Устройство тепляка для прогрева бетона – ТТК. Зимнее бетонирование. Прогрев монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время с использованием воздухонагревательной дизельной установки,

Содержание

Паропрогрев и воздухообогрев бетона | Технология бетона и изделий из него

Надежными способами прогрева при выдерживании бетона являются паропрогрев и воздухообогрев (в тепляках или шатрах). Для прогрева монолитных конструкций эти способы применяют лишь при условии технико-экономического обоснования и невозможности осуществления электропрогрева бетона.

Паропрогрев бетона. Паропрогрев заключается в создании при помощи пара благоприятных тепловлажностных условий, значительно ускоряющих твердение бетона. Как и электропрогрев, он состоит из стадий разогрева до заданной температуры, изотермического прогрева при этой температуре и остывания.

При паропрогреве температуру в бетоне повышают с такой же интенсивностью, как и при электропрогреве. Максимальная температура прогрева бетона при применении быстротвердеющих цементов не должна превышать 70, портландцемента — 80 и шлакопортландцемента и пуццоланового портландцемента — 90° С.

При прогреве монолитных конструкций из-за больших потерь тепла температура разогрева бетона обычно не превышает 70° С. При такой температуре за 24—28 ч можно получить такую же прочность, как и через 10—15 дней при твердении бетона на воздухе при температуре 15° С.

Длительность изотермического прогрева зависит от вида примененного цемента, температуры прогрева и заданной прочности бетона. Ее можно определять ориентировочно по специальным графикам прочности с уточнением по результатам испытания контрольных кубов на сжатие. Бетон прогревают насыщенным паром низкого давления. Для этого пар высокого давления предварительно пропускают через редуктор, понижающий давление пара.

Скорость остывания бетона не должна превышать величин, указанных для электропрогрева.

Наиболее распространен паропрогрев бетона с применением паровой рубашки. При этом способе устраивают полную или частичную оболочку (рубашку), охватывающую прогреваемую конструкцию или ее элемент вместе с опалубкой и обеспечивающую свободное обтекание поверхности бетона (или опалубки) паром.

Паровые рубашки устраивают до бетонирования. Ограждения паровых рубашек должны быть плотными, малотеплопроводными и отстоять от опалубки или бетона не более чем на 15 см, образуя пространство для впуска пара. Обычно их делают из утепленных деревянных щитов 2 или фанеры с прокладкой толя 5. Щиты плотно пригоняют один к другому, а швы между ними закрывают нащельниками или промазывают глиной.

Схема паровой рубашки для прогрева железобетонных ребристых перекрытий
1 — гибкий шланг, 2 — утепленные щиты, 3 — подкладки, 4 — настил из досок, 5 — толь, 6 — опилки, 7 — температурные скважины, 8 — отверстия для пропуска пара, 9 — бетон

При паропрогреве ребристых перекрытий паровые рубашки устраивают снизу и сверху. Верхнюю паровую рубашку устраивают только после укладки бетона в перекрытие. Пар для прогрева перекрытия пускают по трубам или гибким шлангам 1 в нижнюю паровую рубашку. Обычно на каждые 5—8 м2 поверхности перекрытия делают один ввод. Для пропуска пара в верхнюю паровую рубашку в плите при укладке бетона оставляют специальные отверстия 8 размером 10×10 см.

Паровую рубашку для колонн, балок, прогонов, ригелей и арок собирают из инвентарных утепленных щитов. Пар впускают через каждые 2—3 м по длине балки или прогона и через 3—4 м по высоте колонны в отдельные отсеки паровой рубашки.

При прогреве перегородок и стен паровую рубашку устраивают только с одной стороны, противоположной бетонированию. С другой стороны по мере укладки бетонной смеси опалубку наращивают и утепляют. При таком одностороннем прогреве вследствие небольшой толщины конструкции температура бетона на поверхности под утепленной опалубкой будет лишь немного ниже, чем на поверхности, обращенной к паровой рубашке.

Для равномерного распределения пара в рубашке его вводят через парораспределительный короб.

Вертикально расположенные элементы прогревают в так называемой капиллярной опалубке, представляющей собой видоизмененную обычную опалубку из досок толщиной 38 мм. Преимущество капиллярной опалубки по сравнению с паровой рубашкой заключается в том, что на нее меньше затрачивается лесоматериалов и теплоизоляции.

В капиллярной опалубке пар проходит по узким треугольным или прямоугольным вертикальным каналам (капиллярам) 1, которые делают в щитах опалубки 3 со стороны, обращенной к бетону. Для образования каналов стесывают кромки досок опалубки или выбирают в досках четверти и затем перекрывают полученные пазы полосками 2 кровельной стали.

Капиллярная опалубка для паропрогрева колонн
1 — каналы для пара, 2 — полоски кровельной стали, 3 — щит опалубки, 4 — хомут, 5 — бетон

Пар из паропровода поступает в парораспределительные коробы, располагаемые обычно внизу колонн или стен, а оттуда через просверленные в опалубке отверстия — в капилляры, по которым движется в вертикальном направлении. Верхние концы капилляров во избежание попадания в них бетона закрывают деревянными пробками, а пар выходит через отверстия, просверленные в верхней части капилляров. При высоте колонн более 3,5 м устраивают дополнительный ввод пара по середине колонн.

Для предварительного прогрева опалубки пар пускают за 20—30 мин до начала бетонирования. Для выпуска конденсата в парораспределительных коробах предусматривают отверстия, закрываемые пробками.

Воздухообогрев бетона. Воздухообогрев бетонных конструкций основан на создании в замкнутом пространстве благоприятных тепловлажностных условий в результате интенсивного испарения излишней воды из бетона при повышенной температуре.

Замкнутое пространство создают специальными ограждениями: тепляком или шатром, внутри которых размещают нагревательные приборы. Шатры в отличие от тепляков перемещают вверх по мере роста бетонных сооружений. Тепляки демонтируют после выдерживания конструкции и на новом месте собирают вновь.

При выдерживании бетона в тепляках или шатрах на уровне 0,5 м от низа ограждения должна поддерживаться температура не ниже 5° С.

Тепляки охватывают всю конструкцию и создают пространство, внутри которого бетонируют. Размеры тепляка в целях экономии тепла принимают минимальными. Крышу 1 из утепленных щитов устраивают выше бетонируемой конструкции на 2 м, а боковые ограждения 2 на расстоянии 0,5 м от опалубки конструкции.

Тепляк для возведения железобетонных стенок
1 — крыша из утепленных щитов, 2 — боковые ограждения из утепленных щитов, 3 — трубы парового отопления, 4 — вагонетка

Тепляки применяют обычно при бетонировании фундаментов и других массивных конструкций. Стенки траншей используют в качестве боковых ограждений.

Обогревают тепляки переносными печами или калориферами, а иногда и трубами, по которым пропускают пар.

Тепляки для выдерживания бетона обходятся дорого, поэтому их применяют лишь в исключительных случаях, когда нельзя использовать способ термоса.

В некоторых случаях при однократном использовании тепляка рационально применять легкие брезентовые или фанерные тепляки, которые требуют повышенных затрат на их обогрев, но конструкции их дешевле, чем из утепленных щитов. Допускается также применять тепляки при бетонировании железобетонных перекрытий, опирающихся на выложенные стены. Уложенный бетон при этом обогревают снизу и сверху. Для обогрева бетона сверху устраивают настил из щитов или укрытие из брезента, которые отстоят от бетона на 15—20 см. В это пространство снизу через отверстия в перекрытиях подают теплый воздух. Ограждения обогреваемого пространства не должны пропускать испаряемую из бетона влагу. Если влажность воздуха недостаточна, то конструкцию обрызгивают водой, либо вносят в тепляк сосуды с водой.

Шатры применяют в гидротехническом строительстве при бетонировании массивных блоков. Они охватывают сверху и с боков бетонируемый блок и создают пространство, внутри которого бетонируют.

Шатер представляет собой жесткую пространственную конструкцию из стальных продольных и поперечных ферм со свисающими по бокам консолями. Консоли несут боковое утепление шатра и воспринимают боковое давление бетона на опалубку. Опорами шатра являются колонны 3 из сборного железобетона или металлические. На каждой колонне устанавливают домкраты для подъема шатра на следующую позицию.

Подвижный шатер
1 — козловой кран грузоподъемностью 1,5 т, 2 — вибропакет ИВ-12, 3 — опорные железобетонные колонны, 4 — переставная опалубка

Перекрытие шатра делают плоским с системой люков, плотно закрывающихся крышками. Через люки подают в бадьях бетонную смесь и опускают вибропакет ИВ-12, поддерживаемый козловым краном 1. Необходимая положительная температура в шатре поддерживается электрокалориферами.

Подвижные шатры обходятся дорого, но в условиях сурового климата и больших объемов работ экономически себя оправдывают.

  1. Бетоноведение
  2. Технология изготовления сборных железобетонных конструкций и деталей
  3. Бетонные работы в зимних условиях
  4. Производство сборных конструкций и деталей из легких бетонов
  5. Производство сборных изделий из плотных силикатных бетонов и бетонов на бесклинкерном вяжущем
  6. Производство бетонных и железобетонных изделий на полигонах
  7. Общие правила техники безопасности и противопожарные мероприятия на строительной площадке

Зимний бетон: добавки пмд, прогрев конструкций

Основной проблемой осуществления зимнего бетонирования считается низкая температура воздуха, при которой замерзают используемые строительные материалы. Поэтому необходима эффективная технология предотвращения этого процесса.

бетонирование в минусовую погоду

Требования к процессу бетонирования определены строительными нормами и правилами, по которым температура менее 5С относится к зимнему периоду.

Особенности зимнего бетонировани

Осуществляемая укладка бетонного раствора зимой усложняется из-за следующих причин:

  1. При низкой температуре начинается замедление гидратации цемента, поэтому период набора прочности бетона возрастает.
  2. Рост давления в бетоне начинается из-за замерзшей расширяющейся воды, что в результате вызывает его разупрочнение.

Образующиеся ледяные корки нарушают связанные между собой компоненты раствора. Уменьшение прочности зависит от точного возраста бетона и произошедшего замерзания воды. Самым опасным считается период схватывания свежей залитой смеси, ведь прочность появляется из-за ее замерзания. При возрастании температуры цементная гидратация начинается снова. При этом по прочности бетон серьезно уступает не замороженному раствору.

Устоять перед разрушением структуры может качественный зимний бетон, набравший определенный уровень прочности. Очень важно соблюдение беспрерывной укладки готовой смеси, что не позволяет появиться холодным швам.

бетонирование в минусовую погоду

В Москве в строительстве самым популярным методом бетонирования стала защита бетона от вероятного замерзания при происходящем схватывании, а также наборе критической прочности, составляющей 50% от усиленной марочной. В более серьезных конструкциях обустраиваемый бетон защищается от замерзания почти до 70% от величины проектной прочности.

Сегодня используются следующие методы зимнего бетонирования:

  • введение в состав разработанных противоморозных добавок или химических веществ;
  • тщательное укрытие смеси утеплителями;
  • разные виды прогрева поверхности бетона.

Применение добавок противоморозного действия

Сегодня самым удобным способом защиты бетонирования зимой стало применение разработанных противоморозных добавок. Способ считается более дешевым по сравнению с бетонированием, требующим тщательного утепления конструкции, включая прогрев электричеством или используемыми инфракрасными лучами. Такие специальные добавки применяются самостоятельно или сочетаются с остальными методами подогрева.

  1. Добавки для ускорения или замедления схватывания смеси. Например, это электролиты, не электролиты и карбамид, а также многоатомные спирты.
  2. Модификаторы, созданные из хлорида кальция и существенно ускоряющие время схватывания бетона.
  3. Вещества с антифризными свойствами, которые ускоряют схватывание раствора с усиленным тепловыделением после выполнения заливки. Это трехвалентные сульфаты, созданные из алюминия и добавленного железа.

Многих строителей интересует вопрос о том, можно ли добавлять соль в бетон зимой. Техническая соль не разъедает цемент и считается самой доступной и недорогой противоморозной добавкой, которая обеспечивает непрерывность бетонных работ при низкой температуре воздуха.

Мероприятия увеличивающие эффективность применения противоморозных добавок пмд

Разработанные противоморозные добавки необходимы для ускорения схватывания и твердения бетона. Причем для нормального результата проводится ряд следующих важных мероприятий:

  1. Создание участков теплоты внутри бетонного раствора с проведением подогрева его основных компонентов.
  2. Утепление поверхности бетона для необходимого сохранения тепла, образующегося при изотермической реакции цемента с добавленной водой.
  3. Использование высокомарочных твердеющих цементов.
  4. Изготовление смеси из предварительно подогретых компонентов требует иного порядка процесса их загрузки в отличие от летних условий и одновременной загрузки материалов в барабан смесителя. Например, зимой в барабан необходимо заливать горячую воду, затем добавляется выбранный заполнитель, вводятся цементная смесь и песок.
  5. Смесь транспортируется в утепленной специальной машине, имеющей двойное днище. Пункт проведения погрузочно-разгрузочных работ защищается от ветра. Заливать бетон необходимо с помощью устройств, которые обязательно утепляются.
  6. С опалубки счищаются снег и образующаяся наледь, арматура тоже должна быть обязательно очищена.
  7. Зимнее бетонирование проводится в быстром темпе.

Совет! При зимнем выполняемом бетонировании нежелательно применение каких-либо замерзших заполнителей.

Замерзание воды

Серьезным фактором при укладке бетонного раствора является срок замерзания воды, ведь от этого зависит прочность конструкции. Поэтому бетон получится хрупким при замерзании именно в своем раннем возрасте. Причем период схватывания раствора считается самым критичным.

лед на бетоне

Используемая технология бетонирования в зимних условиях свидетельствует о том факте, что при замерзании бетона практически сразу после размещения в опалубке на величину его прочности повлияет сила мороза. При росте температуры воздуха начнется продолжение гидратации. Но конструкция по свой прочности уступит похожему строению, смесь которого не замерзала при укладке. Но если бетон смог набрать прочность до замерзания, в дальнейшем он может замораживаться без изменений своей структуры и появления дефектов. Предотвращение появления xoлoдныx швoв возможно с помощью непрерывного укладывания смеси.

Метод «термоса»

Технология метода «термоса» состоит в укладке нормальной по температуре смеси в хорошо утепленную опалубку. Бетон становится прочным из-за выделения тепла при происходящей реакции цементной гидратации. Большое количество образующегося тепла выделяется при работе с высокомарочными цементами.

Эффективность «термоса» возрастает при сочетании с используемыми противоморозными добавками и другими веществами.

Бетонирование зимой с помощью «горячего термоса» состоит в подогреве раствора до температуры 60-80 °С. На месте строительства бетонная смесь постепенно разогревается специальными электродами. При этом она является сопротивлением в действующей цепи переменного тока. Электропрогрев осуществляется в специальных бадьях.

Способы искусственного нагрева и прогрева бетона

Для нормальной прочности бетона требуется поддержание высокой температуры подготовленной смеси. Такой способ используется при недостаточности метода «термоса».

Существуют следующие варианты получения необходимого результата:

  1. Электродный прогрев бетона, приводящий к токообмену и эффективному нагреву конструкции.
  2. Контактный нагрев с применением проводника.
  3. Инфракрасный нагрев с помощью излучателей.
  4. Индукционный нагрев с применением специальной катушки-индуктора.

Прогрев и нагрев бетона с помощью электричества и инфракрасного излучения

Суть такого метода заключается в нагревании бетона и сохранении тепла до набора необходимой самой высокой прочности конструкции. Чаще всего нагревание осуществляется электрическим током, причем бетон становится сопротивлением в электроцепи. Цель достигается при его постепенном нагревании.

Для нагрева бетона используются следующие виды электродов:

  • струнные;
  • стержневые;
  • полосовые;
  • пластинчатые.

Самым подходящим вариантом стали пластинчатые электроды, изготовленные из высококачественного кровельного железа. Они нашиваются на часть опалубки, контактирующую с бетоном. Затем выполняется подключение электродов к электросети. Между ними появляется разность потенциалов, а через бетонную конструкцию течет ток, приводящий к нагреву. В результате цена объекта после прогревания конструкции возрастает из-за особенности такой работы зимой. Понесенные затраты являются полностью оправданными, ведь из-за них предотвращается появление хрупкости бетона, приводящее к разрушению конструкции.

прогрев фундамента проводом

Марки бетона по водонепроницаемости свидетельствуют о степени устойчивости бетона к воздействию влаги. Причем высокий коэффициент свидетельствует о лучшей устойчивости.

Meтoд инфpaкpacнoгo нaгpeвa

При необходимости используется метод специального инфракрасного нагрева. Он основан на трансформации инфракрасных лучей в необходимую тепловую энергию.

Для создания инфракрасных волн необходимы кварцевые и трубчатые виды специальных излучателей, изготовленные из металла. В основном такой способ используется для отогревания промерзших бетонных конструкций и для эффективной тепловой защиты размещенной в опалубке смеси.

Индукционный метод выполняется с помощью катушки, генерирующей выделение тепла в рабочих металлических деталях в зоне своего действия. Такой метод используется для отогревания готовых конструкций и может быть применен для бурения отверстий в прочном бетоне независимо от температуры.

Обогрев конструкций

Конвективный способ равномерного воздушного прогревания конструкций из бетона осуществляется от подведенного снаружи горячего воздуха.

Для этого используется гибкий длинный шланг или специальный прорезиненный рукав. Выработка воздуха осуществляется теплогенератором, запитанным от электросети или функционирующим на дизельном топливе. Но все же рекомендуется использование электрических устройств, ведь при работе дизеля происходит выделение большого объема выхлопных газов.

Эффективный воздушный обогрев применяется после заливки бетона для фундаментов в установленную опалубку в помещении с воздушной циркуляцией, которую усиливает вентилятор для более равномерного распределения прогрева. При этом рекомендовано применение материалов из плотного брезента для создания необходимого тепляка над прогреваемой бетонной конструкцией.

Бетонирование в зимнее время при зимних отрицательных температурах не является сложным делом, ведь при соблюдении положенных правил характеристики прочности созданной конструкции сохраняются на достаточно высоком уровне.

Технология прогрева бетона

%PDF-1.5 % 2 0 obj > /Metadata 4 0 R /Pages 5 0 R /StructTreeRoot 6 0 R /Type /Catalog >> endobj 4 0 obj > stream

  • Александр
  • application/pdf
  • Технология прогрева бетона
  • 2011-11-17T13:42:38+03:00Microsoft® Word 20102019-10-25T21:14:53+03:00Microsoft® Word 2010uuid:05ba8cc8-4e36-4256-968f-4505cb53fa35uuid:ce24bd30-3a55-4c3a-9e3b-9f1ba01ce0b7 endstream endobj 25 0 obj > stream x\ˎ0º|lw;Hd1$6= %Quԩ.roq_oEΗM^fbiˏ~&.Y߿yj| eBMu?1|Ou7kvBh~W.fc^fxg{~y>ݘø%.)W]>x].,H\S:{??˫)|Ow%,~~^_dWgE>&=b»0n]apEn|~ydx?®=^~f۰XZ$+z!`Ft26XcS=rA2)

    )kp fI[2\|Ywx8˱8n.?35) 76′}&ǜ=lY1q{UNLݒ#,I{Z:O}_Ʒf?…~R+8T~ۀT(6u4f&auwL@ʠɳL]zw/ngqnpFJߗLX4ӸxgC0@x˱k2 `E#E&ZWiӺre%2(kJPה$6@#W(Mbz6`BG,oEAb+(~+WB|$K8_*n»P#g

    ŗ7鱭a[CMƨP9@#Gi%X@Kc`0″K= nkrw!h3E$ݠFhW X/d|22moհF \%b9Ed(7(Y'[i>|OLDz *[Ƹz)Ɏq\=/2AGs0裖caʍoi 3A }

    z»lqLva2\^n>pq̾Eh4hY9y;f

    Термоматы для прогрева бетона от производителя

    Провода Видео сравнения Электроды Пропарочная камера Рулонные термоматы «Импульс» для прогева бетона Сегментированные термоматы для бетона ФлексиХИТ
    Область применения Для прогрева бетона Для прогрева бетона Для прогрева ЖБИ Для прогрева бетона и ЖБИ, прогрев грунта Для прогрева бетона и ЖБИ, прогрев грунта
    Скорость монтажа 5 часов 3 часа 2 часа 25 минут 45 минут
    Простота перевозки и хранения Требуется место для хранения станции для прогрева бетона, кабелей, проводов. Большой вес, для перевозки потребуется подготовка Требуется место для хранения понижающего трансформатора, приборов контроля. Большой вес, для перевозки потребуется подготовка Нет возможности перевозки, отдельное производственное помещение Скручивается в рулон. Масса 2,1 кг/м2. Легко перевозится в любое место Складываются по линиям сгиба. Масса 2,1 кг/м2. Легко перевозится в любое место
    Потребность в специалистах 2 электромонтажника: V и III разряда 2 электромонтажника: V и III разряда 3 специалиста: электромонтажник III разряда, крановщик, рабочий 1 электромонтажник II разряда 1 электромонтажник II разряда
    Использование Одноразовое Одноразовое Многоразовое Многоразовое Многоразовое
    Контроль температуры Первые 3 часа – каждый час. Далее — не реже 2 раз в смену.
    Изготавливаются специальные воронки, куда закладывается трубка, опускается термометр.
    В период разогрева раствора — каждый час.
    Для выдерживания нужной температуры — каждые 2 часа.
    Заранее изготавливаются специальные скважины.
    Первые 8 часов — через 2 часа
    Далее — через 4 часа.
    Не требуется Не требуется
    Время прогрева — период затвердевания 12 часов 14-16 часов 10-15 часов 10 часов для всей площади 10 часов для всей площади
    Дополнительное оборудование — Станция прогрева бетона
    — Магистральный кабель
    — Провода «холодных концов»
    — Понижающий трансформатор
    — Приборы контроля
    — Большие производственные помещения
    — Парогенератор
    — Приборы контроля
    — Паропровод
    — подъемный кран
    Не требуется Не требуется
    Необходимые расчеты — Сложные электротехнические расчеты
    — Подбор оптимальных значений длины и диаметра греющего провода
    — Выбор питающего напряжения
    — Компьютерное моделирование процесса прогрева
    — Расчет проекта, где указывается шаг между электродами, расположение понижающих трансформаторов и допустимое напряжение
    Схема подключения токопроводящих элементов рассчитывается для каждого случая индивидуально.
    — Расчет режима прогрева: предварительного вы¬держивания, нагрева изделия, изотермического выдерживания, охлаждения. — Расчет количества термоэлектроматов для прогреваемой площади. — Расчет количества термоэлектроматов для прогреваемой площади.
    Равномерность прогрева — Неравномерный уровень интенсивности прогрева
    Смесь, находящаяся рядом с кабелем, быстрее нагревается и затвердевает. При удалении от кабеля затвердевание происходит медленнее.
    Вследствие чего появляются микротрещины, нарушается прочность конструкции.
    — Отвердевание и усадка бетона вокруг электрода
    — Температурные напряжения в зоне примыкания бетона к электродам. Это приводит к локальному перегреву и образованию пористой структуры бетона. Конструкции разрушаются раньше времени.
    — Неравномерный прогрев изделий В местах, удаленных от подачи пара, температура бетона в течение первых 2—3 ч меньше. Нарушается структура бетона и снижается его конечная прочность. — Равномерный прогрев бетона по всей площади, без зон локального перегрева за счет сплошного греющего слоя. Поверхностный неразрушающий прогрев бетона обеспечивает высокую прочность и надёжность конструкций. — Равномерный прогрев бетона по всей площади, без зон локального перегрева за счет сплошного греющего слоя. Поверхностный неразрушающий прогрев бетона обеспечивает высокую прочность и надёжность конструкций.
    Возможность изготовления с нестандартными хар-ми и размером - - - За 2-3 дня За 2-3 дня Возможность заказа матов с учётом обхода выступающих из бетонной конструкции частей
    Гарантия Зависит от поставщика Зависит от поставщика Зависит от поставщика 1 год — замена мата при повреждении. Все необходимые ГОСТы, СНиПы. 1 год — замена мата при повреждении. Все необходимые ГОСТы, СНиПы.

    Прогрев бетона термоматами

    Технология производства ЖБИ за прошедшие годы хорошо отлажена и применяется на заводах железобетонных изделий и строительных объектах. Раньше перед специалистами не редко стояли задачи о повышении качества ЖБИ, теперь же наличие на рынке качественного цемента и различных технологий по изготовлению напряженного бетона, вибропрессованию, центрифугированию позволяют не особенно ломать над этим голову, достаточно соблюдать уже наработанные технологии и иметь соответствующее оборудование.

    Сегодня встают вопросы:

    • Как ускорить твердение бетона?
    • Как снизить себестоимость производства бетона?
    • Как изготовить нестандартные ЖБИ?

    Технология прогрева бетона термоэлектрическими матами

    Одним из способов решения этих вопросов является технология прогрева бетона термоматами ТМ-400, применение которых позволяет сократить твердение бетона с 28 дней до 8 — 12 часов. Также термоэлектрические маты применяются для прогрева бетона в зимнее время, когда температура воздуха опускается ниже + 5 °С, а критическая прочность бетоном еще не набрана. Прогрев бетона термоматами зачастую является единственным средством для ускорения твердения бетона при возведении частных домов, коттеджей в условиях пониженных температур.

    Прогрева бетона термоматами ТМ-400 в зимнее время

    1. Подготовительный этап

      • На залитый бетон укладывается полиэтиленовая пленка. Пленка применяется для предотвращения преждевременного испарения воды из бетона и сохранения внешней оболочки.

        Прогрев бетона термоматами при строительстве мебельной фабрики Ольховская
    • Поверх пленки один к одному укладываются термоэлектрические маты ТМ-400 мощностью 400 Вт/м².

    • С помощью удлинительного кабеля или другим удобным способом подсоединяются термоматы к источнику питания.

      Схема подключения параллельная.

  • Основной этап

    • На термоматы ТМ-400 подается напряжение 220 В.

    • Применение термоматов при строительстве мебельной фабрики Ольховская

    • За 8 – 12 часов происходит набор прочности до 70 % от r28 (прочность в возрасте 28 суток).

      При использовании термоматов бетон прогревается равномерно на всю толщину слоя. Нагрев бетона основан на каталитическом действии инфракрасного тепла. ИК-излучение глубоко проникает в массу бетона и локализуется в объеме, ограниченном опалубкой, за счет чего достигается исключительная экономичность процесса по сравнению с пропариванием и внешним подогревом. Равномерность прогрева исключает возникновение внутренних напряжений. Кроме того, отпадает необходимость в дополнительном обогреве опалубки.

      Термоматы ТМ-400 для прогрева бетона оборудованы встроенными ограничителями температуры на 70 °С, то есть не требуется дополнительного контроля температуры. Термоматы автоматически выйдут на изотермический режим и будут поддерживать заданные параметры в течение всего процесса.

    • После прогрева бетона термоэлектрические маты ТМ-400 отключаются от сети и в течении 2-х часов происходит постепенное выравнивание температуры изделия с окружающей средой. 

  • Заключительный этап

    • С поверхности набравшего прочность бетона снимают термоматы и убирают полиэтиленовую пленку.

      Бетонное основание готово к проведению дальнейших мероприятий.

  • Более подробно об эксплуатации термоматов ТМ-400 читайте в техническом описании и руководстве по эксплуатации термоэлектрического мата.

    Применения термоматов ТМ-400 на производстве дорожных плит.

    1. Проводятся подготовительные мероприятия с формой, укладывается арматурный каркас.
    2. Готовая бетонная смесь погружается в смазанную форму и производится вибропрессование.
    3. Изделие из бетона в форме накрывается полиэтиленовой пленкой. 
    4. Поверх пленки на изделие укладываются термоматы ТМ-400 для прогрева бетона. 
    5. Прогрев бетона термоматами

    6.  Термоматы ТМ-400 включаются в розетку 220 В и проводится прогрев заготовки дорожной плиты. Этот процесс может занять от 6 до 12 часов в зависимости от внешней температуры и марки применяемого цемента. Среднее время составляет 6 – 8 часов.
    7. По истечению времени термоматы отключают от сети, но не убирают с изделия и дают в течении 2-х часов остыть готовой дорожной плите.
    8. Затем производят распалубку форм, после чего готовое изделие перемещают на склад.

    Применения термоматов ТМ-400 при изготовлении нестандартных изделий.

    Термоматы ТМ-400 также применяются и для прогрева бетона при изготовлении нестандартных изделий из железобетона.

    Технология уже описана выше, а вот сами  термоматы изготавливаются под конкретный размер формы если её размеры позволяют эксплуатацию термоэлектрических матов согласно инструкции по применению или набираются из нескольких штук. 

    Прогрев бетона термоматами

    Например для изготовления дорожной плиты размером 2 х 6 метров применяются пять нестандартных термоматов ТМ-400 размером 1,2 х 2 метра, что позволяет проводить их обслуживание одному рабочему.

    Прогрев бетона термоматами

    При интенсивной эксплуатации термоматов на производстве ЖБИ следует учесть, что ресурс их работы ограничен из-за применения встроенных регуляторов температуры на 70 °С (примерно 50 тыс. включений-выключений). 

    Отсюда вывод: Для увеличения срока службы термоматов при интенсивной эксплуатации необходим использовать термоматы без встроенных датчиков, а для контроля температуры применять внешние терморегуляторы.

    Автор статьи: Самойлов Максим Николаевич. тел.+7 (915) 047-0084

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *