В чем измеряется молярность – Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества

Содержание

Концентрация смеси — Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация

[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[4] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m{\displaystyle m} — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 2847 дней]
ω, % 5 10 15 20 30 40 50 60 70 80 90 95
ρ H2SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах.

ϕB=VB∑Vi{\displaystyle \phi _{\mathrm {B} }={\frac {V_{\mathrm {B} }}{\sum V_{i}}}},

где:

  • ϕB{\displaystyle \phi _{\mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • ∑Vi{\displaystyle \sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)[править | править код]

Молярная концентрация (молярность, мольность[5]) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

По рекомендации ИЮПАК, обозначается буквой c{\displaystyle c} или [B]{\displaystyle [B]}, где B — вещество, концентрация которого указывается.[6]

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

cB=nBV{\displaystyle {c_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)[править | править код]

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

c(feq B)=c((1/z) B)=z⋅cB=z⋅nBV=1feq⋅nBV{\displaystyle c(f_{eq}~\mathrm {B} )=c{\big (}(1/z)~\mathrm {B} {\big )}=z\cdot c_{\mathrm {B} }=z\cdot {\frac {n_{\mathrm {B} }}{V}}={\frac {1}{f_{eq}}}\cdot {\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x{\displaystyle x} (а для газов — y{\displaystyle y})

[7], также в литературе встречаются обозначения χ{\displaystyle \chi }, X{\displaystyle X}.

xB=nB∑ni{\displaystyle x_{\mathrm {B} }={\frac {n_{\mathrm {B} }}{\sum n_{i}}}},

где:

  • xB{\displaystyle x_{\mathrm {B} }} — мольная доля компонента B;
  • nB{\displaystyle n_{\mathrm {B} }} — количество компонента B, моль;
  • ∑ni{\displaystyle \sum n_{i}} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)[править | править код]

Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

mB=nBmA{\displaystyle {m_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{m_{\mathrm {A} }}}},

где:

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу

растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ{\displaystyle \gamma } или ρ{\displaystyle \rho }[8].

ρB=mBV{\displaystyle \rho _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{V}}}.

где:

  • mB{\displaystyle m_{\mathrm {B} }} — масса растворённого вещества;
  • V{\displaystyle V} — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T{\displaystyle T}).

По рекомендациям ИЮПАК концентрация частиц обозначается буквой C{\displaystyle C}[9], однако также часто встречается обозначение n{\displaystyle n} (не путать с количеством вещества).

CB=NBV=nB⋅NAV=cB⋅NA{\displaystyle C_{\mathrm {B} }={\frac {N_{\mathrm {B} }}{V}}={\frac {n_{\mathrm {B} }\cdot N_{\mathrm {A} }}{V}}=c_{\mathrm {B} }\cdot N_{\mathrm {A} }},

где:

Весообъёмные (массо-объёмные) проценты[править | править код]

Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.

[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации[править | править код]

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства[править | править код]

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим[править | править код]

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От массовой доли к молярности[править | править код]

cB=ρ⋅ωBM(B){\displaystyle c_{\mathrm {B} }={\frac {\rho \cdot \omega _{\mathrm {B} }}{M(\mathrm {B} )}}},

где:

  • cB{\displaystyle c_{\mathrm {B} }} — молярная концентрация вещества B
  • ρ{\displaystyle \rho } — плотность раствора;
  • ωB{\displaystyle \omega _{\mathrm {B} }} — массовая доля вещества B;
  • M(B){\displaystyle M(\mathrm {B} )} — молярная масса вещества B.

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От молярной концентрации к нормальной[править | править код]

c((1/z) B)=cB⋅z{\displaystyle {c((1/z)~\mathrm {B} )}={c_{\mathrm {B} }}\cdot {z}},

где:

От массовой доли к титру[править | править код]

T=ρ⋅ω{\displaystyle {T}={\rho }\cdot {\omega }},

где:

  • ρ{\displaystyle \rho } — плотность раствора, г/мл;
  • ω{\displaystyle \omega } — массовая доля растворённого вещества, в долях от 1;

От молярности к титру[править | править код]

T=cB⋅M{\displaystyle {T}={c_{\mathrm {B} }}\cdot {M}},

где:

  • cB{\displaystyle {c_{\mathrm {B} }}} — молярная концентрация;
  • M{\displaystyle M} — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От моляльности к мольной доле[править | править код]

xB=mBmB+1M(A){\displaystyle x_{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m_{\mathrm {B} }+{\frac {1}{M(\mathrm {A} )}}}}},

где:

  • mB{\displaystyle m_{\mathrm {B} }} — моляльность,
  • M(A){\displaystyle M(\mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.C01222.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.F02494.
  3. ↑ IUPAC Gold Book internet edition: «concentration».
  4. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass fraction, w (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  5. 1 2 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount concentration, c (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения 16 декабря 2018.
  9. International Union of Pure and Applied Chemistry. IUPAC Gold Book — number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  10. ↑ Способы приготовления растворов на МедКурс. Ru
  11. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  12. ↑ The International System of Units (SI) (неопр.). www.bipm.org. Дата обращения 23 декабря 2018.
  13. ↑ Quantities, Units and Symbols in Physical Chemistry (неопр.) (недоступная ссылка). www.iupac.org. Дата обращения 23 декабря 2018. Архивировано 20 декабря 2016 года.

Молярность Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля[ | ]

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[4] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • m

Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Химический справочник / / Концентрация. Доля.  / / Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества

Поделиться:   

Количество и концентрация вещества. Выражение и пересчеты из одних единиц в другие. Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества.

Масса и количество вещества. Массу вещества (m) измеряют в граммах, а количество вещества (n) в молях. Если обозначить вещество буквой Х, то тогда его масса может быть обозначена как m (X), а количество – n (X).
  • Мольколичество вещества, которое содержит столько определенных структурных единиц (молекул, атомов, ионов и т.д.), сколько атомов содержится в 0,012 кг изотопа углерода-12.
  • При использовании термина моль следует указывать частицы, к которым относится этот термин. Соответственно, можно говорить «моль молекул», «моль атомов», «моль ионов» и т.д. (например, моль молекул водорода, моль атомов водорода, моль ионов водорода). Так как 0,012 кг углерода-12 содержит ~ 6,022х1023атомов углерода (постоянная Авогадро = число Авогадро), то моль– такое количество вещества, которое содержит 6,022х1023структурных элементов (молекул, атомов, ионов и др.).
    • Отношение массы вещества к количеству вещества называют молярной массой.
    • M (X) = m (X) / n(X)
    • То есть, молярная масса (М)это масса одного моля вещества. Основной системной (в международной системе единиц СИ) единицей молярной массы является кг/моль, а на практике – г/моль. Например, молярная масса самого легкого металла лития М (Li) = 6,939 г/моль, молярная масса газа метана М (СН4) = 16,043 г/моль. Молярная масса серной кислоты рассчитывается следующим образом M (Н24) = 196 г / 2 моль = 96 г/моль.
    • Молярная масса М (Х) — масса одного моля молекул вещества (г/моль). M(X)=mx/n (X), где mx – масса вещества, г; n (X) – количество вещества, моль. Молярная масса вещества Х численно равна относительной молекулярной массе Mr (в случае молекул) или относительной атомной массе (в случае атомов).
  • Любое соединение (вещество), кроме молярной массы, характеризуется относительной молекулярной или атомной массой. Существует и эквивалентная масса Е, равная молекулярной, умноженной на фактор эквивалентности (см. далее).
    • Относительная молекулярная масса (Mr) –это молярная масса соединения, отнесенная к 1/12 молярной массы атома углерода-12.
      • Например,Мr(СН4) = 16,043. Относительная молекулярная масса – величина безразмерная.
    • Относительная атомная масса (Ar) –это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12.
      • Например, Ar(Li) = 6,039.
Концентрация. Отношение количества или массы вещества, содержащегося в системе, к о

Разница между молярностью и нормальностью

Главное отличие — молярность от нормальности

Молярность и нормальность — это два термина, используемые для выражения концентрации соединения. Хотя молярность является наиболее распространенной и предпочтительной единицей измерения концентрации, нормальность также полезна, и между этими двумя терминами существует связь. Молярность решения может быть преобразована в нормальность простыми вычислениями. Основное различие между молярностью и нормальностью заключается в том, что Молярность — это количество молей соединения, присутствующего в смеси соединений, тогда как нормальность — это количество грамм-эквивалентов соединения, присутствующего в смеси соединений.

Ключевые области покрыты

1. Что такое молярность
      — Определение, Единицы и Расчеты
2. Что такое нормальность
      — Определение, Единицы и Расчеты
3. Какова связь между молярностью и нормальностью?
      — Как преобразовать единицы молярности в нормальность
4. В чем разница между молярностью и нормальностью
      — Сравнение основных различий

Ключевые термины: концентрация, молярность, молярная концентрация, нормальность, активные виды.


Что такое молярность

Молярность — это число молей соединения, присутствующего в литре раствора. Это дается символом C. Молярность также называется молярная концентрация, Это потому, что это дает концентрацию соединения в молях на литр. Единица измерения молярности — моль / л. Иногда эта единица задается как M. Поскольку измерение производится за литр, молярность измеряется в отношении растворов (жидкостей).

Раствор состоит из растворенных веществ и растворителя. Растворенные вещества растворяются в растворителе. Смесь растворенных веществ и растворителя называется раствором. Молярность конкретного раствора — это количество этого растворенного вещества (в молях), присутствующего в одном литре раствора. Поэтому молярность рассчитывается путем деления числа молей от объема раствора.

Уравнение молярности

Уравнение для молярности приведено ниже.

Молярность = моли растворенного вещества / литры раствора

или же

C = N / V

Где С — молярность,

n — число молей

V — объем раствора.

Молярность раствора зависит от изменений объема, температуры раствора, добавления большего количества растворенных веществ и любых других факторов, которые влияют на растворимость растворенного вещества в растворе. Когда объем растворителя увеличивается, молярность уменьшается (согласно приведенному выше уравнению). Температура оказывает непосредственное влияние на объем раствора. Когда температура увеличивается, объем раствора увеличивается. Когда в раствор добавляют больше растворенных веществ, количество молей растворенного вещества увеличивается, что увеличивает молярность раствора.

Что такое нормальность

Нормальность раствора — это грамм эквивалентной массы растворенного вещества в одном литре раствора. Поэтому он также называется эквивалентная концентрация раствора, Нормальность задается символом N, а единицами нормальности является eq / L, где «eq» обозначает «эквиваленты». Для мелкомасштабных расчетов мы используем единицу измерения meq / L, где «meq» означает «миллиэквивалент».

Нормальность используется, чтобы выразить ион гидрония (H3О+) концентрация или гидроксильный ион (ОН) концентрация кислотно-основной реакции. Но когда происходит другая реакция, одно и то же соединение может иметь различную нормальность. Следовательно, нормальность соединения зависит от типа реакции.

Например, раствор серной кислоты с концентрацией 1 моль / л (h3SO4) может высвобождать два протона с образованием двух ионов гидрония. Следовательно, нормальность серной кислоты составляет 2 Н. Но когда серная кислота используется в реакции осаждения, где сульфид будет осаждаться с использованием серной кислоты в качестве реагента, тогда нормальность серной кислоты составляет 1 Н, поскольку выделяется один сульфат-ион. из реакции.

Отношение между молярностью и нормальностью

Молярность раствора может быть преобразована в нормальность с использованием числа эквивалентов растворенного вещества, присутствующего в растворе.

N = M x f

Где N нормальность,

М — молярность,

f — количество эквивалентов растворенного вещества.

Число эквивалентов представляет собой количество ионов или групп атомов, высвобождаемых для конкретной реакции.

Разница между молярностью и нормальностью

Определение

Молярность: Молярность — это число молей соединения, присутствующего в литре раствора.

Нормальность: Нормальность раствора — это грамм эквивалентной массы растворенного вещества в одном литре раствора.

Единица измерения

Молярность: Единица измерения молярности — моль / л.

Нормальность: Единицей измерения нормальности является экв / л или мэк / л.

Зависимость от реакции

Молярность: Молярность раствора не зависит от типа реакции растворенного вещества.

Нормальность: Нормальность раствора полностью зависит от типа реакции растворенного вещества.

Влияние температуры

Молярность: Изменения температуры могут изменить молярность раствора за счет увеличения объема.

Нормальность: Температура не влияет на нормальность раствора.

Другие факторы

Молярность: Молярность раствора зав

Молярность Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[4] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m{\displaystyle m} — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 2847 дней]
ω, % 5 10 15 20 30 40 50 60 70 80 90 95
ρ H2SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах.

ϕB=VB∑Vi{\displaystyle \phi _{\mathrm {B} }={\frac {V_{\mathrm {B} }}{\sum V_{i}}}},

где:

  • ϕB{\displaystyle \phi _{\mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • ∑Vi{\displaystyle \sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация (молярность, мольность[5]) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

По рекомендации ИЮПАК, обозначается буквой c{\displaystyle c} или [B]{\displaystyle [B]}, где B — вещество, концентрация которого указывается.[6]

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

cB=nBV{\displaystyle {c_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

c(feq B)=c((1/z) B)=z⋅cB=z⋅nBV=1feq⋅nBV{\displaystyle c(f_{eq}~\mathrm {B} )=c{\big (}(1/z)~\mathrm {B} {\big )}=z\cdot c_{\mathrm {B} }=z\cdot {\frac {n_{\mathrm {B} }}{V}}={\frac {1}{f_{eq}}}\cdot {\frac {n_{\mathrm {B} }}{V}}},

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x{\displaystyle x} (а для газов — y{\displaystyle y})[7], также в литературе встречаются обозначения χ{\displaystyle \chi }, X{\displaystyle X}.

xB=nB∑ni{\displaystyle x_{\mathrm {B} }={\frac {n_{\mathrm {B} }}{\sum n_{i}}}},

где:

  • xB{\displaystyle x_{\mathrm {B} }} — мольная доля компонента B;
  • nB{\displaystyle n_{\mathrm {B} }} — количество компонента B, моль;
  • ∑ni{\displaystyle \sum n_{i}} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

mB=nBmA{\displaystyle {m_{\mathrm {B} }}={\frac {n_{\mathrm {B} }}{m_{\mathrm {A} }}}},

где:

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация (Титр)

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ{\displaystyle \gamma } или ρ{\displaystyle \rho }[8].

ρB=mBV{\displaystyle \rho _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{V}}}.

где:

  • mB{\displaystyle m_{\mathrm {B} }} — масса растворённого вещества;
  • V{\displaystyle V} — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T{\displaystyle T}).

Концентрация частиц

По рекомендациям ИЮПАК концентрация частиц обозначается буквой C{\displaystyle C}[9], однако также часто встречается обозначение n{\displaystyle n} (не путать с количеством вещества).

CB=NBV=nB⋅NAV=cB⋅NA{\displaystyle C_{\mathrm {B} }={\frac {N_{\mathrm {B} }}{V}}={\frac {n_{\mathrm {B} }\cdot N_{\mathrm {A} }}{V}}=c_{\mathrm {B} }\cdot N_{\mathrm {A} }},

где:

Весообъёмные (массо-объёмные) проценты

Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От массовой доли к молярности

cB=ρ⋅ωBM(B){\displaystyle c_{\mathrm {B} }={\frac {\rho \cdot \omega _{\mathrm {B} }}{M(\mathrm {B} )}}},

где:

  • cB{\displaystyle c_{\mathrm {B} }} — молярная концентрация вещества B
  • ρ{\displaystyle \rho } — плотность раствора;
  • ωB{\displaystyle \omega _{\mathrm {B} }} — массовая доля вещества B;
  • M(B){\displaystyle M(\mathrm {B} )} — молярная масса вещества B.

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От молярной концентрации к нормальной

c((1/z) B)=cB⋅z{\displaystyle {c((1/z)~\mathrm {B} )}={c_{\mathrm {B} }}\cdot {z}},

где:

От массовой доли к титру

T=ρ⋅ω{\displaystyle {T}={\rho }\cdot {\omega }},

где:

  • ρ{\displaystyle \rho } — плотность раствора, г/мл;
  • ω{\displaystyle \omega } — массовая доля растворённого вещества, в долях от 1;

От молярности к титру

T=cB⋅M{\displaystyle {T}={c_{\mathrm {B} }}\cdot {M}},

где:

  • cB{\displaystyle {c_{\mathrm {B} }}} — молярная концентрация;
  • M{\displaystyle M} — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От моляльности к мольной доле

xB=mBmB+1M(A){\displaystyle x_{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m_{\mathrm {B} }+{\frac {1}{M(\mathrm {A} )}}}}},

где:

  • mB{\displaystyle m_{\mathrm {B} }} — моляльность,
  • M(A){\displaystyle M(\mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

Примечания

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.C01222.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — DOI:10.1351/goldbook.F02494.
  3. ↑ IUPAC Gold Book internet edition: «concentration».
  4. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass fraction, w (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  5. 1 2 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount concentration, c (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book — amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book — mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения 16 декабря 2018.
  9. International Union of Pure and Applied Chemistry. IUPAC Gold Book — number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения 11 декабря 2018.
  10. ↑ Способы приготовления растворов на МедКурс. Ru
  11. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  12. ↑ The International System of Units (SI) (неопр.). www.bipm.org. Дата обращения 23 декабря 2018.
  13. ↑ Quantities, Units and Symbols in Physical Chemistry (неопр.) (недоступная ссылка). www.iupac.org. Дата обращения 23 декабря 2018. Архивировано 20 декабря 2016 года.

Урок 15. Моляльность и молярность – HIMI4KA

В уроке 15 «Моляльность и молярность» из курса «Химия для чайников» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.

Химикам нередко приходится работать с жидкими растворами, так как это благоприятная среда для протекания химических реакций. Жидкости легко смешивать, в отличие от кристаллических тел, а также жидкость занимает меньший объем, по сравнению с газом. Благодаря этим достоинствам, химические реакции могут осуществляться гораздо быстрее, так как исходные реагенты в жидкой среде часто сближаются и сталкиваются друг с другом. В прошлых уроках мы отмечали, что вода относится к полярным жидкостям, и потому является неплохим растворителем для проведения химических реакций. Молекулы H2O, а также ионы H+ и OH, на которых вода диссоциирована в небольшой степени, могут способствовать запуску химические реакций, благодаря поляризации связей в других молекулах или ослаблению связи между атомами. Вот почему жизнь на Земле зародилась не на суше или в атмосфере, а именно в воде.

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости. В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество. Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Расчет концентрации раствора

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора. Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным. Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Молярная концентрация раствора

Молярная концентрация раствора

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (Nh5)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:

где n — количество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Моляльная концентрация раствора

Моляльная концентрация раствора

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C2H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Разбавление растворов

В химической практике часто занимаются разбавлением растворов, т.е добавлением растворителя. Просто нужно запомнить, что число молей растворенного вещества при разбавлении раствора остается неизменным. И еще запомните формулу правильного разбавления раствора:

  • Число молей растворенного вещества = c1V1 = c2V2

где с1 и V1 — молярная концентрация и объем раствора до разбавления, с2 и V2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:

Разбавление растворов

Разбавление растворов

Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.

Решение:

В условие задача указаны значения с1, V1 и V2, поэтому пользуясь формулой разбавления растворов, выразим молярную концентрацию полученного раствора с2

  • с2 = c1V1 / V2 = (2,00 М × 175 мл) / 1000 мл = 0,350 М

Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?

Ответ: V2 = 300 мл

Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.

Моляльность Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля[ | ]

Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов. По рекомендациям ИЮПАК,[4] обозначается символом w{\displaystyle w}, в русскоязычной литературе чаще встречается обозначение ω{\displaystyle \omega }. Массовая доля — безразмерная величина, как правило выражается в долях единицы или в процентах (для выражения массовой доли в процентах следует умножить указанное выражение на 100 %):

ωB=mBm{\displaystyle \omega _{\mathrm {B} }={\frac {m_{\mathrm {B} }}{m}}}

где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *