о предотвращении перебоев в подаче электроэнергии. Мы обсудили несколько общих вещей, в том числе то, как узнать измерения мощности. В этой статье мы повторим сказанное, а также расширим его.

Во-первых, давайте определим наши термины

Согласно Google, вот технические определения для ампер, вольт и ватт:

Ампер: единица электрического тока, равная одному кулону в секунду.

Вольт: единица электродвижущей силы в системе СИ, разность потенциалов, которая будет управлять током в один ампер против сопротивления в один ом.

Вт: единица мощности в системе СИ, эквивалентная одному джоулю в секунду, соответствующая мощности в электрической цепи, в которой разность потенциалов составляет один вольт, а сила тока — один ампер.

Чтобы определить их проще и аналогично, пользователь Reddit Gsnow творчески объясняет разницу между этими измерениями мощности следующим образом:

«Думайте об этом, как о потоке воды.

Вольт = давление воды

А = объем движущейся воды

Если у вас высокое давление, но низкая громкость (высокое напряжение, низкая сила тока), это похоже на ирригатор дантиста.

Если у вас большой объем, но низкое давление (высокая сила тока, но низкое напряжение), это как если бы ваш подвал затопил стены или стоки.

Если у вас большая громкость и высокое давление (большая сила тока и высокое напряжение), это похоже на то, как пожарный шланг попадает вам в грудь с расстояния 3 фута и отбрасывает вас обратно через комнату.

Ватт — это мера того, сколько силы создается, другими словами, насколько велик эффект, который производит поток воды (электрический поток) ».

Расчет измерений мощности

Рейтинг усилителя

Ваш автоматический выключатель может выдерживать только определенную силу тока. Он имеет определенную номинальную силу тока, которая позволяет вашему автоматическому выключателю работать и обеспечивает ваш дом электричеством. Если этот предел будет превышен, ваш выключатель отключится, чтобы предотвратить повреждение проводки и бытовой техники в вашем доме.

Как узнать силу тока в доме

Это довольно просто. Все, что вам нужно сделать, это подойти к выключателю и проверить рукоятку. Большинство бытовых цепей имеют ток 15-20 ампер, и чем новее ваш дом, тем выше будет сила тока. Зная свою силу тока, вы можете узнать, сколько устройств вы можете поддерживать с ее помощью.

Какую силу тока используют ваши устройства?

Во-первых, убедитесь, что вы знаете, сколько ампер выдерживает ваша схема. Затем проверьте этикетку вашего устройства или руководство пользователя, чтобы узнать, сколько ватт и вольт будет использовать устройство.Разделите количество ватт на количество вольт, и вы получите максимальное количество ампер, которое потребуется от вашей схемы. Возможно, вам стоит отслеживать, сколько ампер потребляет каждое устройство. Таким образом, вы можете отслеживать, сколько энергии вы потребляете. Если вы в конечном итоге превысите свой лимит, вы отключите цепь.

Выходное напряжение

Напряжение — это мощность, которая поступает из ваших розеток, и ее измерение называется вольтами. Одна розетка обычно может выдавать до 120 вольт.

Какие бывают типы токов напряжения?

Постоянный ток (DC): Электричество течет в одном направлении. Это тип тока, который будет использовать большая часть вашей цифровой электроники.

Переменный ток (AC): Электричество периодически меняет направление своего потока. Большинство домов подключено к сети переменного тока, и поэтому ваш дом, скорее всего, тоже построен для этого.

Сколько вольт выходит из моей розетки?

Опять же, убедитесь, что вы знаете номер силы тока вашей цепи.Затем проверьте устройство, которое вы подключаете к розетке, чтобы узнать, сколько ватт оно потребляет. Все, что вам нужно сделать после этого, — это разделить полученное количество ватт на значение силы тока вашей цепи. Полученное число — это количество вольт, выходящих из вашей розетки для поддержки вашего устройства.

Измерения ватт

Выше мы обсуждали значения ампер и вольт, но есть еще один вопрос — ватты. Ватт — это единица измерения электроэнергии или единицы мощности.

Как можно рассчитать количество ватт, которое может выдержать ваша схема?

Все, что вам нужно знать, это две вещи.Как обсуждалось в предыдущих расчетах, вам нужно знать силу тока вашей цепи. Вам также необходимо знать, сколько вольт может выдавать ваша розетка. Затем умножьте силу тока на количество вольт. Это максимальное количество ватт, которое ваша схема может поддерживать одновременно. Если вы превысите это количество, вполне возможно, что произойдет электрический взрыв.

Обратитесь в службу поддержки JP Electrical

Если ваш автоматический выключатель когда-либо сработает или у вас возникнут другие проблемы с электричеством в вашем доме, позвоните нам.Мы предоставляем различные бытовые и коммерческие услуги и особенно хорошо разбираемся в электромонтажных работах, освещении и панелях. Также можем предоставить генераторы!

Позвоните в JP Electrical сегодня!

Категории: Электротехническое обслуживание

Вольт | Единицы измерения Wiki

На этой странице используется контент из англоязычной Википедии . Оригинальная статья была в Volt. Список авторов можно увидеть в истории страниц . Как и в случае с Вики-сайтом «Единицы измерения», текст Википедии доступен по лицензии Creative Commons, см. Wikia: Licensing.

Микросхема Джозефсоновского перехода, разработанная NIST в качестве стандартного напряжения

Вольт (обозначение: V ) — производная единица СИ для электрического потенциала, разности электрических потенциалов и электродвижущей силы. [1] Вольт назван в честь итальянского физика Алессандро Вольта (1745–1827), который изобрел гальваническую батарею, возможно, первую химическую батарею.

Определение []

Один вольт определяется как разность электрического потенциала на проводе, когда электрический ток в один ампер рассеивает один ватт мощности. [2] Он также равен разности потенциалов между двумя параллельными бесконечными плоскостями, расположенными на расстоянии 1 метра друг от друга, которые создают электрическое поле силой 1 ньютон на кулон. Кроме того, разность потенциалов между двумя точками будет передавать один джоуль энергии на каждый кулон заряда, который проходит через нее. Его можно выразить в единицах СИ следующим образом:

Его также можно записать, используя только базовые единицы СИ m, кг, с и A как:

Определение перехода Джозефсона []

В период с 1990 по 1997 год вольт был откалиброван с использованием эффекта Джозефсона для точного преобразования напряжения в частоту в сочетании с эталонным временем цезием-133, как было решено 18-й Генеральной конференцией по мерам и весам.Используется следующее значение постоянной Джозефсона:

K {J-90} = 2 e / h = 0,4835979 ГГц / мкВ.

Обычно используется с решеткой из нескольких тысяч или десятков тысяч переходов, возбуждаемых микроволновыми сигналами от 10 до 80 ГГц (в зависимости от конструкции решетки). [3] Эмпирическим путем несколько экспериментов показали, что метод не зависит от конструкции устройства, материала, измерительной установки и т. Д., и при практической реализации никаких поправочных членов не требуется. [4] Однако по состоянию на июль 2007 г. это не официальное определение вольта BIPM. [5]

Аналогия с потоком воды []

В аналоге потока воды , который иногда используется для объяснения электрических цепей путем сравнения их с трубами, заполненными водой, разница напряжений сравнивается с разницей давления воды — разница определяет, как быстро электроны будут проходить через цепь. Ток (в амперах), по той же аналогии, является мерой объема воды, которая проходит через заданную точку в единицу времени (объемный расход).Скорость потока определяется шириной трубы (аналогично электропроводности) и перепадом давления между передним концом трубы и выходом (аналогично напряжению). Аналогия распространяется на рассеяние мощности: мощность, отдаваемая потоком воды, равна скорости потока, умноженной на давление, точно так же, как мощность, рассеиваемая в резисторе, равна току, умноженному на падение напряжения на резисторе.

Соотношение между напряжением и током (в омических устройствах) определяется законом Ома.

Общие напряжения []

Мультиметр

может использоваться для измерения напряжения между двумя положениями.]]

Батареи типа C 1,5 В

Номинальные напряжения известных источников:

  • Потенциал покоя нервных клеток: около -75 мВ [6]
  • Одноэлементный перезаряжаемый NiMH или NiCd аккумулятор: 1,2 В
  • Ртутный аккумулятор: 1,355 В
  • Одноэлементная неперезаряжаемая щелочная батарея (например, элементы AAA, AA, C и D): 1.5 В
  • LiFePO 4 аккумулятор: 3,3 В
  • Литий-полимерный аккумулятор: 3,75 В (см. Аккумуляторная батарея № Таблица технологий аккумуляторов)
  • Источник питания транзисторно-транзисторной логики / CMOS (TTL): 5 В
  • Батарея PP3: 9 В
  • Автомобильная электрическая система: номинальное напряжение 12 В, около 11,8 В в разряженном состоянии, 12,8 В в заряженном состоянии и 13,8–14,4 В во время зарядки (работающего автомобиля).
  • Электроэнергия в домашних условиях: 230 В RMS в Европе, Азии и Африке, 120 В RMS в Северной Америке, 100 В RMS в Японии (см. Список стран, в которых имеются вилки сетевого питания, напряжение и частота)
  • Грузовые автомобили: 24 В постоянного тока
  • Скоростной третий рельс: 600–750 В (см. Перечень действующих систем для тяги электрельсов)
  • Воздушные линии электропередачи для высокоскоростных поездов: 25 кВ действующее значение при 50 Гц, но см. Перечень действующих систем для тяги электрических рельсов и 25 кВ при 60 Гц для исключений.
  • Высоковольтные линии электропередачи: среднеквадратичное значение 110 кВ и выше (1,15 МВ среднеквадратичное значение было рекордным по состоянию на 2005 г.
  • Lightning: сильно различается, часто около 100 МВ.

Примечание. Если выше указано RMS (среднеквадратичное значение), пиковое напряжение в несколько раз больше, чем RMS-напряжение для синусоидального сигнала с центром вокруг нулевого напряжения.

История напряжения []

Файл: Alessandro Volta.jpeg

Алессандро Вольта

В 1800 году в результате профессиональных разногласий по поводу гальванического отклика, предложенного Луиджи Гальвани, Алессандро Вольта разработал так называемую гальваническую батарею, предшественницу батареи, которая произвела устойчивый электрический ток.Вольта определил, что наиболее эффективная пара разнородных металлов для производства электричества — это цинк и серебро. В 1880-х годах Международный электротехнический конгресс, ныне Международная электротехническая комиссия (МЭК), одобрил вольт как единицу электродвижущей силы. В то время вольт определялся как разность потенциалов [то есть то, что сейчас называется «напряжением (разностью)»] на проводнике, когда ток в один ампер рассеивает один ватт мощности.

Международный вольт был определен в 1893 году как 1/1.434 ЭДС ячейки Кларка. От этого определения отказались в 1908 году в пользу определения, основанного на международном оме и международном амперах, пока в 1948 году не отказались от всего набора «воспроизводимых единиц».

До разработки стандарта напряжения на переходе Джозефсона в национальных лабораториях поддерживалось напряжение, используя специально сконструированные батареи, называемые стандартными элементами . Соединенные Штаты использовали конструкцию, названную ячейкой Вестона, с 1905 по 1972 год.

См. Также []

Список литературы []

  1. ↑ «SI Brochure, Table 3 (Section 2.2.2) «. BIPM. 2006. http://www.bipm.org/en/si/si_brochure/chapter2/2-2/table3.html. Дата обращения 29 июля 2007.
  2. ↑ Брошюра BIPM SI: Приложение 1, стр. 144
  3. ↑ Берроуз, Чарльз Дж .; Бенц, Сэмюэл П. (1999-06-01), «Программируемый стандарт напряжения Джозефсона 1 В постоянного тока», Транзакции IEEE по прикладной сверхпроводимости 9 (3): 4145–4149, ISSN 1051-8223, http: // www.nist.gov/cgi-bin/view_pub.cgi?pub_id=15238
  4. ↑ Келлер, Марк В. (18 января 2008 г.), «Текущее состояние треугольника квантовой метрологии», Metrologia 45 (1): 102–109, wikipedia: Bibcode 2008Metro. .45..102K, DOI: 10.1088 / 0026-1394 / 45/1/014, ISSN 0026-1394, http://qdev.boulder.nist.gov/817.03/pubs/downloads/set/Metrologia%2045,% 20102.pdf, «Теоретически нет текущих прогнозов для каких-либо поправочных членов. Эмпирически несколько экспериментов показали, что K J и R K не зависят от конструкции устройства, материала, измерительной установки и т. Д. Эта демонстрация универсальности согласуется с точностью соотношений, но не доказывает ее прямо.»
  5. ↑ http://www.bipm.org/en/si/si_brochure/chapter2/2-1/
  6. ↑ Баллок, Орканд и Гриннелл, стр. 150–151; Юнге, стр. 89–90; Шмидт-Нильсен, стр. 484

Внешние ссылки []

Основы измерения электроэнергии

Основные измерения электроэнергии

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим. Ниже приведен обзор основных измерений электрической и механической мощности.

Электрический ток, напряжение и сопротивление

Любое обсуждение электричества неизбежно приводит к электрическому току, напряжению и сопротивлению. Эти концепции показаны ниже на рисунке 1. Электрический ток — это сам поток электричества, который измеряется в единицах, называемых амперами (A). Напряжение — это сила, которая заставляет электричество течь, и измеряется в единицах, называемых вольтами (В или U). Сопротивление выражает сложность, с которой течет электричество, и измеряется в единицах, называемых омами (Ом).

На рисунке ниже эти взаимосвязи показаны в виде электрических цепей. В электрической цепи электрический ток проходит через различные типы нагрузки, включая сопротивление, индуктивность и емкость, от положительной полярности источников питания, таких как батареи, а затем возвращается к отрицательной полярности источника питания. Нагрузка — это термин, обычно используемый для обозначения чего-то, что получает электричество от источника питания и действительно работает (обеспечивает свет, в случае лампочки).


Рисунок 1 — Основные элементы электрической схемы
Мощность

Электрическая энергия может быть преобразована в другие виды энергии и использована.Например, его можно преобразовать в тепло в электронагревателе, в крутящий момент в двигателе или в свет люминесцентной или ртутной лампы. В таких примерах работа, которую электричество выполняет за определенный период (или затраченная электрическая энергия), называется электрической мощностью. Единица измерения электрической мощности — ватт (Вт). 1 ватт эквивалентен 1 джоуля работы, выполняемой за 1 секунду.

В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение.Умножив напряжение на соответствующий ток, можно определить мощность.

Постоянный ток (DC) Мощность

Постоянный ток, или DC, относится к системам питания, в которых используется одна полярность напряжения и тока, однако амплитуда может изменяться (циклическая или случайная).


Рисунок 2 — Базовая схема, показывающая напряжение и ток с источником постоянного напряжения
Закон Ома

Ряд формул используется при расчетах электрических цепей, но именно закон Ома показывает наиболее фундаментальную взаимосвязь: взаимосвязь между электрическим током, напряжением и сопротивлением.Закон Ома гласит, что электрический ток течет пропорционально напряжению. Ниже показана формула для выражения отношения между током (I) и напряжением (U).

По этой формуле ток (I) уменьшается при увеличении значения R и, наоборот, ток (I) увеличивается при уменьшении значения R. R здесь представляет собой сопротивление (или электрическое сопротивление). Другими словами, мы видим, что по мере увеличения или уменьшения сопротивления (R) ток течет с большей или меньшей легкостью.Эту формулу можно переписать, как показано ниже. Если известны два значения: ток, напряжение и сопротивление, вы можете получить оставшееся значение.

Мощность постоянного тока (DC) P (W) определяется умножением приложенного напряжения (U) на ток I (A), как показано выше. В приведенном ниже примере количество электроэнергии, определяемое предыдущим уравнением, извлекается из источника питания и потребляется сопротивлением R (в омах) каждую секунду. По закону Ома формулу можно переписать следующим образом:

Электрические цепи постоянного тока поддерживают постоянный ток и напряжение без циклических изменений ни в одном из них.Таким образом, получить мощность постоянного тока (P) с полученной формой волны, приведенной ниже, несложно.

Электропитание переменного тока (AC)

Электропитание, обычно используемое в Японии, работает от 100 В переменного тока. Эти 100 В представляют собой напряжение, выраженное как среднеквадратичное значение (СКЗ).

100 В от настенных розеток воспринимаются как чистые синусоидальные волны, как показано на рисунке ниже. Мы можем видеть, что полярность меняется циклически, и что напряжения постоянно колеблются.Волны переменного напряжения имеют чистые синусоидальные волны, как график на рисунке 3, а также множество других волн, таких как искаженные волны, такие как обычные формы, такие как треугольная и прямоугольная волна. Чтобы определить размер этих волн переменного тока и напряжения, нам нужны значения, соответствующие одному стандарту. Поэтому используется среднеквадратичное значение (среднеквадратичное значение), которое было получено на основе постоянного тока и напряжения.


