В чем измеряется индукция: Индуктивность — Википедия – Определение и формулы для расчета и измерения индуктивности: в чем измеряется

Индукция — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 января 2020; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 января 2020; проверки требует 1 правка.

Инду́кция (из лат. inductio «выведение, наведение») — широко используемый в науке термин.

В логике
  • Индуктивное умозаключение — метод рассуждения от частного к общему.
    • Полная индукция — метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности.
    • Неполная индукция — наблюдения за отдельными частными случаями наводит на гипотезу, которая нуждается в доказательстве[1].
  • Математическая индукция — метод доказательства для последовательности натуральных чисел либо объектов, однозначно занумерованных натуральными числами.
В философии
В физике
В экономике
  • Индукция — это вид обобщения, связанный с предвосхищением результатов наблюдений и экспериментов на основе данных опыта. В индукции данные опыта «наводят» на общее, поэтому индуктивные обобщения рассматриваются обычно как опытные истины или эмпирические законы. Изучая финансово-хозяйственную деятельность ряда типичных российских предприятий, можно делать, например, выводы о закономерностях развития совокупности предприятий.
В юридических науках
  • Индуктивный метод — способ исследования и изложения, при котором от наблюдаемых частных фактов переходят к выделению принципов, общих положений теории, установлению закономерностей.
В медицине и биологии
В химии
  • Химическая индукция — совместное протекание двух химических реакций, из которых одна обусловливает или ускоряет вторую.

Магнитная индукция — это… Что такое Магнитная индукция?

Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно,  — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

1 Тл = 104 Гс

Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряженность магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

  • (Здесь формулы приведем в системе единиц СИ, в виде для вакуума[3], где есть варианты
    для вакуума
     — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе[4] наиболее важными являются:

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции :

  • Формула силы Лоренца
    • Следствия из нее, такие как
      • Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)
      • выражение для вращающего момента, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):
      • выражение для потенциальной энергии магнитного диполя в магнитном поле:
      • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т.д..
      • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
        • (это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
  • Выражение для плотности энергии магнитного поля
    • Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Примечания

  1. Если учитывать и действие электрического поля E, то формула (полной) силы Лоренца принимает вид:
    При отсутствии электрического поля (или если член, описывающий его действие, специально вычесть из полной силы) имеем формулу, приведенную в основном тексте.
  2. Это определение с современной точки зрения менее фундаментально, чем приведенное выше (и является просто его следствием), однако с точки зрения близости к одному из практических способов измерения магнитной индукции может быть полезным; также и с исторической точки зрения.
  3. То есть в наиболее фундаментальном и простом для ознакомления виде.
  4. То есть в частном случае постоянных токов и постоянных электрического и магнитного полей или — приближенно — если изменения настолько медленны, что ими можно пренебречь.
  5. Являющаяся частным магнитостатическим случаем закона Ампера — Максвелла (см. в стаье далее).

См. также

Электрическая индукция — это… Что такое Электрическая индукция?

Электри́ческая инду́кция (электри́ческое смеще́ние) — векторная величина, равная сумме вектора напряжённости электрического поля и вектора поляризации.

В СИ: .

В СГС: .

Величина электрической индукции в системе СГС измеряется в СГСЭ или СГСМ единицах, а в СИ — в кулонах на м² (L−2TI). В рамках СТО векторы и объединяются в единый тензор, аналогичный тензору электромагнитного поля.

Определяющие уравнения

Уравнения для вектора индукции в СГС имеют вид (2ая пара уравнений Максвелла)

Здесь  — плотность свободных зарядов, а  — плотность тока

свободных зарядов. Введение вектора , таким образом, позволяет исключить из уравнений Максвелла неизвестные молекулярные токи и поляризационные заряды.

Материальные уравнения

Для полного определения электромагнитного поля уравнения Максвелла необходимо дополнить материальными уравнениями, связывающими векторы и (а также и ) в веществе. В вакууме эти векторы совпадают, а в веществе связь между ними зачастую предполагают линейной:

Величины образуют тензор диэлектрической проницаемости. В принципе, он может зависеть как от точки внутри тела, так и от частоты колебаний электромагнитного поля. В изотропных средах тензор диэлектрической проницаемости сводится к скаляру, называемому также диэлектрической проницаемостью. Материальные уравнения для приобретают простой вид

Возможны среды, для которых зависимость между и является нелинейной (в основном — сегнетоэлектрики).

Граничные условия

На границе двух веществ скачок нормальной компоненты вектора определяется поверхностной плотностью свободных зарядов:

(в СГС)
(в СИ)

Здесь  — нормальная производная,  — точка на поверхности раздела,  — вектор нормали к этой поверхности в данной точке,  — поверхностная плотность свободных зарядов. Уравнение не зависит от выбора нормали (внешней или внутренней). В частности, для диэлектриков уравнение означает, что нормальная компонента вектора непрерывна на границе сред. Простого уравнения для касательной составляющей записать нельзя, она должна определяться из граничных условий для и материальных уравнений.

Литература

См. также

Электрическая индукция — это… Что такое Электрическая индукция?

Электри́ческая инду́кция (электри́ческое смеще́ние) — векторная величина, равная сумме вектора напряжённости электрического поля и вектора поляризации.

В СИ: .

В СГС: .

Величина электрической индукции в системе СГС измеряется в СГСЭ или СГСМ единицах, а в СИ — в кулонах на м² (L−2TI). В рамках СТО векторы и объединяются в единый тензор, аналогичный тензору электромагнитного поля.

Определяющие уравнения

Уравнения для вектора индукции в СГС имеют вид (2ая пара уравнений Максвелла)

Здесь  — плотность свободных зарядов, а  — плотность тока свободных зарядов. Введение вектора , таким образом, позволяет исключить из уравнений Максвелла неизвестные молекулярные токи и поляризационные заряды.

Материальные уравнения

Для полного определения электромагнитного поля уравнения Максвелла необходимо дополнить

материальными уравнениями, связывающими векторы и (а также и ) в веществе. В вакууме эти векторы совпадают, а в веществе связь между ними зачастую предполагают линейной:

Величины образуют тензор диэлектрической проницаемости. В принципе, он может зависеть как от точки внутри тела, так и от частоты колебаний электромагнитного поля. В изотропных средах тензор диэлектрической проницаемости сводится к скаляру, называемому также диэлектрической проницаемостью. Материальные уравнения для приобретают простой вид

Возможны среды, для которых зависимость между и является нелинейной (в основном — сегнетоэлектрики).

Граничные условия

На границе двух веществ скачок нормальной компоненты вектора определяется поверхностной плотностью свободных зарядов:

(в СГС)
(в СИ)

Здесь  — нормальная производная,  — точка на поверхности раздела,  — вектор нормали к этой поверхности в данной точке,  — поверхностная плотность свободных зарядов. Уравнение не зависит от выбора нормали (внешней или внутренней). В частности, для диэлектриков уравнение означает, что нормальная компонента вектора непрерывна на границе сред. Простого уравнения для касательной составляющей записать нельзя, она должна определяться из граничных условий для и материальных уравнений.

Литература

См. также

Отправить ответ

avatar
  Подписаться  
Уведомление о