Устройство соленоида – Соленоидный электромагнитный клапан автоматического действия, зачем нужен и как работает — СамСтрой

Что такое соленоиды АКПП и как их проверить

В работе автоматической коробки передач большая роль отводится трансмиссионному маслу. Каждый автовладелец знает, насколько важно использовать высококачественные смазочные материалы, а также следить за состоянием всех узлов коробки автомат.

Что такое соленоиды АКПП

В АКПП имеется ряд механических элементов, которые требуют обязательной и качественной смазки. Особое значение в обеспечении лубрикации имеет специальный соленоид, который отвечает фактически за подачу в систему АКПП трансмиссионного смазочного масла.

Автомобилисты не просто должны знать, что это такое, но и уметь при необходимости самостоятельно проверить текущее состояние соленоидов.

Для чего используются в АКПП

Присутствующий в автомобиле с АКПП соленоид является специальным электромагнитным регулирующим клапаном или же клапаном-регулятором, который выполняет задачи по своевременному открытию и закрытию специального канала подачи смазочного ATF масла.

Именно за работу масляного канала коробки и отвечают автомобильные соленоиды в конструкции АКПП, если автомобили имеют автоматическую коробку для переключения передач. При этом функционирует устройство за счёт команд, поступающих от ЭБУ, то есть электронного блока управления, что делает соленоид неотъемлемым элементом конструкции авто.

ЭБУ непрерывно отправляет электроимпульсы с определённой необходимой частотой. Соленоид следит за давлением смазочного материала на конкретных определённых связках сцепления, осуществляя быстрое переключение скорости, либо же снимает блокировку с гидравлических трансформаторов.

Ещё немного о том, что же такое соленоиды в машине. Также можно назвать их элементом управления рабочими режимами АКПП.

Конструктивно ничего сложного в этом устройстве нет. Это стержень, выполненный из металла, и обвитый специальной спиралью, по которой проходит постоянный ток. Внутри этот специальный стержень является подвижным. Под воздействием поступающего тока этот стержень перемещается с помощью пружинки от конца имеющейся спирали к её началу, тем самым своевременно закрывая или же открывая поток смазочной жидкости.

Такая конструкция применяется на современных автоматических автомобильных коробках. Её основное преимущество заключается в возможности автоматического срабатывания пружинки даже в ситуациях, когда происходит сбой с электрообеспечением автомобиля. Пружинка способа перекрыть поток масла.

Разобравшись с тем, для чего в АКПП нужен соленоидный клапан, не лишним будет узнать его расположение, а также изучить возможные применяемые типы соленоидов.

Расположение

Чтобы автовладелец имел возможность проверить текущее состояние электромагнитного клапана, то есть соленоида, ему следует знать про его расположение.

Фактически отыскать искомый элемент не сложно. Располагается устройство в гидравлическом блоке. Он также называется гидравлической клапанной плитой.

Непосредственно в самом гидроблоке соленоид вставляется в специальный канал, где соединяется с блоком болтовым креплением или с помощью фиксирующей прижимной пластинки. Другим концом осуществляется шлейфовое соединение или штекерное, что позволяет соединиться с блоком управления.

Соленоид выступает в качестве посредника при передаче управляющих сигналов между имеющимися электрическими и гидравлическими системами автомобильной АКПП. Функционал соленоида позволяет объединить эти две системы. Причём в этом объединении довольно часто происходят сбои, за которыми следит ЭБУ.

В автоматических коробках, в зависимости от используемой схемы и количества используемых ступеней в АКПП, может использоваться от 4 и более соленоидов.

Важно учитывать, что слабым местом автомобильного соленоида является его шлейф или кабель соединения с электронным блоком управления. Это вынуждает автомобилистов осуществлять замену этих компонентов примерно с такой же периодичностью, как и замену самих соленоидов.

Виды

Покупая автомобиль с автоматической коробкой переключения передач, не лишним будет поинтересоваться типом используемого в конструкции соленоида. От этого зависит, какие именно детали водитель будет покупать в дальнейшем для замены.

Автомобильный соленоидный клапан

Автомобильный соленоидный клапан представлен в нескольких разновидностях. Причём каждый из них имеет свой принцип действия и определённые отличительные характеристики. Потому стоит узнать, как работает тот или иной соленоид, и чем разные типы устройств между собой отличаются.

  1. On Off. Это первый тип соленоид, который разработали специально для автоматических автомобильных коробок передач. Устройство отличается достаточно несложной заводской конструкцией и практически таким же простым и элементарным во многом принципом своей работы. Соленоид лишь открывал и просто закрывал подачу масла. Стержень конструкции, находясь под воздействием тока, который проходил по обмотке, двигался по каналу, и выполнял соответствующие функции открытия и закрытия.
  2. Электромагнитный клапан. Считается одним из лучших соленоидов своего времени, который стал настоящим техническим прорывом. Фактически такой соленоид выступает как гидравлически клапан. Инженеры создали для устройства отдельный специальный масляный канал, а также клапан шарикового типа, способный открывать и закрывать канал. Чтобы отключить девайс от электрического питания и гидравлической системы, достаточно лишь отсоединить специальный штекер. Такой соленоид появился около 40 лет назад, но до сих пор активно применяется на некоторых автомобилях отдельного представительского класса.
  3. 3 Way. Поскольку автомобильная индустрия стремительно развивалась, от соленоидов, действующих по простому принципу On Off, начали постепенно отказываться. Уже в 90-х появились устройства 3 Way. Это переключатель новой генерации. Находясь в положении On, клапанный шарик открывал проход жидкости с 1 канала на 2. Переходя в положение Off, происходит переход от 2 канала на 3. Такое нововведение позволило с помощью одного устройства отключать и включать по мере необходимости фрикционную муфту.
  4. Электрорегуляторы. Уже с середины 90-х годов инженеры снова задумались об усовершенствовании соленоида, и создали новый тип. Подобные соленоиды-регуляторы разработали по принципу вентиля. Отталкиваясь от конкретного типа импульса, поступающего от ЭБУ, кривое внутреннее сечение устройства открывало и закрывало поток смазки. Здесь электрический ток подавался с определённой частотой и перерывами. Такие соленоиды отдельно делятся на шариковые, золотниковые, 3, 4 и 5 Way.

Соленоиды-регуляторы принято классифицировать отдельно.

Первыми из них появился соленоид, имеющий шариковый клапан. Их называют PWM. С таких устройств началась разработка современных соленоидов-регуляторов.

Несколько позже появился другой тип, который не получил большой популярности, и в настоящее время встречается редко. Обозначают такие соленоиды как VBS. Отличается низкой чувствительностью по отношению к подающему давлению и хорошо работает при высоком давлении смазочного масла в линии. Их также часто называют золотниковыми соленоидами, поскольку в качестве клапана здесь используется золотник.

Также существуют пропорциональные соленоиды. Они же линейные. Конструкция выполнена таким образом, чтобы наиболее уязвимый и быстро изнашиваемый элемент, коим выступает муфта с отверстиями, располагался непосредственно в самом соленоиде.

Преимущество линейных устройств в том, что они позволяют предотвращать необходимость менять всю гидроплиту полностью, если выходит из строя только соленоид. Это существенно продлило срок службы гидроплиты, а также удалось избавиться от проблемы быстрого износа каналов. Сейчас линейными конструкциями активно пользуются производители автомобилей Volvo, Toyota и марок, входящих в состав VAG.

Далее появились также VFS соленоиды. Конструкция получилась простой и дешёвой в плане производства. При этом отмечается определённая сложность в управлении. Такие автомобильные соленоиды считают очень капризными. Плюс длительность службы, если сравнивать с линейными, заметно ниже. Малый вес и высокое давление способствуют быстрому износу. Постепенно клапан начинает менять степень открытия, а потому компьютеру приходится сложнее считывать и обрабатывать информацию, чтобы правильно поменять режим работы.

Проверка соленоида на работоспособность

Отталкиваясь от функционального назначения используемых соленоидов автоматических коробок передач, различают ещё одну классификацию.

  1. LPC или EPC соленоиды. Управляющие устройства, которые идут одними из первых на гидроплите. Этот электроклапан является ключевым или главенствующим. Он самостоятельно осуществляет распределение масла по остальным рабочим соленоидам и масляным каналам. Если используется четырёхступенчатая EPC, управляющий соленоид обычно изнашивается всегда первым.
  2. Соленоид, специально предназначенный для выполнения самой ресурсозатратной работы среди всех остальных разновидностей этих устройств. Воздействует на гидротрансформаторную муфту, которая блокируется и подключается, повышая при этом коэффициент полезного действия для специальных спортивных режимов функционирования АКПП. На определённых автомобильных гидроблоках этот элемент оказывается наиболее слабым, поскольку через него проходит горячее и не отфильтрованное масло.
  3. Шифтовые соленоиды или шифтовики выступают как переключатели. Конструктивно наиболее простое устройство среди аналогов, которое отвечает за эффективное и своевременное автоматическое переключение необходимых передач в коробке. На гидравлической плите АКПП располагается сразу несколько подобных соленоидов. Именно шифтовики отвечают за правильное переключение скоростей вверх и вниз в автомобильной коробке автомат.

Разнообразие соленоидов действительно довольно внушительное. Потому автомобилисту следует заранее узнать, какое именно устройство применяется конкретно на его транспортном средстве в конструкции автоматической коробки передач.

Понимая суть и принцип работы этих соленоидов, будет намного проще разобраться в возможных неисправностях, а также самостоятельно проверить в АКПП состояние соленоида по мере необходимости.

Характерные неисправности

Большую и ключевую роль в длительной работоспособности соленоида играет качество самого используемого трансмиссионного масла. Не обязательно покупать самые дорогие соленоиды при их замене, если параллельно в АКПП будет заливаться низкосортная смазка.

Поэтому большинство неисправностей связаны именно с качеством масла. Можно выделить несколько характерных и наиболее часто встречающихся проблем.

  1. Ломаются и заклинивают соленоиды зачастую из-за нагара, который образуется в результате износа различных элементов, расходников и узлов автоматической коробки. Эта бумажная, алюминиевая, стальная и бронзовая пыль от нагара засоряет элемент, не позволяя ему нормально работать. Причём пока масло холодное, соленоид хорошо справляется со своими функциями, но после прогрева начинает тормозить. Чтобы решить эту проблему, необходимо выполнить процедуру полоскания соленоида. Для этих целей используются специальные промывки, растворители и очистители. Также эффективно помогает справиться с нагаром очистка переменным током и растворителем.
  2. Протечки. Они возникают как результат износа или поломки манифольдов, плунжеров и иных элементов. Когда в конструкции используются PWM соленоиды, один из них может ослабнуть. Эту информацию считывает блок управления, воспринимает ослабленный соленоид как неисправность, в результате чего его нагрузка перераспределяется на другие соленоиды, что вызывает определённую перегрузку. Такая разгрузка позволяет немного продлить срок службы. Но всё равно под действием напряжения и горячего масла старый соленоид начинает выходить из строя, и вскоре его требуется полностью менять. Перераспределяя нагрузку, перегружаются остальные соленоиды, и вскоре уже они выходят из строя. То есть поломка одного устройства запускает цепную реакцию.
  3. Также часто автомобилист может столкнуться с проблемой снижения упругости на пружине, трещинами в корпусе, а также снижением сопротивления на обмотке. Чаще всего поломка соленоида происходит по причине износа компонентов. Здесь основной акцент делятся на плунжерах, шариках, манифольде, клапанах и втулках. Плунжер может засориться стружкой от изношенных деталей и смазочного масла. Сначала возникают сложности с переключением, соленоид начинает клинить. Постепенно возрастает количество нагара, что приводит к поломкам клапанов и втулок.

Важно учитывать, что даже самые надёжные соленоиды рано или поздно выходят из строя. Исследования наглядно показывают, что наиболее устойчивые элементы могут прослужить до 400 тысяч километров пробега. Но в большинстве случаев цифры куда более скромные.

Стоит заметить и тот факт, что разработчики существенно упростили конструкцию современных соленоидов, если сравнивать с предшественниками. Если раньше для изготовления гидроблока применяли исключительно чугун, то теперь для этих целей используют алюминий.

Но нынешние соленоиды стали куда требовательнее к качеству масла, используемого для автоматических коробок передач. Ранее в АКПП заливали всевозможные низкокачественные жидкости, характеристик которых всё равно хватало для нормальной работы соленоида. Теперь же, если залить плохую смазку, соленоид начнёт быстро клинить и в итоге выйдет из строя.

Основная задача автовладельца заключается в своевременной замене масла. И хотя многие автопроизводители утверждают о том, что трансмиссионная жидкость для их АКПП заливается на весь эксплуатационный срок, это не соответствует действительности.

Постепенно масло будет накапливать в себе частицы от изношенных деталей. Чем их больше, чем выше абразивные свойства у смазки. В результате жидкость, предназначенная для смазки и продления срока службы элементов АКПП, начинает воздействовать как наждачная бумага, постепенно разрушая конструкцию изнутри. Как и все остальные детали, страдают и сами соленоиды, поскольку они крайне требовательные к качеству и чистоте трансмиссионного масла.

Проверка и замена соленоидов

Некоторые автовладельцы сами хотят разобраться в том, как можно проверить соленоиды в АКПП на работоспособность. Тут нужно быть внимательным. В определённых случаях работу над устранением неисправностей лучше доверить специалистам.

Но для начала следует понять, что с соленоидом возникли проблемы, и там действительно требуется определённое вмешательства.

Есть несколько характерных признаков износа и поломки соленоидов в АКПП. Они проявляются в виде:

Как только вы заметили при управлении своим транспортным средством с коробкой автомат, что переключение скоростей осуществляется с толчками, это весомый аргумент для проверки блока соленоидов.

Если давление снизится и окажется недостаточным, работа АКПП может осуществляться всухую. Это значительно приблизит момент износа втулок. Параллельно появятся вибрации, способные нанести непоправимый урон автоматической трансмиссии, включая поломки, несовместимые с ремонтом. Только полная замена АКПП.

Замена соленоидов в автомобиле

Чтобы проверить состояние соленоида, достаточно воспользоваться обычным омметром или мультиметром в соответствующем режиме. Выполняется проверка на сопротивление, для чего на контакт клапана следует подать напряжение, равное 12 В. Если с соленоидом всё хорошо, при подаче напряжения вы услышите характерный щелчок. Если реакции не происходит, он засорился или вышел из строя.

Поочерёдно проверив каждый из соленоидов, можно легко своими руками определить проблемный элемент, и далее заменить его, если невозможно восстановить работоспособность путём промывки.

Чтобы прочистить соленоид, можно воспользоваться сжатым воздухом. Воздух под давлением подаётся через соленоид. Если элемент пропустит воздух, то соленоид можно использовать повторно. Если же нет, тогда поможет только его замена.

Ремонту подлежат далеко не все компоненты масляной системы АКПП. Потому рекомендуется заранее узнать, какие соленоиды используются в автомобиле, и является ли их конструкция разборной. Подавляющее большинство современных соленоидов неразборные. Восстановление их работоспособности возможно только с помощью продувки или ультразвукового воздействия.

Если на вашей автоматической коробке переключения передач применяется разборная конструкция соленоида, то здесь замене подлежит сама обмотка. Деталь можно промыть в бензине или другом очистителе, затем просушить и собрать обратно. Если проверка на работоспособность восстановленной детали прошла успешно, она возвращается обратно в соленоидный блок.

Полностью заменить соленоид не сложно, когда проверка показала полный выход из строя. Для этого потребуется свериться с руководством по эксплуатации к своей машине, отыскать на АКПП соленоидный блок, снять его и извлечь неисправный компонент. Далее, будучи предельно аккуратным и внимательным, на откреплённом от автоматической коробки гидроблоке отключается от питания соленоид и убирается. На его место устанавливается аналогичный элемент, соответствует типу коробки передач. Обязательно следует использовать новую прокладку под соленоид. Обычно прокладка идёт в комплекте с деталью.

Если вы не хотите покупать новый соленоид, поскольку думаете восстановить старый, тут следует отталкиваться от конкретного типа детали. Более старые соленоиды легко проверяются на сопротивление, промываются и очищаются своими руками. Современные разработки стали деликатнее и нежнее, к ним требуется несколько иной подход. Оптимально в такой ситуации обратиться в сервисный центр, где проведут компьютерную диагностику. После проверки удастся считать код ошибки электронного блока. По коду мастера расшифровывают, что конкретно произошло с соленоидом, можно ли его восстановить или лучше поменять.

Соленоиды выполняют важную роль в работе автоматической коробки передач. Потому крайне необходимо внимательно относиться к работе АКПП, прислушиваться к процессу автоматического переключения скоростей, если появляются подозрения на неисправности.

Вышедший из строя соленоид имеет характерные признаки поломки и износа, что позволяет внимательному водителю вовремя обнаружить неисправность и принять соответствующие меры по их устранению. Оттягивать очистку или замену соленоида не стоит, поскольку игнорирование проблемы может привести к ещё более серьёзным негативным последствиям для вашего автомобиля и автоматической коробки переключения передач в частности.

Соленоиды АКПП | Блок | Неисправности | Как проверить

Соленоиды АКПП

Изначально коробки передач оснащались так называемым Говернором. Это примитивный гидравлический клапан, который работал по механическому принципу. Сегодня же на современных автоматических коробках передач используется исключительно соленоиды, которые управляются автоматикой. Преимуществом использования соленоида являются повышение надёжности, возможность тонкого управления и настройки работы автоматической коробки передач.

 

Соленоиды АКПП | Общая информация

Конструкция и принцип работы

Конструкция соленоидов состоит из специального магнитного стержня, внутри которого располагается медная обмотка. По обмотке подается постоянный ток, который толкает магнитный стержень по направлению движения масла. При изменении напряжения тока магнитный стержень перемещается в противоположную сторону. Несмотря на кажущуюся сложность, данная конструкция отличается простотой и лёгкостью в управлении. В современных  автоматических коробках передач соленоиды перемещаются не только под воздействием  изменения направления тока, но и за счёт специальной возвратной пружинки. Тем самым обеспечивается повышенная надёжность устройства и возможность правильного функционирования соленоида при проблемах с электроснабжением.

 

Располагаются соленоиды в специальных каналах гидроблока, по которым движется масляная жидкость. При открытом канале масло свободно циркулирует по каналу и направляется к движущимся частям коробки или же в маслоприемник для последующего охлаждения.

 

 

Управление работой соленоидов осуществляется при помощи компьютера, который подключён к электрическим клапанам при помощи специального шлейфа. Необходимо  отметить, что шлейфы, по которым передаются управляющие сигналы к электрическим клапанам, является слабым местом конструкции и достаточно часто выходит из строя. Именно поэтому при проблемах в работе соленоидов в первую очередь в ремонтных мастерских проверяют работоспособность шлейфа.

 

 

Блок соленоидов акпп

 

Гидроблоки в большинстве моделей современных коробок передач располагаются в нижней части коробки. Только лишь в отдельных трансмиссиях гидроблок расположен с левой или же с правой стороны. Нижнее расположение электрических клапанов позволяет существенным образом упростить ремонтные работы. Замена соленоидов в акпп может производиться в специализированных сервисных центрах. Отметим, что данная работа производится без снятия автоматической коробки передач с автомобиля.

 

Типы соленоидов

Электрические соленоиды

В современных коробках автоматах используется несколько типов соленоидов. Впервые данные электрические клапаны стали использоваться американскими автопризводителями ещё в восьмидесятых годах прошлого века. По сути, они представляли собой специально открывающий и закрывающей клапан, который стоял в канале, по которому масляный насос гонит рабочую жидкость в систему. По сути, такие соленоиды имели  два положения Открытое и Закрытое.

 

Соленоиды Volvo

На смену таким электрическим клапанам пришли соленоиды, которые были разработаны шведским автопроизводителем компанией Volvo. Подобные конструкции имели специальный толкающий сердечник и встроенный шариковый металлический клапан. Клапан позволял открывать или же закрывать масляный канал. Несмотря на свою эффективность работы подобная конструкция не получила должного распространения. Проблема заключалась в сложной конструкции, которая достаточно часто выходила из строя.

 

Трехканальные соленоиды

В скором времени должное распространение получили специальные трёхканальные соленоиды, которые позволяли с лёгкостью регулировать давлений системе и  направлять масло к подвижным элементам или же в систему охлаждения. Тщательно  продуманная конструкция таких трёхканальных соленоидов отличалась надёжностью и долговечностью.

 

Интеллектуальные соленоиды

В середине девяностых годов появились интеллектуальные соленоиды, которые позволяли оптимальным образом управлять работой гидроблока. Большой популярностью стали пользоваться соленоиды-регуляторы, которые использовали принцип вентиля и позволяли не просто перекрывать или же открывать канал для движения масла, но и открываться на определенную  величину, что позволяло регулировать объем перекачиваемого масла. Открытие клапана осуществлялось  по сечению  в штоке, а управление осуществлялось от центрального компьютера, который направлял импульсный ток к магнитному сердечнику соленоида. Одновременно с изменением принципа работы инженеры ведущих мировых автопроизводителей модернизировали конструкцию электрических клапанов, что позволило сделать трех, четырех и пятиканальные соленоиды. Сама конструкция существенно упростилась, что в свою очередь положительно сказалось на надежности. Гидроблок стал служить намного дольше, а выходы его из строя по причине поломок соленоидов стали редкостью. Была фактически полностью решена проблема износа каналов гидроплиты, которая являлась одной из основных причин поломок автоматических коробок передач.

 

Соленоиды линейные

Соленоиды принято классифицировать по их назначению. Наибольшее распространение получили два типа электрических клапанов – EPC и ТСС. Первые отвечают за работу главного подающего канала и канала, по которому масло движется в маслосборник. Соленоид типа ТСС отвечает за блокировку гидротрансформатора и обеспечивает возможность увеличения объема подачи масла в коробку передач.

 

 

Неисправности соленоидов АКПП — Симптомы и причины

Используемые в настоящее время в автоматических коробках передач соленоиды отличаются надёжностью и долговечностью. Однако утверждать, что данный элемент полностью лишен каких-либо проблем и поломок было бы неправильно. Как и любой другой механический элемент, соленоид может ломаться и выходить из строя. Опишем наиболее распространенные поломки и их причины.

 

Так, например, достаточно часто происходит увеличение отложений масла и мельчайшей пыли на металлическом сердечнике. В результате сердечник даже при получении необходимого электрического сигнала не выдвигается в шток. При рабочей температуре масла в коробке передач соленоид может клинить, а автомобиль при этом будет выдавать ошибку в работе коробки передач. Устранить данную проблему можно путём промывки соленоидов в специальных растворителях. Блок соленоидов  может очищаться ультразвуком. Последнее проводится без демонтажа соленоидов с коробки передач. Рекомендуем выполнять ультразвуковую чистку соленоидов каждые 50 тысяч километров пробега.

 

ремонт соленоидов

Так выглядит блок соленоидов

 

При пробеге автомобиля в 250 – 300 тысяч километров или же при максимально активной эксплуатации транспортного средства может отмечаться износ входного отверстия и деталей плунжера. Все это приводит к появлению протечек масла. Появляются проблемы в работе системы охлаждения и смазки коробки передач. В данном случае ремонт износившихся соленоидов заключается в экзамене их на новые запасные части.

 

Распространённой причиной выхода из строя соленоидов является использование некачественного масла или же отсутствие замены масла в коробке.  Рабочая жидкость с продуктами износа постепенно заклинивает магнитный сердечник на горячей или же холодной машине. Необходимо помнить, что диагностировать такую поломку крайне сложно. Именно поэтому рекомендуем проводить замену масла в автоматической коробке передач в соответствии с рекомендациями производителя. Используйте исключительно качественные масла.

В специализированных мастерских вам расскажут, как проверить соленоиды и при необходимости проведут замену. Стоимость этих элементов не слишком высока. Однако вы должны понимать, что в коробке передач может содержать несколько подобных элементов. И при выходе из строя электрических клапанов проводится замена всех соленоидов. Именно поэтому ремонт данного элемента может иметь достаточно высокую стоимость. Помните, что использование качественного масла является залогом долговечного использования соленоидов.

Как сделать соленоидный двигатель

Содержание:
  1. Принцип работы
  2. Устройство соленоидного двигателя
  3. Соленоидный двигатель своими руками
  4. Видео: Как сделать соленоидный двигатель

Современные инженеры регулярно проводят эксперименты по созданию устройств с нетрадиционной и нестандартной конструкцией, таких как, например, аппарат вращения на неодимовых магнитах. Среди этих механизмов следует отметить и соленоидный двигатель, преобразующий энергию электрического тока в механическую энергию. Соленоидные двигатели могут состоять из одной или нескольких катушек – соленоидов.

В первом случае задействована всего лишь одна катушка, при включении и выключении которой происходит механическое движение кривошипно-шатунного механизма. Во втором варианте используется несколько катушек, включающихся поочередно с помощью вентилей, когда подача тока от источника питания осуществляется в один из полупериодов синусоидального напряжения. Возвратно-поступательные движения сердечников приводят в движение колесо или коленчатый вал.


Соленоидный двигатель принцип работы

В соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей. Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний. При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс.

Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике.

Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем. В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью. В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения. Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений. Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов.


Устройство соленоидного двигателя

Существуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту. Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока. Его основным преимуществом считается простота конструкции и доступность материалов для изготовления.

Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника. Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами. Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов.

Нередко рассматривается вариант с тремя катушками, отличающийся более сложной конструкцией. Тем не менее, он обладает более высокой мощностью и работает значительно равномернее, не требуя маховика для плавности хода.

Работа данного устройства осуществляется следующим образом.

  • Из электрической сети ток попадает на распределитель через щетку соленоида, после чего поступает уже непосредственно в этот соленоид.
  • После прохождения по обмотке, ток вновь возвращается в сеть через общие кольца и щетку, установленные в распределителе. Прохождение тока приводит к образованию сильного магнитного поля, втягивающего плунжер внутрь катушки к ее середине.
  • Далее поступательное движение плунжера передается шатуну и кривошипу, осуществляющих поворот коленчатого вала. Одновременно с валом происходит поворот распределителя тока, запускающего в действие следующий соленоид.
  • Второй соленоид начинает действовать еще до окончания работы первого элемента. Таким образом, он оказывает помощь при ослаблении тяги плунжера первого соленоида, поскольку уменьшается длина его плеча в процессе поворота кривошипа.
  • После второго соленоида в работу включается следующая – третья катушка и весь цикл полностью повторяется.

Соленоидный двигатель своими руками

Лучшим материалом для катушек считается текстолит или древесина твердых пород. Для намотки используется провод ПЭЛ-1 диаметром 0,2-0,3 мм. Наматывание выполняется в количестве 8-10 тыс. витков, обеспечивая сопротивление каждой катушки в пределах 200-400 Ом. После намотки каждых 500 витков делаются тонкие бумажные прокладки и так до окончательного заполнения каркаса.

Для изготовления плунжера применяется мягкая сталь. Шатуны могут быть изготовлены из велосипедных спиц. Верхнюю головку нужно делать в виде небольшого кольцеобразного ушка с необходимым внутренним диаметром. Нижняя головка оборудуется специальным захватом для крепления на шейке коленчатого вала. Он изготавливается из двух жестяных полосок и представляет собой вилку, которая надевается на шейку кривошипа. Окончательное крепление вилки осуществляется медной проволокой, продеваемой через отверстия. Шатунная вилка надевается на втулку, выполненную из медной, бронзовой или латунной трубки.

Коленчатый вал делается из металлического стержня. Его кривошипы располагаются под углом 120 градусов относительно друг друга. На одной стороне коленчатого вала закрепляется распределитель тока, а на другой – маховик в виде шкива с канавкой под приводной ремень.

Для изготовления распределителя тока можно использовать латунное кольцо или отрезок трубки подходящего диаметра. Получается одно целое кольцо и три полукольца, расположенные по отношению друг к другу со сдвигом на 120 градусов. Щетки делаются из пружинных пластинок или слегка расклепанной стальной проволоки.

Крепление втулки распределителя тока производится на текстолитовый валик, надеваемый на один из концов коленчатого вала. Все крепления осуществляются с помощью клея БФ и шпонок, изготавливаемых из тонкой проволоки или иголок. Установка распределителя выполняется таким образом, чтобы включение первой катушки происходило при нахождении плунжера в самом нижнем положении. Если провода, идущие от катушек на щетки, поменять местами, то вращение вала будет происходить в обратном направлении.

Установка катушек производится в вертикальном положении. Они закрепляются разными способами, например, деревянными планками, в которых предусмотрены углубления под корпуса катушек. По краям крепятся боковины из фанеры или листового металла, в которых предусмотрены места под установку подшипников под коленчатый вал или латунных втулок. При наличии металлических боковин, крепление втулок или подшипников производится методом пайки. Подшипники рекомендуется устанавливать и в средней части коленчатого вала. С этой целью предусматриваются специальные жестяные или деревянные стойки.

Во избежание сдвига коленчатого вала в ту или иную сторону на его концы рекомендуется припаять кольца из медной проволоки, на расстоянии примерно 0,5 мм от подшипников. Сам двигатель должен быть защищен жестяным или фанерным кожухом. Расчеты двигателя выполняются исходя из переменного электрического тока, напряжением 220 вольт. В случае необходимости устройство может функционировать и при постоянном токе. Если же сетевое напряжение составляет всего 127 вольт, количество витков катушки следует снизить на 4-5 тысяч витков, а сечение провода уменьшить до 0,4 мм. При условии правильной сборки, мощность соленоидного двигателя составит в среднем 30-50 Вт.


Как сделать соленоидный двигатель в домашних условиях

Изготовление соленоида (электромагнитный возвратно-поступательный механизм) — Электроника

Кто изготавливал лично соленоиды? Столкнулся с трудностями в расчетах и решил выложить вопросы с рассуждениями сюда, заодно пригодится может кому.

 

Соленоид это електромагнит с подвижным якорем. Якорь играет роль возвратно поступательного механизма. Используются в електрозамках дверей машин и других областях. В моем случае соленоид выполняет функцию плавного регулятора давления в системе: Дроссель, електромагнит и левый конец пружины статически зафиксированы, правый конец пружины и рычаг крана соеденены. При подачи тока в катушку якорь втягивается, соотвественно тянет за собой рычаг, рычаг тянет пружыну и осуществляется плавный ход если добавлять ток. Если ток сбросит — рычаг вернется в исходное положение, которое задает пружина и поток будет перекрыт.

 

Альтернативой есть актуатор, это електродвигатель + винтовая передача. Видео на ютубе ищите. Минус в том, что оно слишком медленное.

 

В общем перелопатил я весь интернет в поисках информации по соленоидам и електромагнитам нашел тонны знаний, но без особой конкретики, или это мне так тяжело собрать все в кучу. Тем не менее точных понятных доступных формул я так и не нашел. Даже строители гаусганов пользуются фиксироваными парамтерами и подбирают все методом проб.

 

Вот что есть на данный момент:

 

R=U\I

R-требуемое сопротивление исходя из параметров источника питания

 

L=(SR)\g

L-длинна катушки

S-площадь проводника

g-удельное сопротивление меди 0,0175 ом*мм2/м

 

В нашем случае для примера источником питания является «крона», 9 вольт напряжение и 500мАч емкость (I не указано на корпусе, взял стандарт с гугла)

 

Провод медный сечение 0.8мм, значит радиус 0.4, площадь =piR2= 3.14*0.4*0.4 = 0.5024мм2

 

Ток в аккумуляторах высчитывается по формуле= емкость делено на 20 часов. Это значит, что полный расход произойдет за 20 часов с напряжением 9 вольт и током 0.025 А, I = 500\20=0.025A

 

Сопротивление системы равно = R=9\0.025=360Om

 

Значит длинна провода

 

L= (0.5024*360)\0,0175= 10335 мм = 10м

 

Надо так много провода на относительно маломощный соленоид. Что ж, попробуем.

 

В итоге получилась высота катушки 5см, внутренний диаметр 0.5см, внешний где-то 2см, и 6.5 слоев намотки провода. Витки не считал.

 

Результат вообще нулевой, вставив гвоздь в середину ели притянулась к гвоздю шайбочка маленькая. Отчаявшись решил сделать простой електромагнит — намотал 1 метр провода прямо на гвоздь в несколько слоев, так же результат мизерный.

 

Игорь Мухин сделал программу (http://imlab.narod.ru/M_Fields/Coil10/Coil10.htm ) для расчетов соленоида, исходные данные:

R1 — внутренний радиус соленоида

R2 — внешний радиус соленоида

H — высота соленоида

D — диаметр обмоточного провода

и напряжение

 

Результативные данные: Ток, Индуктивность, Сопротивление, Количество витков, индукция то есть тяга

(в софте надо изменить точки на запятые что бы заработало)

 

Вот в моем случае внутренний внешний радиусы не существенны, главное ток и длинна на которую тянет. Ток же нельзя регулировать, надо его вписать в исходные значения, а в программе нельзя. Написал автору на почту с просьбой скинуть формулы — ответа пока что нету…

 

Тема интересная, думаю пригодится не только мне

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *