В чем измеряется мощность электрического двигателя
КИНЕМАТИЧЕСКИЙ РАСЧЕТ МЕХАНИЧЕСКОГО ПРИВОДА
Последовательность кинематического расчета
Мощность на приводном валу ,кВт
где F t – окружное усилие, кН;V – скорость,м/с .
Частота вращения приводного вала ,мин -1
А) Для цепных и пластинчатых конвейеров
,
где z зв – число зубьев тяговой звездочки;t – шаг тяговой звездочки,мм .
Б) Для ленточных транспортеров, механизмов передвижения и поворота, дискового питателя, лебедки и др.
,
где D – диаметр исполнительного механизма,мм .
,
где
… — КПД отдельных звеньев кинематической цепи, ориентировочные значения которых рекомендуется принимать по таблице 1.
Таблица 1.
Ориентировочные значения КПД составных элементов привода
Звенья кинематической цепи | Обозначение | |
Зубчатые передачи: | ||
Червячная передача закрытая | ||
Ременные передачи открытые: | ||
Цепная передача открытая | ||
Муфта соединительная | ||
Подшипники (одна пара): |
Расчетная мощность электродвигателя ,кВт
,
где
— мощность на приводном валу,кВт .
Необходимо подобрать электродвигатель переменного тока мощностью
(кВт ) ближайшей к
.
При подборе допускается перегрузка двигателя до 6% при постоянной нагрузке. Оценить перегрузку двигателя по формуле:
, где
— наименьшее из значений мощности
и
.
Значению мощности
соответствует, как правило, четыре электродвигателя с определенной синхронной частотой вращения:
= 750; 1000; 1500; 3000мин -1 . При постоянной нагрузке расчет привода вести по номинальной частоте вращения электродвигателя
. Электродвигатели переменного тока серии АИР представлены в таблице 2.
Таблица 2.
Технические данные двигателей серии АИР
Мощность N, кВт | Синхронная частота, об/мин | |||
Примечания.
Над чертой указан тип двигателя, под чертой – номинальная частота вращения.
Пример обозначения двигателя: «Двигатель АИР100 L 2 ТУ 16-525.564-84»
, где
— частота вращения приводного вала,мин -1 .
Рассчитывается для каждого значения номинальной частоты вращения электродвигателя при назначенной мощности
.
А) Назначить передаточное отношение открытой передачи привода
по рекомендациям табл. 3 с учетом следующего: предпочтительно меньшее значение передаточного отношения, что обеспечит меньшие габариты передачи.
Таблица 3.
Значения передаточных отношений механических передач
Тип передачи | Передаточное отношение | |
Предельное | ||
Зубчатая цилиндрическая: закрытая; открытая | ||
Зубчатая коническая: закрытая; открытая | ||
Червячная | ||
Ременная | ||
Планетарная простая однорядная |
Для зубчатой передачи передаточное отношение согласовать со стандартным рядом номинальных передаточных чисел u по ГОСТ 2185:
1-й ряд: 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,00; 10; 12,5 …
2-й ряд: 1,12; 1,4; 1,8; 2,24; 2,8; 3,55; 4,5; 5,6; 7,1; 9,0; 11,2…
где n — целое число.
.
Примечание . Если в приводе открытая передача отсутствует, то
.
В) Для зубчатого редуктора передаточное отношение согласовать со стандартным рядом номинальных передаточных чисел u по ГОСТ 2185; для червячного редуктора с однозаходным червяком — передаточное отношение является целым числом. При этом отклонение фактического передаточного отношения редуктораот номинальногоне должно превышать 2,5% при
4,5 и 4% при
4,5.
Отклонение оценить по формуле:
,
где
— наименьшее из значений передаточного отношения редуктораи.
Примечание. Для одноступенчатого редуктора
,
где u — номинальное передаточное число ступени редуктора.
Уточнить тип электродвигателя для назначенной разбивки передаточного отношения привода (табл. 2).
Мощность на каждом валу привода ,кВт :
где
… — КПД отдельных звеньев кинематической цепи.
Частота вращения валов привода ,мин -1 :
при соединении
муфтой;
при наличии
открытой передачи;
Электрическая мощность — это… Что такое Электрическая мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:
Для единичного заряда на участке A-B:
Для всех зарядов:
Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:
Если участок цепи содержит резистор c электрическим сопротивлением R, то
Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
В линейном изотропном приближении:
В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС. |
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность
Единица измерения — ватт (W, Вт).
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность
Единица измерения — вольт-ампер реактивный (var, вар)
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]
Полная мощность
Единица полной электрической мощности — вольт-ампер (V·A, В·А)
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность
Мощность, аналогично импедансу, можно записать в комплексном виде:
- где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.
Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.
Неактивная мощность
Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.
Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].
Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.
Связь неактивной, активной и полной мощностей
Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:
Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем
Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:
Отсюда находим
Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.
Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:
Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.
Измерения
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Электрический прибор | Мощность,Вт |
---|---|
Лампочка фонарика | 1 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…200 |
Электропылесос | 100…2 000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.
Литература
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Дополнительная литература
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
- Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
- Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.
Ссылки
См. также
Мощность электрической сети: определение, в чем измеряется
Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического тока как такового.
Под мощностью электрического тока считают ту количественную меру, которой он непосредственно и характеризуется. Определить ее можно сложив основные параметры — силу тока и его напряжение. Обозначается данное выражение мощности в Ваттах и измеряется специальным прибором – Ваттметром.
Как определить мощность электрической сети
Мощность электрической сети, внешней или внутренней, определяется этими соотношениями — величиной тока и временем произведенной работы за определенную единицу времени. Работы современных энергосистем разрешают не только генерировать, но и передавать на расстояние практически любые мощности, вопрос лишь в непосредственной нуждаемости в них и в необходимых ресурсах для производства электрической энергии.
Так рядовой потребитель обычно использует мощность, которую ему передает поставщик электроэнергии, в размере от 5 до 10Кв. Как правило, данной мощности потребителю с лихвой хватает для своего жизнеобеспечения и для работы всех необходимых электроприборов бытовой техники. Понятно, что энергонасыщенному производству для эффективной работы нужны будут совсем иные значения мощностей, на сотни порядков выше.
От чего зависит мощность электрической сети?
Смена мощностей электрической сети зависит и от внешних условий их поступления, и от установки ограничительных устройств (автоматов, полуавтоматов), которые регулируют поступление емкостных мощностей к источнику потребления. Делаться это может на разных уровнях, от бытового щитка в доме до центральных устройств электрораспределения.
Мощность электрической сети можно определить специальным прибором или рассчитать посредством математических вычислений (если знать параметры силы тока и напряжения).
Для измерения мощности прибором, нужно подключить тестер к источнику тока, настроить его именно на получение нужных данных, ведь тестер работает как в режиме ваттметра, так в режиме и амперметра. Поэтому можно узнать мощность сети и иным способом. Измерив силу тока и зная рабочее напряжение сети 220В, можно умножить данные значения и получить нужную сумму в Ватах.
Пропуск определенного объема мощностей через электрическую сеть требуют применения в обустройстве электроснабжения, комплектации энергосети материалами, которые будут соответствовать требованиям необходимых номинальных значений.
Электрическая мощность — это… Что такое Электрическая мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:
Для единичного заряда на участке A-B:
Для всех зарядов:
Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:
Если участок цепи содержит резистор c электрическим сопротивлением R, то
Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
В линейном изотропном приближении:
В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС. |
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность
Единица измерения — ватт (W, Вт).
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность
Единица измерения — вольт-ампер реактивный (var, вар)
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]
Полная мощность
Единица полной электрической мощности — вольт-ампер (V·A, В·А)
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность
Мощность, аналогично импедансу, можно записать в комплексном виде:
- где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.
Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.
Неактивная мощность
Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.
Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].
Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.
Связь неактивной, активной и полной мощностей
Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:
Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем
Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:
Отсюда находим
Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.
Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:
Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.
Измерения
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Электрический прибор | Мощность,Вт |
---|---|
Лампочка фонарика | 1 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…200 |
Электропылесос | 100…2 000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.
Литература
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Дополнительная литература
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
- Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
- Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.