Рисунок 3 — Циклы изменения полярности переменного напряжения синусоидальной, треугольной и прямоугольной формы
Среднеквадратичное значение (СКЗ)

Среднеквадратичное значение обычно используется при выражении значений переменного тока и напряжения и измеряется в единицах Армейских единиц и Урм.В приведенном выше примере 100 В — это напряжение, выраженное как среднеквадратичное значение (СКЗ).

Простое среднее значение синусоиды равно нулю, поэтому требуется другое уравнение. Вот почему используется среднеквадратичное значение (среднеквадратичное значение), которое было установлено на основе постоянного тока и напряжения. Он основан на количестве работы, выполняемой определенным количеством постоянного тока и напряжения, и выражает — используя те же значения, что и постоянный ток и напряжение — величину переменного тока и напряжения, которые выполняют такой же объем работы.

Если теплотворная способность при подаче напряжения постоянного тока на резистор такая же, как теплотворная способность при подаче переменного тока другой формы волны, действующее значение этого напряжения переменного тока будет таким же, как и для напряжения постоянного тока.

Например, теплотворная способность при приложении постоянного напряжения 100 В к резистору 10 Ом такая же, как теплотворная способность при подаче переменного тока 100 В на тот же резистор. Концепция среднеквадратичного значения для электрического тока такая же.


Рисунок 4 — Равная теплотворная способность между сигналами постоянного и переменного тока

Теплотворная способность — это объем выполненной работы, поэтому по следующей формуле мощность рассчитывается как теплотворная способность.

В качестве примера на следующей диаграмме показаны колебания мощности в зависимости от времени, когда на резистор 10 Ом подается постоянный ток 1 А и переменный ток 1 Ампер.


Рисунок 5 — Зависимость мощности от времени при постоянном и переменном токе

Поскольку при постоянном токе нет колебаний значения тока, значение мощности остается постоянным 10 Вт.Однако, поскольку значение тока постоянно колеблется с переменным током, значение мощности колеблется со временем. То, что эти два типа мощности (теплотворная способность) равны, равносильно утверждению, что средние значения Pdc и P1 — Pn равны. Это выражается формулой ниже.


Здесь резистор (R) постоянный, поэтому им можно пренебречь. Следующее выражает результирующую взаимосвязь между постоянным током и переменным током.

Делая интервал между I1 и In как можно меньшим в этой формуле, в конечном итоге Irms дает квадратный корень из площади части, заключенной в форме волны, деленной на время.Это выражается формулой ниже.

Важно знать, что постоянный ток 1 А выполняет ту же работу, что и переменный среднеквадратичный ток 1 Ампер. При постоянном и установившемся постоянном токе вы можете получить значение мощности, просто умножив ток на напряжение.

Однако переменный ток не так прост, как постоянный, из-за разницы фаз между током и напряжением. Ниже приведены три типа питания переменного тока.Обычно мощность и потребляемая мощность относятся к активной мощности.

Питание в системах переменного тока

Как и в случае постоянного тока, значение мощности (мгновенное значение мощности) для переменного тока в определенный момент времени может быть получено путем умножения напряжения и тока для этого момента времени.

При переменном токе, поскольку и ток, и напряжение периодически меняются, значения мощности также постоянно меняются. Это показано на следующей диаграмме.

В качестве энергии в секунду мощность может быть получена из среднего значения мгновенной энергии, то есть площади участка, заключенного в форме волны, по времени. Формула выглядит следующим образом:

Например, если к резистору приложен ток 1 А и напряжение 100 Ом, как показано ниже, мощность станет 100 Вт при вычислении по приведенной выше формуле.

При подаче тока и напряжения на резистор результирующие формы сигналов показаны на Рисунке 6 ниже.


Рисунок 6 — Отсутствие разности фаз в чисто резистивной нагрузке

Считается, что ток и напряжение находятся «в фазе» по полярности и времени, когда формы сигнала тока и напряжения проходят нулевое значение. Ток и напряжение всегда совпадают по фазе, когда нагрузка состоит только из сопротивления.

Когда нагрузка имеет катушку в дополнение к сопротивлению, происходит фазовый сдвиг между сигналом напряжения и тока. Это отставание называется разностью фаз, как показано на рисунке 7.


Рисунок 7 — Разности фаз, характерные для индуктивной и емкостной нагрузки

Разность фаз обычно выражается как Φ (фи), а единица измерения — радианы, но часто указывается в градусах.В приведенном ниже примере точка A начинается из точки P и делает один оборот по окружности круга O. Расстояние между точкой A и прямой линией, проходящей через центр O и точку P (красная линия) как ось Y и ∠AOP (φ), поскольку ось X дает синусоидальную волну ниже.


Рисунок 8 — Синусоидальная волна с фазой

На рис. 9 показаны кривые тока и напряжения, сдвинутые по фазе на 60 °. При рассмотрении положения на окружности напряжения (u) и тока (i) в соответствии с приведенным выше примером ∠uoi является постоянным в каждый момент времени.Угол этого ∠uoi указывает величину разности фаз между напряжением (u) и током (i).


Рисунок 9 — Синусоидальные волны напряжения и тока с разностью фаз

Три типа нагрузки цепи переменного тока показаны на рисунке 10. Как показано ниже, разность фаз между током и напряжением зависит от типа нагрузки.


Рисунок 10 — Фазовое и векторное представление цепей переменного тока с резистивной, индуктивной или емкостной нагрузкой

Для фаз ток может отставать от напряжения или опережать.Ток отстает на 90 °, когда нагрузка включает только индуктивность, и опережает на 90 °, когда только емкость. Когда существуют все три типа, разность фаз колеблется в соответствии с соотношением размеров каждого компонента. Затем давайте посмотрим на мощность, когда есть разность фаз между током и напряжением.

Питание переменного тока с разностью фаз

Когда существует разность фаз между током и напряжением, происходит мгновенное изменение энергии, как показано на рисунке 11.

Когда ток или напряжение равны 0, мгновенная мощность становится равной 0.Поскольку полярности тока и напряжения в промежутках между ними меняются, мгновенная мощность становится отрицательной. Мощность — это среднее значение мгновенной энергии, поэтому мощность становится меньше, чем когда ток и напряжение совпадают по фазе (пунктирная линия).


Рисунок 11 — Мгновенная энергия, когда напряжение и ток имеют разность фаз

Треугольник мощности и коэффициент мощности

Цепи переменного тока, содержащие емкость, индуктивность или и то, и другое, содержат активную и реактивную мощность.Треугольник мощности, показанный на рисунке 12, помогает проиллюстрировать потребление энергии в индуктивной или емкостной цепи. Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение четырех основных элементов, активной мощности, реактивной мощности, полной мощности и коэффициента мощности.


Рисунок 12 — Треугольник мощности показывает соотношение активной и реактивной мощности.

Активная мощность

Активная мощность (P) — это истинная мощность, которую устройство потребляет и выполняет реальную работу в электрической цепи.Активная мощность рассчитывается ниже в ваттах (Вт).

Реактивная мощность

Реактивная мощность (Q) — это мощность, которая не потребляется устройством и передается между источником питания и нагрузкой. Реактивная мощность, которую иногда называют мощностью без мощности, забирает мощность из цепи из-за фазового сдвига, создаваемого емкостными и / или индуктивными компонентами. Этот фазовый сдвиг уменьшает количество активной мощности для выполнения работы и усложняет расчет мощности.Реактивная мощность рассчитывается ниже и измеряется в вольт-амперах реактивной мощности (ВАр). В цепи постоянного тока нет реактивной мощности.

Полная мощность

Полная мощность (S) — это гипотенуза треугольника мощности, состоящая из векторного сложения активной мощности (P) и реактивной мощности (Q). Расчет полной мощности представляет собой умножение среднеквадратичного значения напряжения на действующий ток с единицей измерения вольт-ампер (ВА).

Коэффициент мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Φ).Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн. Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как мощность в ваттах, деленная на полную мощность в амперах напряжения. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных, с использованием квалификатора λ (лямбда).

Коэффициент мощности (λ) увеличивается или уменьшается в зависимости от величины разности фаз (φ). Рисунок 13 иллюстрирует это явление.


Рисунок 13 — Коэффициент мощности при различных разностях фаз

Для идеальных синусоидальных волн ток и напряжение совпадают по фазе, полная мощность и активная мощность становятся равными, а коэффициент мощности равен 1. Коэффициент мощности уменьшается по мере увеличения разности фаз; коэффициент мощности равен 0,5 (активная мощность равна 1/2 полной мощности) при разности фаз 60 ° и 0 при разности фаз 90 °. Коэффициент мощности 0 означает, что ток течет к нагрузке, но она не работает.

Векторное отображение переменного тока

Временной сдвиг между напряжением и током называется разностью фаз, а Φ — фазовым углом. Смещение по времени в основном вызвано нагрузкой, на которую подается питание. Как правило, разность фаз равна нулю, когда нагрузка является чисто резистивной. Когда нагрузка индуктивна, ток отстает от напряжения. Когда нагрузка емкостная, ток опережает напряжение.


Рисунок 14 — Сдвиг фаз между напряжением и током при чисто индуктивной или емкостной нагрузке

Векторный дисплей используется для четкого отображения зависимости величины и фазы между напряжением и током.Положительный фазовый угол представлен углом против часовой стрелки по отношению к вертикальной оси.


Рисунок 15. Векторная диаграмма показывает соотношение амплитуды и фазы между напряжением и током

Системы питания переменного тока

Электропитание переменного тока

может быть однофазным или многофазным. Однофазное электричество используется для питания обычных бытовых и офисных электроприборов, но для распределения электроэнергии и подачи электричества непосредственно на оборудование более высокой мощности почти повсеместно используются трехфазные системы переменного тока.

Однофазные электрические схемы

Для однофазных цепей существуют две распространенные схемы подключения. Наиболее распространена однофазная двухпроводная схема. Другой — однофазная трехпроводная схема, обычно встречающаяся в бытовых приборах.

Однофазная 2-проводная система (1P2W)

Обеспечивает однофазное питание переменного тока с помощью двух проводников. Самая простая система, она используется при подключении источников питания ко многим электрическим устройствам, например, бытовой электронике.При подключении ваттметра к однофазной двухпроводной системе необходимо учесть несколько моментов перед подключением.


Рисунок 16. Различные схемы подключения однофазной двухпроводной системы

Влияние паразитной емкости

При измерении однофазного устройства влияние паразитной емкости на точность измерения можно свести к минимуму, подключив токовый вход прибора к стороне, которая ближе всего к потенциалу земли источника питания.


Рисунок 17 — Схема подключения для минимизации паразитной емкости
Влияние измеренных амплитуд напряжения и тока

Когда измеряемый ток относительно велик, подключите клемму измерения напряжения между клеммой измерения тока и нагрузкой. Когда измеренный ток относительно невелик, подключите клемму измерения тока между клеммой измерения напряжения и нагрузкой.


Рисунок 18 — Схема подключения при относительно большом измеряемом токе

Двухфазная трехпроводная система (1P3W)

Обеспечивает однофазное питание переменного тока по трехпроводным проводам.Однофазная трехпроводная система является наиболее распространенной системой распределения электроэнергии. Электроэнергия, подаваемая в большинство домохозяйств, поставляется с использованием этой системы. В следующем примере требуются два ваттметра для измерения двух напряжений (U1, U2) и двух токов (I1, I2).


Рисунок 19 — Трехпроводная система с разделением фаз

Трехфазные электрические схемы

В отличие от однофазных систем, каждый из проводящих проводов трехфазного источника питания пропускает переменный ток той же частоты и амплитуды напряжения относительно общего эталона, но с разностью фаз в одну треть периода.Трехфазные системы имеют преимущества перед однофазными, что делает их пригодными для передачи энергии и в таких приложениях, как асинхронные двигатели.

Характеристики трехфазных систем
  • Ток и напряжение на каждой фазе имеют разность фаз 120 ° в сбалансированной системе.
  • Напряжение линии — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на нагрузке в фазе
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент трехфазного источника или нагрузки.
  • При соединении треугольником линейное напряжение совпадает с фазным напряжением. Для синусоидальных волн линейный ток в √3 раз больше фазного тока.
  • При соединении звездой линейное напряжение в √3 раз больше фазного напряжения, а токи одинаковы.
  • Трехфазные источники питания могут передавать в три раза больше мощности, используя всего в 1,5 раза больше проводов, чем однофазные источники питания (т.е.е., три вместо двух). Таким образом, соотношение емкости к материалу проводника увеличивается вдвое.
  • Трехфазные системы также могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей.

До сих пор мы обсуждали, что источник питания и нагрузка соединены двумя проводниками. Это известно как однофазная двухпроводная система. При питании от переменного тока существует однофазное и трехфазное питание, доступны следующие системы электропитания.Трехфазное питание может использоваться в трех- или четырехпроводной конфигурации в звездообразном или треугольном режиме.

Диаграммы на Рисунке 20 показывают источник и нагрузку в конфигурации треугольником или звездой (WYE).


Рисунок 20 — Конфигурации трехфазного треугольника и звезды (WYE)

Теорема Блонделя

При обсуждении измерения мощности с помощью ваттметров часто ссылаются на теорему Блонделя при определении правильного метода подключения ваттметров и количества требуемых для наиболее точного измерения.Теорема утверждает, что мощность, подаваемая в систему из N проводников, равна алгебраической сумме мощности, измеренной N ваттметрами. Кроме того, если общая точка находится на одном из проводов, счетчик этого проводника может быть удален, и потребуется только N-1 счетчик.

Трехфазное соединение звездой (3P4W)

Измерение относительно просто, если объектом измерения является трехфазная 4-проводная система. Как показано на схеме ниже, трехфазный четырехпроводной включает в себя подключение ваттметров к каждой фазе на основе нейтрального проводника.Получите мощность для каждой фазы, измерив напряжение (фазное напряжение) и ток (фазный ток) для каждой фазы с помощью разных ваттметров. Суммирование даст значение мощности трехфазного переменного тока. Для измерения трехфазной 4-проводной мощности требуется три ваттметра.


Рисунок 21 — Трехфазное соединение звездой (3P4W)

Полная мощность, активная мощность и реактивная мощность для трехфазной мощности — это сумма каждой фазы.

Трехфазный треугольник, два ваттметра (3P3W)

Измерение в трехфазной трехпроводной системе немного сложнее, поскольку нейтральный проводник, который использовался в качестве основы для трехфазной четырехпроводной системы, отсутствует и фазное напряжение невозможно измерить.Измерение в трехфазной трехпроводной системе включает получение значения мощности трехфазного переменного тока с использованием метода, называемого методом 2-ваттметра.

Применяя теорему Блонделя и используя метод двух ваттметров, мы можем получить значения мощности трехфазного переменного тока. Схема подключения метода двух ваттметров и векторная карта показаны ниже.

Вывод теоремы Блонделя приводится ниже.

Приведенный выше расчет показывает, что мы можем получить значения мощности трехфазного переменного тока из значений мощности в двух линиях и значений тока в двух фазах.Поскольку этот метод требует контроля только двух значений тока и двух напряжений вместо трех, установка и конфигурация проводки упрощаются. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерить только мощность или несколько других параметров.

Другими словами, для измерения трехфазной мощности мощность может быть получена путем измерения мощности для каждой фазы и вычисления общей мощности.Для метода двух ваттметров уравнение показано ниже.

Трехфазное соединение треугольником (3V3A)

Существует еще один метод измерения при трехфазной трехпроводной системе: измерение трех напряжений и трех токов (3V3A). Как и метод двух ваттметров, этот метод измеряет ток фазы T и линейное напряжение между R и S. Ниже представлена ​​схема подключения.


Рисунок 22 — Трехфазное соединение треугольником (3V3A)

Поскольку метод трех напряжений и трех токов (3V3A) измеряет ток фазы T, он позволяет увидеть баланс тока между фазами, что было невозможно при использовании метода двух ваттметров.Для инженерно-исследовательских и опытно-конструкторских работ трехфазный

Трехпроводной метод

с использованием трех ваттметров лучше всего, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (R — T, S — T, R — S).

Векторный дисплей измерений трехфазного переменного тока

Мы будем использовать трехфазную систему Y «звезда», чтобы проиллюстрировать концепцию трехфазного векторного дисплея.В звездообразной системе напряжения и токи каждой фазы смещены на 120 °. Нейтральная точка Y-системы находится в центре, где все напряжения и токи теоретически равны нулю.

При проведении измерений в звездообразной системе, где присутствует физический нейтральный провод; напряжения будут измеряться относительно этой нейтральной точки, это называется «фазным напряжением». При проведении измерений в звездной системе, где физический нейтральный провод отсутствует; напряжения будут измеряться относительно друг друга, это называется «линейное напряжение» или «соединение треугольником».Соединение по схеме «треугольник» образует равносторонний треугольник с интервалом между напряжениями 60 градусов, в отличие от соединения по схеме «звезда», где напряжения изменяются на 120 градусов. Величина линейных напряжений в √3 раз превышает фазные напряжения. Токи в звездной системе всегда измеряются последовательно относительно нейтральной точки, причем угловые измерения относительно векторов напряжения обозначаются Φ. Рисунок 23 иллюстрирует взаимосвязь между измерениями напряжений при соединении треугольником и звездой с помощью векторной диаграммы.


Рисунок 23 — Векторная диаграмма измерений трехфазного треугольника и звезды.

Измерение трехфазного коэффициента мощности

Общий коэффициент мощности для 3-фазной цепи определяется суммированием общего ватта, деленного на общее измерение в ВА.

Используя метод двух ваттметров, сумма общих ватт (W1 + W2) делится на измерения VA. Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА.Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат. Следовательно, для несимметричных нагрузок лучше всего использовать метод трех ваттметров, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.

При использовании метода трех ваттметров в приведенном выше расчете коэффициента мощности используются все три измерения ВА.

Гармоники

Гармоники относятся ко всем синусоидальным волнам, частота которых является целым кратным основной волны (обычно это синусоидальный сигнал линии электропередачи с частотой 50 или 60 Гц или от 0 до 2 кГц для вращающихся машин).Гармоники — это искажение формы нормального электрического тока, обычно передаваемого нелинейными нагрузками. В отличие от линейных нагрузок, где потребляемый ток пропорционален и следует форме волны входного напряжения, нелинейные нагрузки, такие как двигатели с регулируемой скоростью, потребляют ток короткими резкими импульсами. Когда основная волна и последующие гармонические составляющие объединяются, формы волны искажаются, и возникает интерференция.


Рисунок 24 — Искаженные формы сигналов состоят из нескольких гармонических составляющих

Гармоники необходимо контролировать, так как они могут вызвать аномальный шум, вибрацию, нагрев или неправильную работу устройств и сократить их срок службы.Внутренние и международные стандарты, такие как IEC61000-3, существуют для контроля гармоник. Поэтому инженерам необходимо обнаруживать гармоники и оценивать их влияние на компоненты, системы и подсистемы в приложении. Размер и разность фаз следует измерять не только для основной частоты, но и для каждой более высокочастотной составляющей. Высокоточные анализаторы мощности могут измерять гармоники до 500-го порядка.

Для вращающихся машин основные амплитуды являются единственными составляющими, которые эффективно способствуют вращению оси. Все остальные гармонические составляющие приводят к потерям в виде тепла и вибрации.

Измерение гармоник

Используя режим измерения гармоник, можно измерить размер и разность фаз для каждой основной частоты, а также гармоники для каждого градуса, включенного в ток, напряжение и мощность. В случае основной частоты (основной составляющей), например, 50 Гц, третья составляющая составляет 150 Гц, пятая составляющая — 250 Гц и так далее, и возможно измерение до 500-й составляющей на частоте 2,5 кГц.


Рисунок 25. Сумма нечетных гармонических составляющих в искаженный сигнал

Для отображения результатов измерения гармоник анализатор мощности может отображать размер каждого градуса, как показано на рисунке 26 ниже, или отображать такие параметры, как размер, соотношение содержания и фаза в списке.


Рисунок 26 — Гистограмма, показывающая зависимость энергии гармоник от порядка

Заключение

При измерении мощности необходимо учитывать множество факторов, включая входную мощность, КПД инвертора, КПД, гармоники и коэффициент мощности. Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности.Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя. Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

Единица электроэнергии — стандартные единицы, базовые единицы и другие единицы

Стандартная единица электроэнергии определяется систематически. Сначала определяется ампер. После этого идет заряд и кулон электрона.

Единицами СИ для измерения электрических выражений напряжения, сопротивления и тока являются вольт (v), ом (Ω) и ампер (A) соответственно.

Электрические единицы измерения электрических выражений основаны на Международной системе единиц (СИ). Другие единицы являются производными от этой единицы электричества.

Единицы используются в электрических цепях, электронике и электроприборах для измерения и описания их мощности от мала до велика.

В приведенной ниже таблице приведены необходимые данные для некоторых стандартных электрических блоков, их формулы и соответствующие значения компонентов.

Стандартные электрические единицы измерения

9 Вольт

Ток

Электрические параметры

Измерительная единица

Единица / символ

Формула

В или E

В = I × R

Сопротивление

Ом

R или Ом

R = V ÷ I

Ампер

I или i

I = V ÷ R

Емкость

Фарад

C

Электропроводность

Siemen

G

900 35

G = 1 ÷ R

Заряд

Кулон

C

Q = C × V

Мощность

Мощность

Мощность W

P = V × I или I² × R

Индуктивность

Генри

L / H

VL = -L (di / dt) 1

Частота

Герц

Гц

f = 1 ÷ T

Импеданс

Ом

²

Ом

² Z

Стандартные единицы (кратные и подмножественные)

Существует огромный диапазон электрических значений между минимальным значением и максимальным значением стандартной электрической единицы.Например, сопротивление проводника может составлять от 0,001 Ом до 100000 Ом. Мы можем избежать записи нескольких нулей при описании значений электрической единицы, если мы будем использовать кратные и множественные значения стандартной единицы. Ниже приводится таблица с их названиями и сокращениями.

Mega

Префикс

Обозначение

Множитель

Мощность десяти

9000

9000

1012

нано

1 / 1,000,000,000

n

109

микро

5

5

микро

5

1 / 1,000,000 900 900

106

мини

1/1000

м

103

сенти

1/100

902

нет

1

нет

10-2

килограмм

1,000

k

10-3

0

M

10-6

Giga

1000000000

G

10-9

0

0

T

10-12

Ниже приведен набор пунктов, описывающих использование единиц или кратных единицам сопротивления, тока и напряжения.

● 1кВ = 1 кВ = 1000 Вольт.

● 1 кОм = 1 кОм = 1 тысяча Ом.

● 1 мА = 1 миллиампер = одна тысячная (1/1000) ампера.

● 1 кВт = 1 киловатт = 1000 Вт.

● 100 мкФ = 100 микрофарад = 100 миллионных (100/1 000 000) фарада.

● 1 МГц = 1 мегагерц = один миллион герц.

При преобразовании одного префикса в другой мы должны умножить или разделить разницу между двумя значениями.

Какие основные единицы измерения электроэнергии?

● Напряжение / Вольт (В). Объем работы, необходимый для перемещения электрического заряда из одной точки в другую, называется напряжением.

● Ток (I) / Ампер (A) — ток определяется как количество заряда (или электронов), проходящих через цепь за единицу времени.

● Сопротивление (R) / Ом (O) — Сопротивление — это сопротивление протеканию тока в цепи.

● Мощность (P) / Вт (Вт) — мощность определяется как произведение требуемой работы и количества электронов, проходящих через цепь за единицу времени.

(Изображение будет добавлено в ближайшее время)

Другие электрические единицы

Как и стандартные единицы, существуют другие единицы, которые используются для обозначения значений и количества.Это:

● Втч — Ватт-час определяется как количество электроэнергии, потребляемой электрической цепью за заданный промежуток времени. Например, обычная электрическая лампочка потребляет 100 Вт энергии в час.

● дБ — Децибел составляет одну десятую часть бел (символ B). Он используется для обозначения прироста напряжения, мощности или тока.

● θ — фазовый угол. Это разница (в градусах) между формой волны напряжения и формой волны тока, которые имеют одинаковый период времени.Это разница во времени, которая зависит от элемента схемы. Его значение может быть «опережающим» или «запаздывающим». Он также измеряется в радианах.

● ω — угловая частота, используется в цепях переменного тока для представления фазового соотношения между двумя формами сигнала.

● τ — Постоянная времени. Постоянная времени является характеристикой цепи полного сопротивления. Это время, за которое выход достигает 63,7% от своего минимального или максимального значения при воздействии на него ступенчатой ​​характеристики. Это мера времени реакции.

Единица измерения заряда в системе СИ

Единица измерения электрического заряда в системе СИ — кулон. Кулон определяется как ампер-секунда.

Единицы электрического заряда перечислены в таблице, указанной ниже

Имя

Символы

Контекстное обозначение

кулонов

C

SI

кулонов

SI

статиков

9005

SI

abcoulomb

abC

EMU

ab кулонов

SI

9359
Стандарт

0

935

franklins

SI

электрон

e

атомный

электроны

SI

SI

2 900_900 planck

planck_charges

Это единицы электрического заряда.

Знаете ли вы?

Нет ничего лучше «1 единица электричества».

Во всем мире существует тот или иной тип измерения, который принимается за базовое количество электроэнергии. 1 кВт · ч — это в основном используемая единица мощности. Это количество электроэнергии, потребляемой за 1 час электроприбором мощностью 1000 Вт (1 кВт).

Конвертер электрического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке Конвертер объема и общих измерений при приготовлении Конвертер температуры Конвертер давления, напряжения, модуля Юнга Конвертер энергии и работыПреобразователь мощностиПреобразователь силыПреобразователь времениЛинейная скорость и Конвертер скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер удельной энергииПреобразователь удельной силы Конвертер теплоты сгорания (на массу) Удельная энергия, теплота сгорания (на объем) Конв. Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер коэффициента теплопередачиКонвертер массового расходаКонвертер массового расходаМолярный расходомерПреобразователь массового потокаПреобразователь абсолютной концентрации Конвертер натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивностиКонвертер яркостиЦифровой преобразователь разрешения изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрийная мощность) Диоптрия) к увеличению (X) ПреобразовательЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объемного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимости , дБВ, Ватты и другие единицыПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер полной мощности дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображений Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

Плазменный шар

Обзор

Когда мы поднимаемся на холм, мы выполняем работу, чтобы противостоять силе тяжести

Мы живем в эпоху электричество а про электрическую напряжение знаю с детства. Многие из нас исследовали окружающую среду и буквально испытали шок, когда мы тайком коснулись электрических розеток, пока родители не наблюдали за нами.Что ж, раз вы читаете эту статью, с вами ничего плохого не случилось, даже если вы изучали электричество в детстве. Почти невозможно жить в эпоху электричества и не быть с ним близко знакомым. Что касается электрического потенциала , дело обстоит несколько сложнее.

Поскольку это математическая абстракция, самый простой способ понять электрический потенциал — рассматривать его как аналогию с гравитацией. Формулы для обоих аналогичны. Разница в отрицательных значениях.У нас может быть отрицательный электрический потенциал из-за наличия как отрицательных, так и положительных зарядов, которые либо притягивают, либо отталкивают друг друга. С другой стороны, гравитационные силы могут вызывать притяжение только между двумя объектами. Мы не до конца поняли отрицательную массу. Как только мы справимся с этим, это позволит нам понять антигравитацию.

Но как только мы оттолкнемся …

Концепция электрического потенциала играет важную роль в описании явлений, связанных с электричеством.Мы можем определить понятие электрического потенциала как понятие, которое описывает взаимодействия электрически заряженных частиц или групп заряженных частиц, которые имеют одинаковые или противоположные заряды.

Из школьных уроков физики и из повседневного опыта мы знаем, что когда мы поднимаемся на холм, мы преодолеваем силу тяжести и выполняем для этого работу. Силы гравитации, которые нам предстоит преодолеть, действуют в потенциальном гравитационном поле Земли. Когда Земля взаимодействует с нами, она пытается уменьшить наш гравитационный потенциал, потому что у нас есть определенная масса.В рамках этого взаимодействия Земля тянет нас вниз, и мы позволяем ей спускаться по горному склону на лыжах или сноуборде. Точно так же электрическое потенциальное поле, которое действует на заряженные частицы, стремится сблизить частицы с противоположным зарядом и раздвинуть частицы с одинаковым зарядом.

Из вышесказанного можно сделать вывод, что электрически заряженное тело пытается уменьшить свой электрический потенциал. Для этого он пытается подобраться как можно ближе к мощному источнику электрического поля с противоположным зарядом, пока другие силы не мешают ему сделать это.Если электрический заряд объектов одинаков, каждый из электрически заряженных объектов пытается уменьшить свой электрический потенциал, удаляясь как можно дальше от одинаково заряженного источника мощного электрического поля. Опять же, это только в том случае, если никакие другие силы не препятствуют этому. Если есть силы, которые препятствуют этому, электрический потенциал не изменяется. По аналогии с гравитацией, когда вы стоите на вершине горы, сила тяжести компенсируется силой реакции земли, и ничто не тянет вас вниз и с этой горы.Лыжи толкает только ваш вес. Однако как только вы оттолкнетесь… вы спуститесь с холма!

Точно так же электрическое поле, создаваемое заряженной частицей или группой частиц, действует на другие заряженные частицы. Он создает электрический потенциал для перемещения этих заряженных частиц друг к другу или от друг друга, в зависимости от того, является ли заряд между этими двумя взаимодействующими частицами или объектами одинаковым или противоположным.

Сизиф Тициана, Музей Прадо, Мадрид, Испания

Электрический потенциал

Когда заряженная частица попадает в электрическое поле, она имеет определенное количество энергии, которое может быть использовано для выполнения работы.Электрический потенциал — это термин, который описывает эту энергию, запасенную в каждой точке электрического поля. Электрический потенциал электрического поля в данной точке равен работе, которую силы этого поля могут совершить, когда единица положительного заряда перемещается за пределы поля.

Снова глядя на аналогию с гравитационным полем, можно сделать вывод, что понятие электрического потенциала аналогично явлению уровня различных точек на поверхности Земли. Как мы обсудим ниже, работа по поднятию тела над землей зависит от того, насколько высоко нам нужно поднять это тело, и аналогично работа по перемещению одного заряда от другого зависит от того, насколько далеко эти заряды находятся.

Представим себе Сизифа, одного из героев мифов Древней Греции. Он был обречен богами выполнять бессмысленную работу в загробной жизни, перекатывая огромный камень на вершину горы в наказание за грехи, которые он совершил при жизни. Чтобы поднять камень на полпути к горе, он должен выполнить половину работы, которую ему нужно выполнить, чтобы подвести камень полностью к вершине. Как только он довел камень до упора, боги столкнули его с горы. Чтобы добраться до дна, сам камень тоже проделал некоторую работу.Камень, поднятый на гору высотой Н , может выполнять больший объем работы, чем камень, поднятый только наполовину, на высоту Н /2. Обычно мы считаем высоту от уровня моря, который считается нулевой высотой.

Используя эту аналогию, мы можем сказать, что электрический потенциал поверхности Земли является нулевым потенциалом, то есть

ϕ Earth = 0

где ϕ Earth — электрический потенциал, скалярная переменная .Здесь ϕ — буква греческого алфавита, произносимая как «фи».

Это значение количественно определяет способность электрического поля выполнять работу (Вт) по перемещению заряда (q) из одной заданной точки в другую точку:

ϕ = Вт / q

В СИ электрический потенциал измеряется в вольт (В).

Посетители Канадского музея науки и техники могут генерировать для него электрическую энергию, вращая большое колесо человеческого хомяка. Это колесо вращает генератор, который питает эту катушку Тесла (справа).Катушка генерирует высокое напряжение в десятки тысяч вольт. Этого достаточно, чтобы загорелся разряд электричества.

Напряжение

Электрическое напряжение (В) можно определить как разность электрических потенциалов, как в формуле:

В = ϕ1 — ϕ2

Понятие напряжения ввел Георг Ом , немец. физик. В своей статье, опубликованной в 1827 году, он предложил использовать гидродинамическую модель электрического тока для объяснения эмпирического закона Ома, открытого им в 1826 году.Этот закон можно записать по следующей формуле:

Катушка Тесла в Канадском музее науки и техники.

V = I × R,

где V — разность потенциалов, I — электрический ток, а R — сопротивление.

Альтернативное определение электрического напряжения описывает его как отношение работы, которую электрическое поле выполняет для перемещения электрического заряда, к величине этого заряда.

Это определение может быть выражено с помощью следующей формулы:

В = A / q

Аналогично электрическому потенциалу, напряжение также измеряется в вольтах (В), а также в десятичных кратных и дробных единицах — единицах, производных от вольта. , например, микровольт (одна миллионная вольт, мкВ), милливольт (одна тысячная вольт, мВ), киловольт (одна тысяча вольт, кВ) и мегавольт (один миллион вольт, МВ).

Напряжение в один вольт эквивалентно напряжению электрического поля, которое выполняет работу в один джоуль по перемещению заряда в 1 кулон. Мы можем определить вольт, используя другие единицы СИ следующим образом:

В = кг · м² / (А · с³)

Напряжение может генерироваться различными источниками, такими как биологические системы и объекты, электронные и механические устройства, и даже различные процессы в атмосфере.

Боковая линия акулы

Элементарным элементом любой биологической системы является клетка, которую можно рассматривать как небольшой электрохимический генератор.Некоторые органы живых организмов, такие как сердце, образованные множеством клеток, производят более высокое напряжение. Интересно отметить, что разные виды акул, которые являются идеальными хищниками океанов и морей, имеют очень чувствительные датчики напряжения. Эти датчики известны как боковая линия , и они позволяют акулам обнаруживать свою добычу по сердцебиению. Этот механизм очень надежен. Говоря о напряжении в животном мире, мы должны также упомянуть электрических скатов и угрей, которые разработали метод нападения на свою добычу и борьбы с хищниками, генерируя в процессе эволюции напряжение более 1000 В.

Люди могли генерировать электричество и создавать разницу потенциалов, натирая кусок янтаря шерстью или мехом в течение длительного времени, но гальванический элемент считается первым устройством, вырабатывающим электричество. Он был создан итальянским ученым и врачом Луиджи Гальвани , который обнаружил, что разница потенциалов возникает, когда разные металлы и электролиты контактируют друг с другом. Другой итальянский физик, Алессандро Вольта , продолжил и развил это исследование.Вольта был первым человеком в мире, который погрузил листы цинка и меди в кислоту, чтобы получить постоянный электрический ток. Таким образом, он создал первый химический источник электрического тока. Он соединил несколько из этих источников последовательно, чтобы создать первую химическую батарею. Он стал известен как гальваническая батарея и позволяла людям вырабатывать электричество с помощью химических реакций.

Гальваническая свая — копия, сделанная в 1999 году Гелсайдом Гваттерини, электриком из музея Вольта в Комо, Италия.Канадский музей науки и техники

Единица измерения напряжения, вольт, а также сам термин «напряжение» названы так, чтобы ознаменовать вклад Вольта в исследования электрохимических и электрических явлений. Благодаря ему у нас появились надежные электрохимические источники энергии.

Говоря об исследователях, которые работали над созданием устройств для выработки электроэнергии, мы не должны забывать голландского физика Ван де Граафф . Он создал генератор высокого напряжения, известный сейчас как генератор Ван де Граафа .При производстве электроэнергии используется тот же принцип разделения зарядов, который мы используем, когда натираем янтарь шерстью или мехом.

Можно сказать, что два выдающихся американских ученых Томас Эдисон и Никола Тесла были отцами современных электрогенераторов. Тесла работал на компанию Эдисона, но два исследователя разошлись во взглядах на то, как генерировать электрическую энергию, и пошли разными путями. Последовала патентная война, и человечество извлекло из нее выгоду благодаря работе этих двух ученых.Реверсивные машины Эдисона можно использовать в качестве генераторов и двигателей постоянного тока. Сегодня производятся миллиарды устройств, в которых используется механизм этих реверсивных машин. Мы можем найти их под капотом нашей машины, в стеклоподъемнике, блендере и других устройствах. С другой стороны, именно Тесла открыл способы генерации переменного тока и принцип его преобразования. Эти открытия используются такими устройствами, как электрические трансформаторы, линии электропередач, транспортирующие электричество на большие расстояния, и другие.Также существует множество этих устройств, и они включают в себя множество бытовой электроники, часто используемой нами в повседневной жизни, например вентиляторы, холодильники, кондиционеры, пылесосы и многие другие устройства, которые мы не можем здесь описать из-за объема этого. статья.

Эта мотор-генераторная установка постоянного тока, изготовленная Westinghouse в 1904 году, использовалась для обеспечения постоянной мощности для генерации магнитного поля в возбудителе на гидроэлектростанции Ниагара-Фолс (Нью-Йорк), построенной Никола Тесла и Джорджем Вестингаузом.

В конце концов, ученые открыли другие электрические генераторы, использующие другие принципы, в том числе те, которые используют энергию ядерного деления. Некоторые из этих генераторов предназначены для использования в качестве источников энергии во время длительных путешествий в космос.

Если не рассматривать некоторые из генераторов, созданных для научных исследований, можно сказать, что самыми мощными источниками электрической энергии на Земле по-прежнему являются атмосферные процессы.

Каждую секунду вблизи поверхности Земли происходит более 2000 вспышек молний.Это означает, что десятки тысяч генераторов Ван де Граафа в природе генерируют токи в десятки килоампер одновременно в форме молнии. Тем не менее, мы не можем даже начать сравнивать искусственные генераторы на Земле с электрическими бурями, которые происходят на сестре планеты Земля, Венере, и мы даже не будем пытаться сравнивать их со штормами на более крупных планетах, таких как Юпитер и Сатурн.

Характеристики напряжения

Напряжение можно охарактеризовать по его величине и форме волны.В зависимости от его поведения во времени мы можем определить постоянное напряжение, которое не меняется со временем, апериодическое напряжение, которое изменяется со временем, и переменное напряжение, которое изменяется со временем по определенному закону и обычно повторяется через определенные промежутки времени. Иногда для достижения поставленной цели может потребоваться как постоянное, так и переменное напряжение. В данном случае речь идет о переменном напряжении с постоянной составляющей.

Этот вольтметр использовался для измерения напряжения в начале двадцатого века.Канадский музей науки и техники в Оттаве

Генераторы постоянного тока, также известные как динамо-машины или динамо-электрические машины, используются в электротехнике для обеспечения высокой мощности при относительно стабильном напряжении. Прецизионные электронные устройства используются для подачи электроэнергии и поддержания постоянного уровня напряжения. Они работают с использованием электрических компонентов и также известны как регуляторы напряжения .

Измерение напряжения

Измерения напряжения широко используются во многих областях науки и техники, включая фундаментальную физику и химию, прикладную электротехнику и электрохимию, а также в медицине.Трудно представить себе дисциплину, в которой измерение напряжения не использовалось бы для управления различными процессами. Эти измерения выполняются различными типами датчиков, которые фактически являются преобразователями измерений различных свойств в напряжение. Некоторыми исключениями из этого правила являются или, скорее, были некоторые творческие области человеческой деятельности, такие как архитектура, музыка или изобразительное искусство. В наши дни даже музыканты и артисты используют электронные устройства, которые зависят от напряжения. Например, художники и дизайнеры могут использовать электронные планшеты со стилусом.В этих планшетах напряжение измеряется, когда стилус перемещается над поверхностью планшета. Затем он преобразуется в цифровые сигналы и отправляется в компьютер для обработки. Архитекторы также используют планшеты и программное обеспечение, такое как ArchiCAD, на компьютерах. Музыканты и композиторы часто работают с электронными музыкальными инструментами. Напряжение измеряется датчиками клавиш, чтобы определить интенсивность нажатия клавиши.

Температура мяса измеряется электронным термометром слева путем измерения напряжения на резистивном датчике температуры.Это осуществляется путем подачи небольшого электрического тока через этот датчик. С другой стороны, мультиметр справа определяет температуру путем измерения напряжения, создаваемого термопарой, без подачи тока от внешнего источника питания.

Единицы напряжения могут изменяться в широком диапазоне: от долей микровольта при исследовании биологических процессов до сотен вольт в бытовой электронике и промышленном оборудовании и десятков миллионов вольт в мощных ускорителях частиц.Измерение напряжения позволяет нам отслеживать и контролировать некоторые функции определенных внутренних органов человека. Например, чтобы отобразить работу мозга, мы записываем электроэнцефалограмму . Чтобы понять, как работает сердце, мы записываем электрокардиограмму или эхокардиограмму сердечной мышцы. С помощью различных промышленных датчиков мы можем успешно и, что более важно, безопасно контролировать различные процессы, происходящие в химическом производстве.Некоторые из этих процессов происходят при экстремальных давлениях и температурах, и из-за этого безопасность является серьезной проблемой. Измеряя напряжение, мы даже можем отслеживать процессы на атомных электростанциях, которые происходят во время ядерных реакций. Инженеры также поддерживают мосты и конструкции в хорошем состоянии, измеряя напряжение, и могут даже предотвратить или уменьшить разрушительные последствия землетрясения.

Как и вольтметр, пульсоксиметр измеряет напряжение усиленного сигнала с фотодиода.Однако, по сравнению с вольтметром, это устройство отображает процент насыщения гемоглобина кислородом, 97% в этом примере, а не напряжение, измеренное в вольтах.

Гениальная идея связать разные значения напряжения с логическими уровнями сигналов привела к созданию современных цифровых технологий. Например, в информационных технологиях низкое напряжение представляет собой низкий логический уровень (0), а высокое напряжение представляет собой высокий логический уровень (1).

Можно сказать, что все современные устройства в вычислительной технике и электротехнике каким-либо образом измеряют напряжение, а затем преобразуют свои входные логические состояния с помощью определенных алгоритмов для создания выходных сигналов в требуемом формате.

Кроме того, точные измерения напряжения являются основой многих современных стандартов безопасности. Соблюдение этих стандартов в соответствии с предписаниями обеспечивает безопасность во время использования устройства.

Карта памяти, которая используется в персональных компьютерах, содержит десятки тысяч логических вентилей.

Приборы для измерения напряжения

На протяжении всей истории, когда мы все больше узнавали об окружающем нас мире, наши методы измерения напряжения эволюционировали от примитивных органолептических методов .Примером таких методов является работа русского ученого Петрова, который срезал часть эпителия на пальцах, чтобы повысить его чувствительность к электрическому току. Эти методы эволюционировали до простых детекторов и индикаторов напряжения, а затем и до современных устройств с различными режимами работы, в которых используются электродинамические и электрические свойства материалов и веществ.

Вкус электричества: давным-давно, когда вольтметры не были так широко доступны и недороги, мы использовали для определения напряжения по вкусу

Интересно отметить, что в прошлом, когда современные измерительные приборы, такие как мультиметры, не были легко доступны для широкая публика, энтузиасты радиоэлектроники могли сказать рабочий 4.Аккумулятор для фонаря на 5 вольт от разряжавшегося. Они сделали это, просто облизывая электроды. Произошедшие при этом электрохимические процессы вызывали легкое ощущение жжения и придавали батарее определенный привкус. Некоторые люди даже пытались определить, подходят ли 9-вольтовые батареи для использования, но это потребовало немало мужества, потому что ощущение было очень неприятным.

Рассмотрим пример простого индикатора или измерителя напряжения — обычную лампу накаливания с напряжением не ниже напряжения сети.В наши дни вы также можете купить простые тестеры напряжения, основанные на неоновых лампах и светодиодах и потребляющие малые токи. При работе с электричеством всегда нужно проявлять осторожность, потому что любые ошибки, особенно при использовании устройств DIY, могут быть опасными для жизни!

Следует отметить, что вольтметры, являющиеся приборами для измерения напряжения, могут значительно отличаться друг от друга, наиболее заметное различие заключается в типе измеряемого напряжения. Например, аналоговые вольтметры могут измерять напряжение постоянного или переменного тока.Свойства измеряемого напряжения очень важны в процессе измерения. Это может быть функция времени и другого типа, например, прямой, гармонический, негармонический, импульсный и т. Д.

Наиболее распространены следующие типы напряжения:

  • мгновенное напряжение,
  • размах напряжения,
  • среднее напряжение, также известное как среднее напряжение,
  • среднеквадратичное напряжение.

Мгновенное напряжение U i (на рисунке) — это величина напряжения в данный момент времени.Мы можем отслеживать напряжение во времени на экране осциллографа и определять напряжение в данный момент времени, исследуя кривую.

Пиковое или амплитудное значение напряжения U a — это наивысшее мгновенное значение напряжения за данный период. Размах амплитуды U p-p — это разность между максимальной положительной и максимальной отрицательной амплитудами сигнала.

Среднеквадратичное значение напряжения U рассчитывается как квадратный корень из среднего арифметического квадратов мгновенных напряжений в течение заданного периода времени.

Все цифровые и аналоговые вольтметры обычно калибруются для считывания среднеквадратичных значений.

Среднее значение напряжения (составляющая постоянного тока) — это среднее арифметическое всех его мгновенных значений за период, в течение которого происходит измерение.

Среднее напряжение полупериода рассчитывается как среднее арифметическое абсолютных мгновенных значений для выборок напряжения за данный период времени.

Разница между максимальным и минимальным значениями напряжения называется размахом сигнала.

В наши дни напряжение часто измеряют с помощью многоцелевых цифровых устройств, таких как осциллографы. Их экран может отображать различные важные характеристики сигнала, а не только форму волны напряжения. Эти характеристики включают частоту измеряемых периодических сигналов. Стоит отметить, что ограничение частоты — очень важная характеристика любого устройства измерения напряжения.

Измерение напряжения с помощью осциллографа.

Мы можем проиллюстрировать приведенное выше обсуждение несколькими экспериментами по измерению напряжения.Мы будем использовать генератор функциональных сигналов, источник питания постоянного тока, осциллограф и многофункциональное цифровое измерительное устройство (мультиметр).

Эксперимент 1

Ниже представлена ​​схема эксперимента 1:

Генератор сигналов подключен к резистору с сопротивлением R, равным 1 кОм. Щупы осциллографа и мультиметра подключены параллельно резистору. При проведении этого эксперимента мы должны помнить, что полоса пропускания осциллографа намного превышает пропускную способность мультиметра.Сначала мы попробуем Эксперимент 1.

Тест 1: Давайте подадим синусоидальный сигнал с частотой 60 Гц и амплитудой 4 В от генератора на нагрузочный резистор. На экране осциллографа появится кривая, как на фотографии ниже. Следует отметить, что значение каждого вертикального деления на экране осциллографа составляет 2 В. И осциллограф, и мультиметр покажут среднеквадратичное значение 1,36 В.

Тест 2: Давайте удвоим амплитуду сигнала генератора. .Амплитуда на осциллографе и на мультиметре увеличится вдвое:

Тест 3: Теперь увеличим частоту генератора в 100 раз (до 6 кГц). Частота на осциллографе изменится, но амплитуда и среднеквадратичное значение останутся прежними. Среднеквадратичное значение, которое мультиметр будет неверным, вызвано ограничением полосы пропускания мультиметра всего в 0–400 Гц.

Тест 4: Давайте попробуем исходную частоту 60 Гц и напряжение 4 В для генератора сигналов, но изменим форму напряжения сигнала с синуса на треугольник.Шкала на осциллографе останется прежней, но значение, отображаемое на мультиметре, уменьшится по сравнению со значением напряжения, которое он показал в тесте 1. Это произошло из-за изменения среднеквадратичного значения сигнала.

Эксперимент 2

Мы будем использовать ту же установку для эксперимента 2, что и для эксперимента 1.

Давайте повернем ручку смещения генератора сигналов, чтобы добавить смещение 1 В постоянного тока к нашему синусоидальному сигналу 4 В pp . Мы установим синусоидальное напряжение на генераторе сигналов равным 4 В с частотой 60 Гц, как в эксперименте 1.Сигнал на осциллографе будет сдвинут на половину деления вверх. Мультиметр отобразит среднеквадратичное значение 1,33 В, что почти такое же, как в тесте 1 эксперимента 1, потому что в режиме измерения переменного тока он имеет вход, связанный по переменному току, и не может измерять составляющую постоянного тока. Кривая на осциллографе со связью по постоянному току будет аналогична кривой в тесте 1 эксперимента 1, но будет сдвинута на одно деление вверх. Среднеквадратичное значение, измеренное осциллографом, будет выше, чем в тесте 1 эксперимента 1, потому что среднеквадратичное значение суммы напряжений постоянного и переменного тока выше, чем среднеквадратичное значение для сигнала без компонента постоянного тока:

Указания по безопасности при измерениях Напряжение

В зависимости от мер безопасности, установленных в помещении или в здании, даже низкое напряжение 12–36 вольт может быть смертельным.Поэтому при работе с электричеством в целом и при измерении напряжения, в частности, крайне важно соблюдать следующие правила техники безопасности:

  1. Если у вас нет специальной подготовки по работе с высоким напряжением, не измеряйте напряжение, превышающее 1000 В.
  2. Не измеряйте напряжение в труднодоступных или высоких местах.
  3. Используйте специальные средства защиты, такие как резиновые перчатки, коврики и обувь, при измерении сетевого напряжения.
  4. Используйте измерительные приборы, которые работают правильно, и избегайте поломок.
  5. При работе с многофункциональными устройствами, такими как мультиметры, убедитесь, что функция и диапазон установлены правильно.
  6. Не используйте измерительные приборы с поврежденными датчиками.
  7. Следуйте инструкциям производителя для измерительного устройства.

Список литературы

Эта статья написана Сергеем Акишкиным

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *