В чем измеряется емкостное сопротивление – ёмкостное реактивное сопротивление — это… Что такое ёмкостное реактивное сопротивление?

Емкостное сопротивление | Формулы и расчеты онлайн

Емкостное сопротивление - схема

Конденсатор емкостью C имеет в цепи постоянного тока бесконечно большое сопротивление. Если же приложить к конденсатору переменное напряжение, то он будет периодически перезаряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает максимального значения в те моменты, когда ток равен нулю.

Если R = 0, то напряжение на конденсаторе совпадает с приложенным напряжением и u = q/C. Мгновенное значение тока определяется выражением:

\[ i = \frac{dq}{dt} = C \frac{du}{dt} = C \frac{d}{dt}(U_{m} \sin(ωt)) \]

Отсюда следует

\[ i = ωCU_{m} \cos(ωt) = ωCU_{m} \sin(ωt + \frac{π}{2}) \]

Емкостное сопротивление - график тока и напряжения

Емкостное сопротивление — график тока и напряжения

Емкостное сопротивление - векторная диаграмма

Между напряжением и током имеется разность фаз —π/2.

В чисто емкостной цепи переменного тока ток опережает напряжение на π/2 (или Т/4).

В соответствии с приведенным выше уравнением амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что величина 1/ωС играет роль сопротивления.

Цепь переменного тока, содержащая емкость C, обладает сопротивлением переменному току; оно называется емкостным сопротивлением ХC.

Единица СИ емкостного сопротивления: [XC] = Ом.

Если

ХCемкостное сопротивление цепи переменного тока,Ом
ω = 2πfкруговая частота переменного тока,радиан/Секунда
Cемкость,Фарад

то

\[ X_{C} = \frac{1}{ωC} \]

$ $

Ток в цепи, обладающей только емкостным сопротивлением, определяется выражением

\[ I = UωC \]

Вычислить, найти емкостное сопротивление

В помощь студенту

Емкостное сопротивление
стр. 687

емкостное сопротивление — это… Что такое емкостное сопротивление?


  • condensance
  • hydrody-namic resistance

Смотреть что такое «емкостное сопротивление» в других словарях:

  • ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ — величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью цепи (или ее участка). Емкостное сопротивление синусоидальному току хс=1/?С, где ? угловая частота, С емкость. Измеряется в омах …   Большой Энциклопедический словарь

  • ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ — в цепи переменного тока реактивная часть сопротивления двухполюсника (см. Импеданс), в к ром синусоидальный ток опережает по фазе приложенное напряжение подобно тому, как это имеет место в обычном электрич. конденсаторе. В идеальном случае, когда …   Физическая энциклопедия

  • емкостное сопротивление — Реактивное сопротивление, обусловленное емкостью элемента электрической цепи и равное абсолютному значению величины, обратной произведению значений этой емкости и угловой частоты. [ГОСТ Р 52002 2003] EN capacitive reactance reactance having a… …   Справочник технического переводчика

  • емкостное сопротивление — 149 емкостное сопротивление Реактивное сопротивление, обусловленное емкостью элемента электрической цепи и равное абсолютному значению величины, обратной произведению значений этой емкости и угловой частоты Источник: ГОСТ Р 52002 2003:… …   Словарь-справочник терминов нормативно-технической документации

  • емкостное сопротивление — talpinė varža statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. capacitive reactance vok. kapazitive Reaktanz, f; kapazitiver Widerstand, m rus. емкостное… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Емкостное сопротивление — 1. Реактивное сопротивление, обусловленное емкостью элемента электрической цепи и равное абсолютному значению величины, обратной произведению значений этой емкости и угловой частоты Употребляется в документе: ГОСТ Р 52002 2003 Электротехника.… …   Телекоммуникационный словарь

  • емкостное сопротивление электрической цепи — Абсолютное значение реактивного сопротивления, обусловленное емкостью цепи и равное величине, обратной произведению этой емкости и угловой частоты …   Политехнический терминологический толковый словарь

  • сопротивление электрическое — величина, характеризующая противодействие электрической цепи (или её участка) электрическому току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии; при необратимом преобразовании… …   Энциклопедический словарь

  • сопротивление пластической деформации — [strain resistance] напряжение одноосного растяжения или сжатия при данных температурно скоростных параметрах пластического формоизменения. Сопротивление пластической деформации важнейшая механическая характеристика материала, определяющая… …   Энциклопедический словарь по металлургии

  • сопротивление материалов — [strength of materials] наука о прочности и деформируемости элементов (деталей) сооружений и машин. Основные объекты изучения сопротивления материалов стержни и пластины, для которых устанавливаются соответствующие методы расчета на прочность,… …   Энциклопедический словарь по металлургии

основные понятия, формула для расчёта

Емкостное сопротивление в цепи переменного токаКонденсатор оказывает определённое сопротивление переменному току и совершенно не проводит постоянный. Это свойство находит применение в различных областях радиоэлектроники и электротехники. Ёмкостное сопротивление в цепи переменного тока зависит от частоты последнего и ёмкости конденсатора.

Основные понятия

Ёмкостное сопротивление — это величина, которая создаётся конденсатором, включённым в цепь. Сопротивление подводящих проводов должно быть непренебрежимо большим. При подаче переменного тока возникают процессы, обусловленные периодическим зарядом и разрядом конденсатора.

Период разбивается на четыре четверти. В течение первой четверти напряжение растёт. В этот момент по цепи проходит зарядный ток, сила которого будет уменьшаться, достигнув нуля, когда электродвижущая сила достигнет положительного максимума. Конденсатор полностью заряжен. После этого начнётся спад напряжения. Конденсатор будет разряжаться через подключённую к нему нагрузку. По цепи потечёт ток.

Емкостное сопротивление К концу полупериода величина напряжения будет равна нулю, а сила тока будет наибольшей. Разрядка завершена. В начале третьей четверти электродвижущая сила будет возрастать, изменив своё направление. Вновь начнётся процесс заряда. Направление зарядного тока в третью четверть будет таким же, как и в предыдущую. По мере зарядки конденсатора эта величина будет убывать. К концу третьей четверти процесс зарядки будет завершён.

Электродвижущая сила достигнет своего наибольшего отрицательного значения. А на той обкладке, на которой в течение первого полупериода был положительный заряд, теперь будет отрицательный. Во время четвёртой четверти значение электродвижущей силы снова будет стремиться к нулю. Конденсатор будет разряжаться. Соответственно, в цепи появится постепенно нарастающий ток. Процесс повторяется. Таким образом, фаза переменного тока в конденсаторной цепи опережает фазу напряжения на 90 градусов.

Формула сопротивления

Формула ёмкостного сопротивления выводится следующим образом:

  • Сопротивление с емкостью
    Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
  • Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.

Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление.

Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.

Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.

В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.

Применение конденсаторовБлагодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости, через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного — напрямую, до выводов детали.

Распространённый пример подобного использования — это телевизионная наружная антенна с усилителем. Сам телевизор или подключаемое к кабелю устройство, называемое «инжектором», подаёт напряжение питания. В антенном усилителе происходит разделение и фильтрация сигналов. Таким образом, ёмкостное сопротивление конденсатора находит широкое применение. Фильтры обеспечивают задержку одних сигналов и прохождение — других.

Благодаря этому свойству, можно передавать сразу и переменное, и постоянное напряжение, что имеет немаловажное значение при построении некоторых линий связи.

Ёмкостное сопротивление Википедия

В электрических и электронных системах реактивное сопротивление (также реактанс) — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Понятие реактивного сопротивления аналогично электрическому сопротивлению, но оно несколько отличается в деталях.

В векторном анализе реактивное сопротивление используется для вычисления амплитудных и фазовых изменений синусоидального переменного тока, проходящего через элемент цепи. Обозначается символом X{\displaystyle \scriptstyle {X}}. Идеальный резистор имеет нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы имеют нулевое сопротивление — то есть, реагируют на ток только по наличию реактивного сопротивления. Величина реактивного сопротивления индуктора увеличивается пропорционально увеличению частоты, в то время как величина реактивного сопротивления конденсатора уменьшается пропорционально увеличению частоты.

Ёмкостное сопротивление

Конденсатор состоит из двух проводников, разделённых изолятором, также известным как диэлектрик.

Ёмкостное сопротивление — это сопротивление изменению напряжения на элементе. Ёмкостное сопротивление XC{\displaystyle \scriptstyle {X_{C}}} обратно пропорционально частоте сигнала f{\displaystyle \scriptstyle {f}} (или угловой частоты ω) и ёмкости C{\displaystyle \scriptstyle {C}}[1].

В литературе существует два варианта определения реактивного сопротивления для конденсатора. Одним из них является использование единого понятия реактивного сопротивления в качестве мнимой части полного сопротивления, и, в этом случае, реактивное сопротивление конденсатора является отрицательным числом[1][2][3]:

XC=−1ωC=−12πfC{\displaystyle X_{C}=-{\frac {1}{\omega C}}=-{\frac {1}{2\pi fC}}}.

Другой выбор состоит в том, чтобы определить ёмкостное сопротивление как положительное число[4][5][6],

XC=1ωC=12πfC{\displaystyle X_{C}={\frac {1}{\omega C}}={\frac {1}{2\pi fC}}}.

В этом случае нужно помнить о добавлении отрицательного знака к импедансу то есть Zc=−jXc{\displaystyle Z_{c}=-jX_{c}}.

На низких частотах конденсатор эквивалентен разомкнутой цепи, если в диэлектрике ток не течёт.

Постоянное напряжение, приложенное к конденсатору, вызывает накопление положительного заряда на одной обкладке и накопление отрицательного заряда на другой обкладке; электрическое поле за счёт накопленного заряда является источником который противодействует току. Когда потенциал, связанный с зарядом, точно уравновешивает приложенное напряжение, ток падает до нуля.

Приводимый в действие источником переменного тока (идеальный источник переменного тока), конденсатор будет накапливать только ограниченное количество заряда, прежде чем разность потенциалов изменит полярность и заряд вернётся к источнику. Чем выше частота, тем меньше накапливается заряд и тем меньше противодействие току.

Индуктивное сопротивление

Индуктивное реактивное сопротивление — это свойство, проявляемое индуктивностью, и индуктивное реактивное сопротивление существует благодаря тому, что электрический ток создаёт вокруг него магнитное поле. В контексте цепи переменного тока (хотя эта концепция применяется при любом изменении тока), это магнитное поле постоянно изменяется в результате изменения тока, который меняется во времени. Именно это изменение магнитного поля создаёт другой электрический ток в том же проводе (противо-ЭДС), в направлении, противоположном потоку тока, изначально ответственного за создание магнитного поля. Это явление известно как закон Ленца. Следовательно, индуктивное сопротивление — это противодействие изменению тока через элемент.

Для идеальной катушки индуктивности в цепи переменного тока сдерживающее влияние на изменение протекания тока приводит к задержке или сдвигу фаз переменного тока относительно переменного напряжения. В частности, идеальная индуктивность (без сопротивления) вызовет отставание тока от напряжения на четверть цикла или на 90°.

В электроэнергетических системах индуктивное реактивное сопротивление (и ёмкостное реактивное сопротивление, однако индуктивное реактивное сопротивление более распространено) может ограничивать пропускную способность линии электропередач переменного тока, поскольку мощность не передаётся полностью, когда напряжение и ток находятся в противофазе (подробно описано выше). То есть ток будет течь для противофазной системы, однако реальная мощность в определённые моменты времени не будет передаваться, потому что будут моменты, в течение которых мгновенный ток будет положительным, а мгновенное напряжение отрицательным, или наоборот, подразумевая отрицательную мощность передачи. Следовательно, реальная работа не выполняется, когда передача энергии является «отрицательной». Однако ток всё ещё течёт, даже когда система находится в противофазе, что приводит к нагреву линий электропередачи из-за протекания тока. Следовательно, линии электропередачи могут только сильно нагреваться (иначе они физически сильно прогибаются из-за тепла, расширяющего металлические линии электропередачи), поэтому операторы линий электропередачи имеют «потолок» в отношении величины тока, который может протекать через данную линию, и чрезмерное индуктивное сопротивление ограничивает мощность линии. Поставщики электроэнергии используют конденсаторы для сдвига фазы и минимизации потерь в зависимости от схемы использования.

Индуктивное реактивное сопротивление XL{\displaystyle \scriptstyle {X_{L}}} пропорционально частоте синусоидального сигнала f{\displaystyle \scriptstyle {f}} и индуктивности L{\displaystyle \scriptstyle {L}}, которая зависит от геометрических размеров и формы индуктивности.

XL=ωL=2πfL{\displaystyle X_{L}=\omega L=2\pi fL}

Средний ток, протекающий через индуктивность L{\displaystyle \scriptstyle {L}} последовательно с синусоидальным источником переменного напряжения среднеквадратичной амплитуды A{\displaystyle \scriptstyle {A}} и частоты f{\displaystyle \scriptstyle {f}} равен:

IL=AωL=A2πfL{\displaystyle I_{L}={A \over \omega L}={A \over 2\pi fL}}.

Поскольку прямоугольная волна (источник прямоугольного сигнала) имеет несколько амплитуд на синусоидальных гармониках (согласно теореме Фурье), средний ток, протекающий через индуктивность L{\displaystyle \scriptstyle {L}}, включенную последовательно с прямоугольным источником переменного напряжения среднеквадратичной амплитуды A{\displaystyle \scriptstyle {A}} и частоты f{\displaystyle \scriptstyle {f}}, равен:

IL=Aπ28ωL=Aπ16fL{\displaystyle I_{L}={A\pi ^{2} \over 8\omega L}={A\pi \over 16fL}}

создавая иллюзию как если бы реактивное сопротивление прямоугольной волны на 19 % меньше XL=16πfL{\displaystyle X_{L}={16 \over \pi }fL} , чем реактивное сопротивление синусоидального сигнала с той же частотой:

Любой проводник конечных размеров имеет индуктивность; индуктивность обычно делается из электромагнитных катушек, состоящих из множества витков провода. Согласно закону электромагнитной индукции Фарадея возникает противоэдс E{\displaystyle \scriptstyle {\mathcal {E}}} (ток, противоположный напряжению) в проводнике из-за скорости изменения плотности магнитного потока B{\displaystyle \scriptstyle {B}} через токовую петлю.

E=−dΦBdt{\displaystyle {\mathcal {E}}=-{{d\Phi _{B}} \over dt}}

А для индуктивности состоящей из N{\displaystyle \scriptstyle N} витков соответственно

E=−NdΦBdt{\displaystyle {\mathcal {E}}=-N{d\Phi _{B} \over dt}}

Противо-ЭДС — это источник противодействия току. Постоянный ток имеет нулевую скорость изменения и рассматривает катушку индуктивности как обычный проводник (так как она сделано из материала с низким удельным сопротивлением). Переменный ток имеет усреднённую по времени скорость изменения, которая пропорциональна частоте, что вызывает увеличение индуктивного сопротивления с частотой.

Полное сопротивление

Как реактивное сопротивление X{\displaystyle \scriptstyle {X}} так и обычное сопротивление R{\displaystyle \scriptstyle {R}} компоненты импеданса Z{\displaystyle \scriptstyle {Z}}.

Z=R+jX{\displaystyle Z=R+jX}

где:

Когда и конденсатор и индуктор соединены последовательно в цепь, их вклады к полному импедансу цепи противоположны. Ёмкостное сопротивление XC{\displaystyle \scriptstyle {X_{C}}}, и индуктивное сопротивление XL{\displaystyle \scriptstyle {X_{L}}},

вносят свой вклад в общее реактивное сопротивление X{\displaystyle \scriptstyle {X}} в виде суммы

X=XL+XC=ωL−1ωC{\displaystyle {X=X_{L}+X_{C}=\omega L-{\frac {1}{\omega C}}}}

где:

  • XL{\displaystyle \scriptstyle {X_{L}}} — индуктивное сопротивление, измеряемое в омах;
  • XC{\displaystyle \scriptstyle {X_{C}}} — ёмкостное сопротивление, измеряемое в омах;
  • ω{\displaystyle \omega } — угловая частота, 2π{\displaystyle 2\pi } умноженная на частоту в Гц.

Отсюда:[3]

  • if X>0{\displaystyle \scriptstyle X>0}, то реактанс имеет вид индуктивности;
  • if X=0{\displaystyle \scriptstyle X=0}, импеданс чисто реальный;
  • if X<0{\displaystyle \scriptstyle X<0}, то реактанс имеет вид ёмкости.

Замечание, в случае определения XL{\displaystyle \scriptstyle {X_{L}}} и XC{\displaystyle \scriptstyle {X_{C}}} как положительный величин, то формула меняет знак на отрицательный:[5]

X=XL−XC=ωL−1ωC{\displaystyle {X=X_{L}-X_{C}=\omega L-{\frac {1}{\omega C}}}},

но конечное значение одинаково.

Фазовые отношения

Фаза напряжения на чисто реактивном устройстве (конденсатор с бесконечным сопротивлением или индуктивности с нулевым сопротивлением) отстаёт от тока на π/2{\displaystyle \scriptstyle {\pi /2}} радиан для ёмкостного сопротивления и опережает ток на π/2{\displaystyle \scriptstyle {\pi /2}} радиан для индуктивного сопротивления. Без знания сопротивления и реактивного сопротивления невозможно определить соотношение между напряжением и током.

Z~C=1ωCej(−π2)=j(−1ωC)=jXCZ~L=ωLejπ2=jωL=jXL{\displaystyle {\begin{aligned}{\tilde {Z}}_{C}&={1 \over \omega C}e^{j(-{\pi \over 2})}=j\left({-{\frac {1}{\omega C}}}\right)=jX_{C}\\{\tilde {Z}}_{L}&=\omega Le^{j{\pi \over 2}}=j\omega L=jX_{L}\quad \end{aligned}}}

Для реактивной компоненты синусоидальное напряжение на компоненте находится в квадратуре (разность фаз π/2{\displaystyle \scriptstyle {\pi /2}}) с синусоидальным током через компонент. Компонент попеременно поглощает энергию из контура и затем возвращает энергию в контур, таким образом, чистое реактивное сопротивление не рассеивает мощность.

Примечания

  1. Shamieh C. и McComb G., Electronics for Dummies, John Wiley & Sons, 2011.
  2. Мид Р., Основы электроники, Cengage Learning, 2002.
  3. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Сирс и Земанский университет физики (11-е изд.). Сан-Франциско : Эддисон Уэсли . ISBN Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949].
  1. 1 2 Irwin, D. (2002). Basic Engineering Circuit Analysis, page 274. New York: John Wiley & Sons, Inc.
  2. ↑ Hayt, W.H., Kimmerly J.E. (2007). Engineering Circuit Analysis, 7th ed., McGraw-Hill, p. 388
  3. 1 2 Glisson, T.H. (2011). Introduction to Circuit Analysis and Design, Springer, p. 408
  4. ↑ Horowitz P., Hill W. (2015). The Art of Electronics, 3rd ed., p. 42
  5. 1 2 Hughes E., Hiley J., Brown K., Smith I.McK., (2012). Hughes Electrical and Electronic Technology, 11th edition, Pearson, pp. 237—241
  6. ↑ Robbins, A.H., Miller W. (2012). Circuit Analysis: Theory and Practice, 5th ed., Cengage Learning, pp. 554—558

Формула емкостного сопротивления

Содержание:
  1. Емкостное сопротивление конденсатора
  2. Емкостное сопротивление в цепи переменного тока
  3. Видео

Одним из основных устройств в электронике и электротехнике является конденсатор. После замыкания электрической цепи начинается зарядка, после чего он сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила – ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке устройства вся эта энергия возвращается обратно в цепь, превращаясь в энергию электрического тока. Поэтому емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.


Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин – электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует переменный ток, вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств диэлектриком может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.


Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.


57. Активное, индуктивное и емкостное сопротивление.

Активным сопротивлением R называется физическая величина, равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника.

Пусть в цепь переменного тока включена катушка. Тогда при изменении силы тока по закону в катушке возникает ЭДС самоиндукции . Т.к. электрическое сопротивление катушки равно нулю, то ЭДС равна минус напряжению на концах катушки, созданному внешним генератором (??? Каким еще генератором???) . Следовательно, изменение силы тока вызывает изменение напряжения, но со сдвигом по фазе . Произведение является амплитудой колебаний напряжение, т.е. . Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний тока называется индуктивным сопротивлением .

Пусть в цепи находится конденсатор. При его включение он четверть периода заряжается, потом столько же разряжается, потом то же самое, но со сменой полярности. При изменении напряжения на конденсаторе по гармоническому закону заряд на его обкладках равен . Ток в цепи возникает при изменении заряда: , аналогично случаю с катушкой амплитуда колебаний силы тока равна . Величина, равная отношению амплитуды к силе тока, называется емкостным сопротивлением .

58. Закон Ома для переменного тока.

Рассмотрим цепь, состоящую из последовательно подключенных резистора, катушки и конденсатора. В любой момент времени приложенное напряжение равно сумме напряжений на каждом элементе. Колебания силы тока во всех элементах происходят по закону . Колебания напряжения на резисторе совпадают по фазу с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на от колебаний тока, колебания напряжения на катушке опережают по фазе колебания тока на (почему отстают-то???). Поэтому условие равенства суммы напряжений общему можно записать как. Воспользовавшись векторной диаграммой, можно увидеть, что амплитуда напряжений в цепи равна , или , т.е. . Полное сопротивление цепи обозначают . Из диаграммы очевидно, что напряжение также колеблется по гармоническому закону . Начальную фазу  можно найти по формуле. Мгновенная мощность в цепи переменного тока равна. Поскольку среднее значение квадрата косинуса за период равно 0.5, . Если в цепи присутствует катушка и конденсатор, то по закону Ома для переменного тока . Величина называется коэффициентом мощности.

59. Резонанс в электрической цепи.

Емкостное и индуктивное сопротивления зависят от частоты приложенного напряжения. Поэтому при постоянной амплитуде напряжения амплитуда силы тока зависит от частоты. При таком значении частоты, при котором , сумма напряжений на катушке и конденсаторе становится равной нулю, т.к. их колебания противоположны по фазе. В результате, напряжение на активном сопротивлении при резонансе оказывается равным полному напряжению, а сила тока достигает максимального значения. Выразим индуктивное и емкостное сопротивления при резонансе: , следовательно . Это выражение показывает, что при резонансе амплитуда колебаний напряжения на катушке и конденсаторе могут превосходить амплитуду колебаний приложенного напряжения.

Емкостное и индуктивное сопротивление в цепи переменного тока.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Емкостное сопротивление в цепи переменного тока

Мгновенное значение напряжения равно  Мгновенное значение напряжения.

Мгновенное значение силы тока равно: Мгновенное значение силы тока

Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.

Емкостное сопротивление в цепи переменного тока

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: для максимальных значений тока и напряжения, где  емкостное сопротивление— емкостное сопротивление.

для максимальных значений тока и напряжения

Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).

Емкостное сопротивление не является характеристикой проводника

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

 

Индуктивное сопротивление в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки

Мгновенное значение силы тока: Мгновенное значение силы тока

Мгновенное значение силы тока

Мгновенное значение напряжения можно установить, учиты­вая, что u = — εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.

 

Мгновенное значение напряжения.

Следовательно Мгновенное значение напряжения, где амплитуда напряжения амплитуда напряжения.

Напряжение опережает ток по фазе на π/2.

амплитуда напряжения

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.

амплитуда напряжения

Величина индуктивное сопротивление — индуктивное сопротивление.

индуктивное сопротивление

Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.

в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции

В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.

 

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *