Гистерезис — Википедия

Гистере́зис (греч. ὑστέρησις — отставание, запаздывание) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.
Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.
Магнитный гистерезис[править | править код]

Магнитный гистерезис — явление зависимости вектора намагниченности и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.
Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления
Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.
В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения
Сегнетоэлектрический гистерезис[править | править код]

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P{\displaystyle P} сегнетоэлектриков от внешнего электрического поля E{\displaystyle E} при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc{\displaystyle P_{c}}. Направление поляризации может быть изменено электрическим полем. При этом зависимость P{\displaystyle P} (E{\displaystyle E}) в полярной фазе неоднозначна, значение P{\displaystyle P} при данном E{\displaystyle E} зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:
- остаточная поляризация кристалла Pr{\displaystyle P_{r}}, при E=0{\displaystyle E=0}
- значение поля EKt{\displaystyle E_{Kt}} (коэрцитивное поле) при котором происходит переполяризация
Упругий гистерезис[править | править код]
В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.
Различают два вида упругого гистерезиса — динамический и статический.
Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина ΔU{\displaystyle \Delta U} — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.
Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.
В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.
Основная гидрофизическая характеристика почвы обладает гистерезисом.
Практический интерес также представляет запаздывание изменения температуры грунта на различных глубинах от колебаний температуры воздуха. Осенью и в начале зимы когда температура воздуха опускается ниже нуля, накопленное грунтом за тёплый сезон тепло ещё остаётся в грунте. Это создаёт благоприятные условия для использования грунтовых тепловых насосов для отопления.
Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.
Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.
В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.
Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.
Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.
Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.
Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определёнными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.
В характере формирования общественного мнения важно учитывать два существенных обстоятельства[2].
Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.
Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчёта» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и её текущего состояния.
Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.
Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].
Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).
- ↑ Harrison, L. Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
- ↑ Горшков М. К. Общественное мнение. Учебное пособие. — М.: Политиздат, 1989. — 384 с.
- ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
- ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
- ↑ R. V. Lapshin. Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope (англ.) // Review of Scientific Instruments (англ.)русск. : journal. — USA: AIP, 1995. — Vol. 66, no. 9. — P. 4718—4730. — ISSN 0034-6748. — DOI:10.1063/1.1145314. (перевод на русский).
- ↑ Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses) (неопр.). R-project (20 ноября 2013). Дата обращения 11 июня 2018.
Гистерезис — это… Что такое Гистерезис?
явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации (См. Релаксация)) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление — Г.Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.
Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках (См. Ферромагнетики). Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на доме́ны — области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.На рис. 1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения Ms, направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент Mr (точка В).
Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой (См. Коэрцитивная сила)) Нс (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).
Вид и размеры петли магнитного Г., величина Нс в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).
Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.
С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами (См. Вихревые токи) и магнитной вязкостью (См. Магнитная вязкость). Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.
Диэлектрический Г. наблюдается обычно в сегнетоэлектриках (См. Сегнетоэлектрики), например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов (См. Домены) и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь (См. Диэлектрические потери) в сегнетоэлектриках. Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта (См. Электрооптический эффект). В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах. Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения σ, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций (См. Дислокации), всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во Внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью (См. Вязкость магнитная). Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения σ (или и). Иногда понятие «упругий Г.» употребляется шире — говорят о динамической петле упругого Г., включающей все потери на данной частоте.Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. — Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.
А. П. Леванюк, Д. Г. Санников.

Рис. 1. Петля магнитного гистерезиса для ферромагнетика: Н — напряжённость магнитного поля; М — магнитный момент образца; Нс — коэрцитивное поле; Mr — остаточный магнитный момент; Ms — магнитный момент насыщения. Пунктиром показана непредельная петля гистерезиса. Схематически приведена доме́нная структура образца для некоторых точек петли.

Рис. 2. Влияние механической и термической обработки на форму петли магнитного гистерезиса пермалоя: 1 — после наклёпа; 2 — после отжига; 3 — кривая мягкого железа (для сравнения).

Рис. 3. Петля диэлектрического гистерезиса в сегнетоэлектрике: Р — поляризация образца; Е — напряжённость электрического поля.

Рис. 4. Петля гистерезиса обратного пьезоэлектрического эффекта в титанате бария: U — деформация: Е — напряжённость электрического поля.

Рис. 5. Двойная петля диэлектрического гистерезиса.

Рис. 6. Петля упругого гистерезиса: σ — механическое напряжение; u — деформация.
Магнитный гистерезис
Магнитный гистерезис— явление зависимостивектора намагничиванияи вектора магнитной индукции в веществе не только от приложенного внешнего поля, но и от истории данного образца. Магнитный гистерезис обычно проявляется вферромагнетиках—Fe,Co,Niи сплавах на их основе. Именно магнитным гистерезисом объясняется существованиепостоянных магнитов.
Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. При полной ориентации всех доменов в направлении внешнего поля (ферромагнетик становится «однодоменным») достигается состояние насыщения. При выключении внешнего поля происходит некоторое уменьшение намагниченности вследствие теплового движения в кристалле, однако ферромагнетик остается намагниченным, так как при невысоких температурах энергия теплового движения сравнительно невелика и ее недостаточно для полной разориентации доменов.
Эти процессы требуют больших энергетических затрат и являются нелинейными. Кривая размагничивания ферромагнетика не совпадает с кривой намагничивания. Изменение намагниченности ферромагнетика (и индукции поля в нем) запаздывает по отношению к изменению напряженности внешнего поля. Это явление называется гистерезисом.При уменьшении напряженности внешнего поля до нуля, индукция поля в магнетике не равна нулю, ее величина называетсяостаточной индукциейВо. Чтобы полностью размагнитить магнетик, надо изменить направление внешнего поля на противоположное, и увеличивать его. При некотором значении напряженности «обратного» поля Нс, называемомкоэрцитивной силой,магнетик полностью размагничивается. Замкнутая кривая, отражающая процесс перемагничивания ферромагнетиков, называетсяпетлей гистерезиса(рис.1).
Рис.1. Петля гистерезиса
На данном графике точки В и С характеризуют состояние насыщения. Величина остаточной индукции характеризуется отрезком B0.
Коэрцитивная сила определяется точкой пересечения петли гистерезиса с осью напряженности магнитного поля. По величине коэрцитивной силы ферромагнетики разделяются на мягкие и жесткие магнитные материалы.
Жесткие ферромагнетики используются для постоянных магнитов, они имеют большую остаточную намагниченность и широкую петлю гистерезиса.
Мягкие ферромагнетики применяются в приборах и установках, работающих с переменными электромагнитными полями, где требуется частое перемагничивание при минимальных энергетических потерях (например, в сердечниках трансформаторов). Для них характерна небольшая остаточная намагниченность и узкая петля гистерезиса.
Описание установки
Опытная установка состоит из модуля ФПЭ-07, генератора сигналов ФГ-100 и осциллографа. Модуль содержит тороидальный трансформатор с исследуемым ферромагнитным сердечником в форме кольца, резисторы R1, R2и конденсатор С. С выхода генератора переменное напряжение через резисторR1 подается на первичную обмотку трансформатора, а затем — на вход «Х» осциллографа. Напряженность магнитного поля, создаваемого током первичной обмотки, пропорциональна напряжению на нейUx. С вторичной обмотки трансформатора через цепь, содержащую резисторR2и конденсатор С, сигнал подается на вход «Y» осциллографа. Индукция магнитного поля, возникающего в ферромагнитном сердечнике, пропорциональна напряжению на вторичной обмотке трансформатораUy.
В чем заключается явление гистерезиса?
Прежде, чем перейти к физическому толкованию того в чем заключается явление гистерезиса, отметим, что слово гистерезис происходит от греческого слова hysteresis, что в переводе обозначает отставание. В физике таким понятием обозначают явление запаздывания изменения физического параметра, который характеризует внутреннее состояние вещества от изменения другого параметра, который определяет условия внешние. Явление гистерезиса проявляется тогда, когда состояние вещества зависит от внешних условий не только в рассматриваемый момент времени, но и связано с историей состояний. Наибольшее значение в физике играют:
- магнитный гистерезис, который проявляется у ферромагнетиков. Так, если намагнитить ферромагнетик до насыщения, и после этого уменьшать напряженность магнитного поля (Формула напряженности электромагнитного поля), то при напряженности магнитного поля равной нулю вещество будет иметь остаточную намагниченность. С явлением остаточного намагничивания связывают существование постоянных магнитов. Намагничение исчезает под воздействием магнитного поля, которое противоположно полю, вызвавшему намагничение. Явление гистерезиса ведет к тому, что намагничение ферромагнетика не является однозначной функцией от напряженности магнитного поля (одному значению напряженности магнитного поля соответствует несколько величин намагниченности). При циклическом изменении напряженности магнитного поля зависимость намагничения от напряженности получают петлю гистерезиса;
- диэлектрический гистерезис. Это явление ярко проявляется у сегнетоэлектриков. Для этих веществ связь между векторами поляризованности и напряженности электрического поля не только является нелинейной, но и зависит от предыстории значений напряжения внешнего электрического поля. При увеличении напряженности электрического поля поляризованность растет, достигает насыщения. При уменьшении напряженности внешнего электрического поля поляризованность не становится нулевой. Остается остаточная поляризованность. Для уничтожения остаточной поляризованности, к веществу следует приложить электрическое поле противоположного направления. При циклическом изменении напряженности электрического поля зависимость поляризованности от напряженности даст петлю гистерезиса;
- упругий гистерезис. Упругий гистерезис заключается в отставании деформации тела от механического напряжения. В любой момент времени деформация тела зависит от предыстории. Если нагрузка к упругому телу прикладывается циклически, то зависимость деформации от напряжения дает петлю гистерезиса.
Магнитный гистерезис — это… Что такое Магнитный гистерезис?

Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса
Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (обычно физических), которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.
В физике
Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.
Магнитный гистерезис
Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.
Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.
Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как бы удерживается некоторым внутренним полем HA (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H, Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc может быть существенно меньше эффективного поля анизотропии формы.
В электронике и электротехнике используются устройства, обладающие магнитным — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.
Сегнетоэлектрический гистерезис
Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предистории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:
- остаточная поляризация кристалла Pост, при E = 0
- значение поля EKt(коэрцитивное поле) при котором происходит переполяризация
Упругий гистерезис
В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.
Различают два вида упругого гистерезиса — динамический и статический.
Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая полностью со временем не исчезает. Как при неупругом, так и вязкоупругом поведении величина ΔU — энергия упругой деформации не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.
В биологии
Гистерезисные свойства характерны для скелетных мышц млекопитающих.
В почвоведении
Основная гидрофизическая характеристика почвы обладает гистерезисом.
В гидрологии
Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.
В экономике
Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.
В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.
Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводит к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется, ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.
Математические модели гистерезиса
Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики. Позднее, в 1983 году появилась монография [1], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определенные на достаточно богатом функциональном пространстве(напр. пространстве непрерывных функций), действующие в некоторое функциональное пространство.
Свойства
Простое параметрическое описание различных петель гистерезиса можно найти в работе[2]. Замена гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет получить кусочно-линейные петли гистерезиса, часто встречающиеся в дискретной автоматике.
Литература
- ↑ М.А. Красносельский,А.В.Покровский. Системы с гистерезисом М., Наука, 1983. 271 стр.
- ↑ R. V. Lapshin, “Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope”, Review of Scientific Instruments, volume 66, number 9, pages 4718-4730, 1995.(англ.)
См. также
Обменное смещение — как особенность петель гистерезиса.
Wikimedia Foundation. 2010.
В чем заключается явление гистерезиса
Явление — магнитный гистерезис
Явление магнитного гистерезиса было открыто при изучении магнитных свойств веществ и подробно исследовано проф. [1]
Явление магнитного гистерезиса может быть связано как с отставанием изменений намагниченности от изменений внешнего поля, так и с необратимостью изменений намагниченности. [2]
Явление магнитного гистерезиса заключается в том, что сердечник ( аппарат), будучи помещен в магнитное поле, намагничивается; при этом можно представить, что элементарные магнитики, составляющие массу сердечника, под воздействием переменного силового поля поворачиваются одноименными полюсами во взаимно противоположные стороны, результатом чего является трение молекул металла, приводящее-к выделению тепла. [3]
Если явлениями магнитного гистерезиса , вязкости и поверхностного эффекта пренебречь нельзя, то эквивалентная схема заме-чцения катушки с магнитопроводом при импульсном намагничивании становится сложной. Для ее упрощения в каждом конкретном случае необходимы дополнительные исследования. [4]
Магнитные потери обусловлены явлениями магнитного гистерезиса и вихревыми токами в стали статора и ротора. Основная доля этих потерь ДРСт имеет место в сердечнике статора, так как вращающееся магнитное поле пересекает его с большой относительной скоростью ль что увеличивает частоту перемагничивания f i и вызывает большие вихревые токи. [5]
Некоторые антиферромагнетики при перемагничивании обнаруживают явление магнитного гистерезиса , что служит косвенным доказательством доменной структуры антиферромагнетиков. [6]
Существенное отличие в данном случае вносит явление магнитного гистерезиса . Кроме того, для магнитных цепей характерна соизмеримость продольных и поперечных размеров. Поэтому при расчете магнитных цепей приходится в большей мере привлекать понятия теории поля, учитывая изменение магнитных величин от точки к точке в пространстве. [7]
Существенное отличие в данном случае вносит явление магнитного гистерезиса . Кроме того, для магнит; ных цепей характерна соизмеримость продольных и поперечных размеров. Поэтому при расчете магнитных цепей приходится в большей мере привлекать понятия теории поля, учитывая изменение магнитных величин от точки к точке в пространстве. [9]
Существенное отличие в данном случае вносит явление магнитного гистерезиса . Кроме того, для магнитных цепей характерна соизмеримость продольных и поперечных размеров. Поэтому при расчете магнитных цепей приходится в большей мере привлекать понятия теории поля, учитывая изменение магнитных величин от точки к точке в пространстве. [10]
Это явление, по аналогии с явлениями магнитного гистерезиса , хорошо знакомого физикам, называют упругим гистерезисом. Можно заметить, что оси замкнутых петель, имеющих небольшие амплитуды, наклонены тем круче, чем меньше их амплитуды. [11]
В переменных магнитных полях в ферромагнетиках имеет место явление магнитного гистерезиса ( рис. 1.19), заключающееся в несовпадении кривой В ( Н) при возрастании напряженности поля с кривой при убывании поля. Кривая, соединяющая вершины петель гистерезиса, называется основной кривой намагничивания и практически совпадает с кривой первоначального намагничивания. Ферромагнитные свойства зависят от температуры и проявляются лишь в определенном ее интервале. [12]
Количественное сравнение теоретических данных с опытными затруднено из-за резкой структурной чувствительности явления магнитного гистерезиса . Однако большой опытный материал целиком подтверждает основные качественные выводы теории напряжений Кондорского для мягких материалов о том, что критическое поле растет пропорционально средней амплитуде внутренних напряжений и имеет наибольшее значение, когда дисперсность этих напряжений сравнима с толщиной граничных слоев между областями самопроизвольной намагниченности. [14]
Помимо тепла, определяемого по уравнению ( 349), за счет явлений магнитного гистерезиса и за счет вихревых токов выделяется дополнительно некоторое количество тепла, которое будет тем больше, чем выше частота переменного тока. [15]
Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.
Общие понятия гистерезиса
Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.
Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет заме для ться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.
Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.
Механизм возникновения петли гистерезиса
Сам по себе гистерезис представляет собой кривую, отображающую измененный магнитный момент вещества, на которое воздействует периодически изменяющаяся напряженность поля. Когда магнитное поле воздействует на ферромагнетики, то изменение их магнитного момента наступает не сразу, а с определенной задержкой.
В каждом ферромагнетике изначально присутствует самопроизвольная намагниченность. Сам материал включает в свой состав отдельные фрагменты, каждый из которых обладает собственным магнитным моментом. При направленности этих моментов в разные стороны, значение суммарного момента оказывается равным нулю в результате взаимной компенсации.
Если на ферромагнетик оказать воздействие магнитным полем, то все моменты, присутствующие в отдельных фрагментах (доменах) будут развернуты вдоль внешнего поля. В итоге, в материале образуется некоторый общий момент, направленный в одну сторону. Если внешнее действие поля прекращается, то домены не все окажутся в изначальном положении. Для этого потребуется воздействие достаточно сильного магнитного поля, предназначенного для разворота доменов. Такому развороту создают препятствия наличие примесей и неоднородность материала. Поэтому материал имеет некоторую остаточную намагниченность, даже при отключенном внешнем поле.
Для снятия остаточного магнитного момента, необходимо приложение действия поля в противоположном направлении. Напряженность поля должна иметь величину, достаточную, чтобы выполнить полное размагничивание материала. Такая величина известна как коэрцитивная сила. Дальнейшее увеличение магнитного поля приведет к перемагничиванию ферромагнетика в противоположную сторону.
Когда напряженность поля достигает определенного значения, материал становится насыщенным, то есть магнитный момент больше не увеличивается. При снятии поля вновь наблюдается наличие остаточного момента, который снова можно убрать. Дальнейшее увеличение поля приводит к попаданию в точку насыщения с противоположным значением.
Таким образом, на графике появляется петля гистерезиса, начало которой приходится на нулевые значение поля и момента. В дальнейшем, первое же намагничивание выводит начало петли гистерезиса из нуля и весь процесс начинает происходить по графику замкнутой петли.
Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.
Магнитный гистерезис
Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.
Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.
Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.
В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как бы удерживается некоторым внутренним полем HA (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA ). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H, Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc может быть существенно меньше эффективного поля анизотропии формы.
В электронике и электротехнике используются устройства, обладающие магнитным — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.
Сегнетоэлектрический гистерезис
Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предистории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:
- остаточная поляризация кристалла Pост, при E = 0
- значение поля EKt(коэрцитивное поле) при котором происходит переполяризация
Упругий гистерезис
В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.
Различают два вида упругого гистерезиса — динамический и статический.
Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая полностью со временем не исчезает. Как при неупругом, так и вязкоупругом поведении величина ΔU — энергия упругой деформации не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.
В биологии
Гистерезисные свойства характерны для скелетных мышц млекопитающих.
В почвоведении
В гидрологии
Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.
В экономике
Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.
В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.
Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводит к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется, ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.
Математические модели гистерезиса
Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики. Позднее, в 1983 году появилась монография [1] , в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определенные на достаточно богатом функциональном пространстве(напр. пространстве непрерывных функций), действующие в некоторое функциональное пространство.
Свойства
Простое параметрическое описание различных петель гистерезиса можно найти в работе [2] . Замена гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет получить кусочно-линейные петли гистерезиса, часто встречающиеся в дискретной автоматике.
Литература
- ↑ М.А. Красносельский,А.В.Покровский. Системы с гистерезисом М., Наука, 1983. 271 стр.
- ↑ R. V. Lapshin, “Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope”, Review of Scientific Instruments, volume 66, number 9, pages 4718-4730, 1995. (англ.)
См. также
Обменное смещение — как особенность петель гистерезиса.
что это такое, кратко и понятно
Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.
Что такое гистерезис?
Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.
Явление гистерезиса наблюдается:
- в физике;
- электротехнике и радиоэлектронике;
- биологии;
- геологии;
- гидрологии;
- экономике;
- социологии.
Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.
Динамический гистерезис
Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.
По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.
Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.
Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.
Различают упругий гистерезис двух видов:
- Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.
- Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.
Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.
Петля гистерезиса
Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).

Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.

Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.
Гистерезис в электротехнике
Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.
На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.
Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.
Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).

Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.

Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.
В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.

В электротехнике гистерезисные свойства используются довольно часто:
- в работе электромагнитных реле;
- в конструкциях коммутационных приборов;
- при создании электромоторов и других силовых механизмов.
Явления диэлектрического гистерезиса
У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.
Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.
На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.
Гистерезис в электронике
При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.
На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.
На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.