В электротехнике u – Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Содержание

Обозначение важнейших величин в электротехнике

Величина

Обозначение

Добротность

Q

Емкость электрическая

C

Заряд электрона

e

Индуктивность:

      собственная

      взаимная

 

L

M

Индукция магнитная

B

Количество электричества

Q

Коэффициент:

      затухания цепи

      контура

      мощности при синусоидальных токах и

      напряжениях

      мощности при несинусоидальных

      токах и напряжениях

      распространения трансформации,

      отношения числа витков

      трансформации по току, напряжению

         связи

         фазы

 

α

δ

cosφ

 

λ

γ

n

Kт, Кυ

k

β

Мощность:

      электрическая

      полная

      реактивная

 

P

S

Q

Напряжение электрическое

U

Напряженность:

      магнитного поля

      электрического поля

 

H

E

Период колебаний электрической или магнитной величины

Т

Плотность электрического заряда:

      линейная

      объемная

      поверхностная

 

τ

ρ

σ

Плотность тока

J

Постоянная времени цепи

τ

Потенциал электрический

V

Поток магнитный

Ф

Проводимость:

      магнитная

      удельная электрическая

      активная электрическая

      комплексная, электрическая полная

      реактивная электрическая

 

Λ

γ

G

Y

B

Проницаемость:

      диэлектрическая

      магнитная

 

ε

μ

Разность:

      электрических потенциалов

      фаз (сдвиг фаз между Iи U)

 

U

φ

Сила электродвижущая

Е

Сопротивления:

      волновое

      магнитное

      удельное электрическое

      характеристическое

 

ZB

RM

ρ

Zc

Электрическое сопротивление:

      постоянному току и активное

      полное

      реактивное

 

R

Z

X

Сила тока

I

Угол диэлектрических потерь

δ

Частота:

      угловая

      колебания электрической или

      магнитной величины

 

ω

f

Число витков

N

Энергия электромагнитная

W

Буквенные обозначения употребляемых в электротехнике величин

Буквенные обозначения наиболее употребляемых в электротехнике величин (ГОСТ 1494-77)

Примечания: 1. Запасные обозначения применяются, когда главные обозначения использовать нерационально, например, если могут возникнуть недоразумения вследствие обозначения одной и той же буквой разных величин. 2. Мгновенные значения ЭДС, электрического напряжения, потенциала, тока, плотности тока, электрического заряда, мощности, электромагнитной энергии следует обозначать соответствующими строчными буквами. 3. Для амплитудных значений величин, являющихся синусоидальными функциями времени, применяется нижний индекс ш (например, 1т).


Наименование величины

Обозначение

главное

запасное

1

2

3

Емкость электрическая

С

Заряд электрический

Q

Индуктивность взаимная

м

Lmn

Индуктивность собственная

L

Индукция магнитная

В

Коэффициент затухания

6

 

Коэффициент магнитного рассеивания

ст

 

Коэффициент мощности при синусоидальных напряжении и токе

cosφ

 

Коэффициент трансформации

п

 

Коэффициент трансформации трансформатора напряжения (TH)

К

Ки

Коэффициент трансформации трансформатора тока (ТТ)

К

Кт

Мощность, мощность активная

Р

Мощность полная

S

Ps

Мощность реактивная

Q

PQ

Напряжение электрическое

и

Напряженность магнитного поля

н

 

Напряженность электрического поля

Е

Период колебаний электрической или магнитной величины

Т

 

1

2

3

 

Плотность тока

J

 

Постоянная времени электрической цепи

т

т

 

Постоянная магнитная

Цо

 

Постоянная электрическая

So

 

Поток магнитный

Ф

 

Потокосцепление

V

 

Проводимость магнитная

Л

 

Проводимость электрическая активная

G

g

 

Проводимость электрическая полная

Y

 

Проводимость реактивная

В

ь

 

Сдвиг фаз между напряжением и током

Ф

 

Сила коэрцитивная

Не

 

Сила магнитодвижущая (МДС) вдоль замкнутого контура

F

Fm

 

Сила электродвижущая (ЭДС)

Е

 

Скольжение

s

 

Сопротивление магнитное

Rm

rm

 

Сопротивление электрическое, то же постоянному току, то же актив

 

 

 

ное

R

г

 

Сопротивление электрическое полное

Z

 

Сопротивление электрическое реактивное

X

X

 

Сопротивление электрическое удельное

Р

 

 

Ток

I

 

 

Частота колебаний электрической или магнитной величины

f

У

 

Частота колебаний угловая электрической или магнитной величины

со

Q

 

Число витков

N

W

 

Число пар полюсов

Р

 

Число фаз многофазной системы

m

 

 

Энергия электромагнитная

W

 

 

активную, реактивную, полную (P, Q, S), а также коэффициент мощности (PF)

Такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом –

законом Ома . В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой , и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно

Термином комплексного числа (далее в тексте — КЧ) пользуются для обозначения выражений виды: ċ=а+jb , в которых индекс «ċ» используется для обозначения КЧ, а «а» и «b» отображают действительную и мнимую части. Значение «j» обозначает мнимую единицу и равно √(-1) .

В английском языке словом Real принято характеризовать действительность, а термином Imaginary — мнимые свойства. От этих слов были созданы обозначения Re и Im , которые используются для выражения величин «а» и «b» следующим способом:

а=Re(с), b=Im(с).

Для геометрического отображения КЧ в векторной форме применяется комплексная плоскость. У нее горизонтальная ось помечается знаком +1 , а вертикальная – символом +j . Термин действительной (реже вещественной) части используется для наименования горизонтальной оси, а для вертикальной — мнимой.

Обе составляющие (действительная и мнимая) КЧ являются прямоугольными проекциями вектора на соответствующие оси.

В представленном графике значение с=|ċ| именуется модулем КЧ и равно длине вектора. Другим параметром, определяющим положение радиус-вектора, является его угол поворота α от оси +1 до текущего положения ċ , считающийся аргументом. α=arqċ .

Катеты треугольника представляются через соотношения:

a=cosα, b=csinα .

Используя тригонометрическую форму для выражения КЧ можно представить его видом:

ċ=с(cosα+jsinα) .

Используя формулу Эйлера e jα = cosα+jbsinα , можно получить значение модуля в показательной форме ċ=сe jα .

В полярной форме выражение имеет вид:

ċ=с∠α.

Положение единичного вектора можно изобразить на комплексной плоскости:

Мнимая единица имеет свойства:

j=e j90° , j 2 =-1=e j180° , j 3 =jj 2 =-j=e j270° =e -j90° ,
j 4 =j 2 j 2 =1=e j0 =e j2Π , 1/J=1j/Jj=J/-1=-j.

К КЧ применимо понятие сопряжения. Им называют те числа, которые равны по величине модулей и аргументов, но имеют разные знаки у аргументов.

ċ=a+jb=ce jα , ĉ=a-jb=ce jα .

Из графика видно, что изображенные векторами КЧ симметричны по отношению к горизонтальной оси.

КЧ и математические действия. Для их сложения или вычитания делается запись в алгебраическом выражении:

ċ=ċ 1 +ċ 2 =(a 1 +jb 1)+(a 2 +jb 2)=(a 1 +a 2)+j(b 1 +b 2)=a+jb .

В этом соотношении отдельно суммируются мнимые и вещественные составляющие: а=а 1 +а 2 , b=b 1 +b 2 .

Данные алгебраические сложения чисел выражают выполнение сложения соответствующих им векторов.

Выполняя сложение сопряженных чисел можно заметить, что их сумма выражается удвоенным значением вещественной составляющей:

ċ+ĉ=(а+jb)+(а-jb)=2а.

Выражения КЧ в показательной форме удобны для выполнения умножения или деления. При этом у них модули перемножают или делят, значения аргументов складывают либо вычитают.

ċ=ċ 1 ċ 2 =c 1 e jα1 c 2 e jα2 =c 1 c 2 e j(α1+α2) =ce jα ;
ċ=ċ 1 /ċ 2 =c 1 e jα1 /c 2 e jα2 =c 1 e j(α1-α2) /c 2 =ce jα .

В выражении с=с 1 /с 2 , α= α 1 -α 2 .

Нетрудно заметить, что при действии умножения длина вектора увеличивается в величину с 2 , а аргумент — на значение а 2 . При представлении КЧ векторами соблюдается закономерность: для умножения вектора на КЧ вида aе jα достаточно растянуть вектор в а раз и довернуть на угол α .

Для вычисления произведения сопряженных чисел достаточно взять квадрат их модуля:

ċĉ=(а+jb)(а-jb)=а 2 +b 2 , или ċĉ=сe jα сe -jα =с 2 .

Для перемножения и деления КЧ при определенных условиях удобно пользоваться их алгебраическим выражением. В таком виде действия проводятся по законам умножения многочленов и уче

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

 

 

 

формулы тоэ | энергетик

меню сайта для мобильных приложений

 

ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)

 Формулы ТОЭДанный раздел основных формул ТОЭ предназначен для начинающих,  как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:

      Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением:   😥

Формулы ТОЭ

При расчётах всегда приводить все значения в одну единицу, например если расчеты по мощности в ваттах, соответственно напряжение в вольтах, сопротивление в омах и т.д. 

Формулы ТОЭ

  •         А теперь формулы по электротехнике (ТОЭ) часто применяемые для расчетов (дома, на работе), рассмотрим в порядке от простых к очень простым, для студенческого сообщества выложу отдельно сложные и очень сложные, и напишу целую лекцию по ТОЭ.

ФОРМУЛЫ ПОСТОЯННОГО ТОКА

       Закон Ома для участка цепи и всей цепи постоянного тока:

Формулы ТОЭ

    Пример для расчета сопротивления  проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр. понятия и определения):

Формулы ТОЭ

       Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт:

Формулы ТОЭ

    •     На заметку для любознательных, можно например, электрическую мощность пересчитать в механическую и наоборот: 1 кВт*ч = 367000 кгс*м; 1кВт = 102кгс*м/с, т.е. за 1 кВтч. Т.е. можно поднять груз массой 367 кг на высоту 1 км, или 102 кг за 1 сек. на один метр.

 

ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА

            В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах   ̴ (англ.  alternating current и обозначается латинскими буквами АС):

Формулы ТОЭ

Формулы ТОЭ

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и  просто для любознательных.

Перевод (конвертировать) мощности (Р в Вт), тока (I в А), сопротивления (R в Ом) и напряжения (U в В) можно, как показано ниже на простом примере (см. рис. ниже):

Формулы ТОЭ

При этом надо учитывать, если у Вас в цепи U 220 В есть электродвигатели, трансформаторы и т.д. (индуктивные или емкостные нагрузки — реактивные элементы), то тогда нужно учитывать cos φ , например:

I = P/(U*cos φ),

в цепи U 380 В подставляем ещё √3 (корень из трёх равен — 1,73), например:

для тока: I = P/(√3*U*cos φ), или I = P/(1,73*U*cos φ), для мощности: P = √3*U*I*cos φ.

Продолжение  формулы тоэ:  

См. также ниже продолжение раздела формулы:

перейти:  формулы тоэ 1   краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)…

 перейти:   формулы тоэ 2    краткое описание страницы —  пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры…

 

Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи.

ГОСТ 1494-77 Электротехника. Буквенные обозначения основных величин

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

В электротехнике u. Электротехника — это просто!


Обозначения в электротехнике : Механика и Техника

Точки над буковками обозначают комплексы или комплексные амплитуды. Так если некоторая величина изменяется по гармоническому закону , то — амплитуда , — комплекс величины , то есть комплексный гармонический сигнал, такой, что , а — комплексная амплитуда величины , так что . Иногда индекс «» в обозначении опускают, иногда отсутствие этого индекса указывает, что речь идёт о действующем значении — в зависимости от контекста. В электротехнике часто при определении комплесных амплитуд и комплексов используют мнимые части, а не действительные, как у меня — надо смотреть индивидуально.

Иногда вместо точек используют подчёркивания.

После подстановки в систему дифференциальных уравнений, описывающих цепь при гармоническом воздействии, комплексов (это можно потому, что если найдено решение системы дифуров при некотором комплексном сигнале, то действительная и мнимая части по отдельности удовлетворяют этой системе), получается система алгебраических уравнений относительно комплексных амплитуд. После нахождения комплексных амплитуд можно найти и сами гармонические сигналы в виду принципа транспозиции.

В этой системе обозначений, кстати, буква без точечки может также обозначать модуль комплексного числа . Надо быть внимательными.

dxdy.ru

Электротехника — это просто! — MoiKompas.ru

Разность потенциалов Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела. Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд, т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, — отрицательным потенциалом.

Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов.

Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов.

Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела.

Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов.

Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека.

Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде.

Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела.

Так, например, рассмотрим, что произойдет в куске медной проволоки, если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов.

Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие.

Электродвижущая сила и напряжение

Для поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника. Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой, которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е. Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой «В», а в международном обозначении — буквой «V». Итак, чтобы получить непрерывное течение электрического тока, нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый «вольтов столб», который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *