Устройство синхронных машин – Вопрос 56. Синхронные машины. Типы синхронных машин и их устройство. Принцип действия синхронных машин. Способы возбуждения синхронных машин.

Устройство и принцип действия синхронной машины

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора. Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4). При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой

nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС  , где B – магнитная индукция в воздушном зазоре между статором и ротором;  l – активная длина проводника; 
– линейная скорость пересечения проводников магнитным полем.

Выше отмечалось,  что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив

, получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически  (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где 

– обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора;
– синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 1200, и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость

, снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения

, что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя. Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора.  Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора

и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы

и, которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС. При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора. В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .

При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине. Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора  и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины. Частота вращения магнитного поля статора . Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а). Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 900 (поперечная реакция якоря). При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 900 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 900 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ().

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 900 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 900 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину  ().

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора. Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

58) Синхронные электрические машины. Устройство и принцип действия

а) Общие сведения

Синхронные электрические машины характерны тем, что у них ротор в установившемся режиме вращается с угловой скоростью вращающегося магнитного поля, создаваемого токами в фазных обмот­ках статора, подобного статору асинхронной машины. Это достига­ется тем, что ротор синхронной машины представляет собой обычно электромагнит или реже постоянный магнит с числом пар полюсов, равным числу пар полюсов вращающегося магнитного поля. Взаимо­действие полюсов вращающегося магнитного поля и полюсов ротора обеспечивает постоянную угловую скорость последнего независимо от момента на валу. Это свойство синхронных машин позволяет исполь­зовать их в качестве двигателей для привода механизмов с постоян­ной угловой скоростью. Распространенность синхронных двигателей не столь широка, как асинхронных, но в ряде случаев, например в металлургии, их использование становится необходимым. Единич­ная мощность синхронного двигателя в приводах большой мощности достигает нескольких десятков мегаватт.

Основной областью применения синхронных машин является использование их в качестве промышленных генераторов для выра­ботки электрической энергии на электростанциях.

б) Устройство синхронной машины

Основными частями синхронной машины являются статор и ро­тор, причем статор не отличается от статора асинхронной машины рис. 14.1). Сердечник статора собран из изолированных друг от друга пластин электротехнической стали и укреплен внутри мас­сивного корпуса. В пазах с внутренней стороны статора размещена обмотка переменного тока, в большинстве случаев трехфазная.

Ротор синхронной машины представляет собой электромагнит — явнополюсный (рис. 15.1, где / — полюсы, 2— полюсные катушки, 3 — сердечник ротора, 4 — кон­тактные кольца) или неявнополюсный (рис. 15.2, где / — сердечник ротора, 2 — пазы с обмоткой, 3 — контактные кольца). Ток в обмот­ку ротора поступает через контакт­ные кольца и щетки от внешнего источника постоянного тока — воз­будителя.

У многополюсной синхронной машины ротор имеет р пар полю­сов, а токи в обмотке статора обра­зуют тоже р пар полюсов вращаю­щегося магнитного поля (как у асинхронной машины). Ротор должен вращаться с частотой враще­ния поля, следовательно, его синхронная частота вращения равна:

п = 60f/р.

При стандартной промышленной частоте 50 Гц максимальная частота вращения, соответствующая двухполюсной= 1) машине, будет 3000 об/мин. Это частота враще­ния современного турбоагрегата, со­стоящего из первичного двигателя — паровой турбины и неявнополюсного синхронного генератора (турбогенерато­ра).

Угидроагрегата гидравлическая тур­бина вращается относительно медленно. Это вынуждает изготовлять гидрогене­раторы многополюсными с явными по­люсами и в большинстве случаев — вертикальным валом. Частота вращения этих генераторов — от 60 до нескольких сотен оборотов в минуту, чему соответствует несколько десятков пар полюсов. Вслед­ствие относительно малых частот вращения генераторы к гидрав­лическим турбинам имеют значительно большую массу на единицу мощности — свыше 8 кг/ (кВ-А), чем генераторы к паровым турби­нам— менее 2,5 кг/(кВ-А).

в) Режимы работы синхронной машины

Любая синхронная машина, включенная в электрическую си­стему, может’ работать в режиме генератора и двигателя. Режим ра­боты синхронной машины определяется взаимодействием магнитных полей, создаваемых токами в обмотках статора и ротора. Рассмотрим режимы работы двухполюсной машины. Наложение магнитных полей токов в фазных обмотках статора возбуждает в синхронной машине, так же как и в асинхронной, магнитное поле (см. § 14.3), вращаю­щееся с угловой скоростью со. Приближенное распределение маг­нитных линий вращающегося магнитного поля в магнитопроводе синхронной машины в режимах генератора (а) и двигателя (б) пока­зано на рис. 15.3 штриховой линией. Распределение линий вра­щающегося магнитного поля показывает, что приближенно его можно представить в виде вращающейся с угловой скоростью <о пары полю­сов, расположенных на статоре.

Аналогичным образом магнитное поле, создаваемое током в об­мотке вращающегося ротора, также можно приближенно представить в виде вращающейся пары полюсов, расположенных на роторе.

Если пренебречь всеми видами потерь энергии в синхронной машине, то при отсутствии момента на валу ось полюсов ротора будет совпадать с осью полюсов статора.

Для того чтобы заставить синхронную машину, включенную в систему, работать в режиме генератора, отдавая в эту систему энер­гию, необходимо увеличить механический момент, приложенный первичным двигателем к валу машины. Тогда под действием возрос­шего вращающего момента ось магнитных полюсов ротора повер­нется на некоторый угол у относительно оси полюсов статора в на­правлении вращения (рис. 15.3, а). Так как при этом результирую­щее магнитное поле, создаваемое наложением магнитных полей токов в обмотках ротора и статора, изменится, то ток в обмотках статора также изменится. Взаимодействие этого тока с магнитным полем ротора создает тормозной момент, действующий на ротор. Это и озна­чает преобразование механической мощности первичного двигателя в электрическую мощность генератора, включенного в систему. Магнитные полюсы ротора будут как бы тянуть за собой магнитные по­люсы статора.

Если теперь приложить к валу машины вместо вращающего тор­мозной момент механической нагрузки, то ось полюсов ротора по­вернется на некоторый угол относительно оси полюсов статора про­тив направления вращения (рис. 15.3,6). Вновь возникнут токи в обмотках статора и создадут электромагнитные силы взаимодей­ствия токов статора и магнитного поля ротора, но на этот раз эти силы будут стремиться увлечь ротор в направлении вращения. Элек­тромагнитные силы создадут теперь вращающий момент, при посред­стве которого электрическая энергия сети преобразуется в механиче­скую на валу машины; таким путем синхронная машина переходит? в режим двигателя.

Режим работы синхронной машины изменяется от генераторного на двигательный и обратно в зависимости от механического воздей­ствия на вал машины, причем электромагнитные силы играют роль своеобразной упругой связи между ротором и статором.

Синхронный двигатель: принцип работы, устройство, назначение

Синхронные электродвигатели (СД) не так распространены, как асинхронные с короткозамкнутым ротором. Но используются там, где нужен большой крутящий момент и в процессе работы будут происходить частые перегрузки. Также такой тип двигателей используются там, где нужна большая мощность, чтобы приводить в движение механизмы, благодаря высокому коэффициенту мощности и возможности улучшать коэффициент мощности сети, что существенно снизит затраты на электроэнергию и нагрузку на линии. Что такое синхронный двигатель, где он используется и какие у него плюсы минусы мы рассмотрим в этой статье.

Определение и принцип действия

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

N=60f/p

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Механическая характеристика а) асинхронного и б) синхронного двигателя

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Ниже вы видите условное обозначение на схеме синхронной машины.

УГО синхронных машин

Конструкция ротора

Как и любой другой, синхронный электродвигатель состоит из двух основных частей:

  • Статор. В нём расположены обмотки. Его еще называют якорем.
  • Ротор. На нём устанавливают постоянные магниты или обмотку возбуждения. Его также называют индуктором, из-за его предназначения — создавать магнитное поле).

Для подачи тока в обмотку возбуждения на роторе устанавливают 2 кольца (так как возбуждение постоянным током, на одно из них подают «+», а на другое «—»). Щетки закреплены на щеткодержателе.

Конструкция синхронного двигателя

 

Роторы у синхронных электродвигателей переменного тока бывают двух типов, в зависимости от назначения:

  1. Явнополюсные. Четко видны полюса (катушки). Используют при малых скоростях и большом числе полюсов.
  2. Неявнополюсные – выглядит как круглая болванка, в прорези на которой уложены провода обмоток. Используют при больших скоростях вращения (3000, 1500 об/мин) и малом числе полюсов.

Конструкция ротора синхронных двигателей

Пуск синхронного двигателя

Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.

Пусковая короткозамкнутая обмотка и схема пуска СД

Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.

Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.

Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.

Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 — 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.

Виды

Видов таких машин очень много, выше была описана конструкция синхронного электродвигателя переменного тока с обмотками возбуждения, как самого распространенного на производстве. Есть и другие типы, такие как:

  • Синхронные двигатели с постоянными магнитами. Это различные электродвигатели, такие как PMSM – permanent magnet synchronous motor, BLDC – Brushless Direct Current и прочие. Отличия, между которыми, состоят в способе управления и форме тока (синусоидальная или трапецивиденая). Их еще называют бесколлекторными или бесщеточными двигателями. Используются в станках, радиоуправляемых моделях, электроинструменте и т.д. Они работают не напрямую от постоянного тока, а через специальный преобразователь.
  • Шаговые двигатели — синхронные бесщеточные двигатели, у которых ротор точно удерживает заданное положение, их используют для позиционирование рабочего инструмента в ЧПУ станках и для управления различными элементами автоматических систем (например, положение дроссельной заслонки в автомобиле). Состоят из статора, в этом случае на нём расположены обмотки возбуждения, и ротора, который выполнен из магнито-мягкого или магнито-твёрдого материала. Конструктивно очень похожи на предыдущие типы.
  • Реактивные.
  • Гистерезисные.
  • Реактивно-гистерезисные.

Последние три типа СД также не имеют щеток, они работают за счет особой конструкции ротора. У реактивных СД различают три их конструкции: поперечно-расслоенный ротор, ротор с явновыраженными полюсами и аксиально-расслоенный ротор. Объяснение принципа их работы достаточно сложно, и займет большой объём, поэтому мы опустим его. Такие электродвигатели на практике вы, скорее всего, встретите нечасто. В основном это маломощные машины, используемые в автоматике.

Конструкции ротора реактивного синхронного двигателя

Сфера применения

Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.

Синхронный двигатель СТД-1000-2УХЛ4 мощностью 10 МВт

При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время. Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.

Преимущества и недостатки

Если говорить простыми словами, то у любой электрической машины есть свои плюсы и минусы. У синхронного двигателя положительными сторонами является:

  1. Работа с cosФи=1, благодаря возбуждению постоянным током, соответственно они не потребляют реактивной мощности из сети.
  2. При работе, с перевозбуждением отдают реактивную мощность в сеть, улучшая коэффициент мощности сети, падение напряжения и потери в ней и повышается КМ генераторов электростанциях.
  3. Максимальный момент, развиваемый на валу СД, пропорционален U, а у АД — U² (квадратичная зависимость от напряжения). Это значит, что у СД хорошая нагрузочная способность и устойчивость работы, которые сохраняются при просадке напряжения в сети.
  4. В следствие всего этого скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности, особенно при повышении тока возбуждения.

Однако существенным недостатком синхронного двигателя является то, что его конструкция сложнее, чем у асинхронных с КЗ-ротором, нужен возбудитель, без которого он не сможет работать. Всё это приводит к большей стоимости по сравнению с асинхронными машинами и сложностями в обслуживании и эксплуатации.

Пожалуй, на этом достоинства и недостатки синхронных электродвигателей заканчиваются. В этой статье мы постарались кратко изложить общие сведения о синхронных электродвигателях. Если у вас есть чем дополнить материал – пишите в комментариях.

Материалы по теме:

58) Синхронные электрические машины. Устройство и принцип действия

а) Общие сведения

Синхронные электрические машины характерны тем, что у них ротор в установившемся режиме вращается с угловой скоростью вращающегося магнитного поля, создаваемого токами в фазных обмот­ках статора, подобного статору асинхронной машины. Это достига­ется тем, что ротор синхронной машины представляет собой обычно электромагнит или реже постоянный магнит с числом пар полюсов, равным числу пар полюсов вращающегося магнитного поля. Взаимо­действие полюсов вращающегося магнитного поля и полюсов ротора обеспечивает постоянную угловую скорость последнего независимо от момента на валу. Это свойство синхронных машин позволяет исполь­зовать их в качестве двигателей для привода механизмов с постоян­ной угловой скоростью. Распространенность синхронных двигателей не столь широка, как асинхронных, но в ряде случаев, например в металлургии, их использование становится необходимым. Единич­ная мощность синхронного двигателя в приводах большой мощности достигает нескольких десятков мегаватт.

Основной областью применения синхронных машин является использование их в качестве промышленных генераторов для выра­ботки электрической энергии на электростанциях.

б) Устройство синхронной машины

Основными частями синхронной машины являются статор и ро­тор, причем статор не отличается от статора асинхронной машины рис. 14.1). Сердечник статора собран из изолированных друг от друга пластин электротехнической стали и укреплен внутри мас­сивного корпуса. В пазах с внутренней стороны статора размещена обмотка переменного тока, в большинстве случаев трехфазная.

Ротор синхронной машины представляет собой электромагнит — явнополюсный (рис. 15.1, где / — полюсы, 2— полюсные катушки, 3 — сердечник ротора, 4 — кон­тактные кольца) или неявнополюсный (рис. 15.2, где / — сердечник ротора, 2 — пазы с обмоткой, 3 — контактные кольца). Ток в обмот­ку ротора поступает через контакт­ные кольца и щетки от внешнего источника постоянного тока — воз­будителя.

У многополюсной синхронной машины ротор имеет р пар полю­сов, а токи в обмотке статора обра­зуют тоже р пар полюсов вращаю­щегося магнитного поля (как у асинхронной машины). Ротор должен вращаться с частотой враще­ния поля, следовательно, его синхронная частота вращения равна:

п = 60f/р.

При стандартной промышленной частоте 50 Гц максимальная частота вращения, соответствующая двухполюсной= 1) машине, будет 3000 об/мин. Это частота враще­ния современного турбоагрегата, со­стоящего из первичного двигателя — паровой турбины и неявнополюсного синхронного генератора (турбогенерато­ра).

Угидроагрегата гидравлическая тур­бина вращается относительно медленно. Это вынуждает изготовлять гидрогене­раторы многополюсными с явными по­люсами и в большинстве случаев — вертикальным валом. Частота вращения этих генераторов — от 60 до нескольких сотен оборотов в минуту, чему соответствует несколько десятков пар полюсов. Вслед­ствие относительно малых частот вращения генераторы к гидрав­лическим турбинам имеют значительно большую массу на единицу мощности — свыше 8 кг/ (кВ-А), чем генераторы к паровым турби­нам— менее 2,5 кг/(кВ-А).

в) Режимы работы синхронной машины

Любая синхронная машина, включенная в электрическую си­стему, может’ работать в режиме генератора и двигателя. Режим ра­боты синхронной машины определяется взаимодействием магнитных полей, создаваемых токами в обмотках статора и ротора. Рассмотрим режимы работы двухполюсной машины. Наложение магнитных полей токов в фазных обмотках статора возбуждает в синхронной машине, так же как и в асинхронной, магнитное поле (см. § 14.3), вращаю­щееся с угловой скоростью со. Приближенное распределение маг­нитных линий вращающегося магнитного поля в магнитопроводе синхронной машины в режимах генератора (а) и двигателя (б) пока­зано на рис. 15.3 штриховой линией. Распределение линий вра­щающегося магнитного поля показывает, что приближенно его можно представить в виде вращающейся с угловой скоростью <о пары полю­сов, расположенных на статоре.

Аналогичным образом магнитное поле, создаваемое током в об­мотке вращающегося ротора, также можно приближенно представить в виде вращающейся пары полюсов, расположенных на роторе.

Если пренебречь всеми видами потерь энергии в синхронной машине, то при отсутствии момента на валу ось полюсов ротора будет совпадать с осью полюсов статора.

Для того чтобы заставить синхронную машину, включенную в систему, работать в режиме генератора, отдавая в эту систему энер­гию, необходимо увеличить механический момент, приложенный первичным двигателем к валу машины. Тогда под действием возрос­шего вращающего момента ось магнитных полюсов ротора повер­нется на некоторый угол у относительно оси полюсов статора в на­правлении вращения (рис. 15.3, а). Так как при этом результирую­щее магнитное поле, создаваемое наложением магнитных полей токов в обмотках ротора и статора, изменится, то ток в обмотках статора также изменится. Взаимодействие этого тока с магнитным полем ротора создает тормозной момент, действующий на ротор. Это и озна­чает преобразование механической мощности первичного двигателя в электрическую мощность генератора, включенного в систему. Магнитные полюсы ротора будут как бы тянуть за собой магнитные по­люсы статора.

Если теперь приложить к валу машины вместо вращающего тор­мозной момент механической нагрузки, то ось полюсов ротора по­вернется на некоторый угол относительно оси полюсов статора про­тив направления вращения (рис. 15.3,6). Вновь возникнут токи в обмотках статора и создадут электромагнитные силы взаимодей­ствия токов статора и магнитного поля ротора, но на этот раз эти силы будут стремиться увлечь ротор в направлении вращения. Элек­тромагнитные силы создадут теперь вращающий момент, при посред­стве которого электрическая энергия сети преобразуется в механиче­скую на валу машины; таким путем синхронная машина переходит? в режим двигателя.

Режим работы синхронной машины изменяется от генераторного на двигательный и обратно в зависимости от механического воздей­ствия на вал машины, причем электромагнитные силы играют роль своеобразной упругой связи между ротором и статором.

Принцип действия синхронного двигателя

Содержание:
  1. Устройство синхронного двигателя
  2. Принцип работы
  3. Запуск двигателя и его регулировка
  4. Различия синхронных и асинхронных двигателей

Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.

Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.

Устройство синхронного двигателя

Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.

В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.

Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.

Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.

В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.

Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.

Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.

Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.

Схема запуска двигателя и его регулировка

У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.

Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.

Сам запуск агрегата может производиться разными способами:

  • В первом случае используется схема асинхронного включения, основой которой служит глухо подключенный возбудитель. Данный способ применяется при статическом моменте нагрузки ниже 0,4, когда отсутствует падение напряжения. Сопротивление разряда замыкается в обмотке возбуждения, за счет чего исключаются перебои с возбуждением обмотки во время впуска, поскольку незначительная скорость вращения ротора приводит к перенапряжению. Когда скорость становится близкой к синхронной, контактор реагирует на это изменение, в результате происходит переключение обмотки возбуждения из разрядного сопротивления непосредственно на якорь возбудителя.
  • Во втором варианте пуска используется тиристорный возбудитель. Этот способ считается более надежным из-за высокого КПД. Управление возбуждением значительно облегчается. Подача возбуждение осуществляется автоматически с помощью электромагнитного реле.

Различия синхронных и асинхронных двигателей

Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.

В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.

Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.

Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.

§86. Назначение и принцип действия синхронной машины

Назначение. Синхронные машины используют в качестве генераторов и двигателей. Синхронные генераторы вырабатывают электрическую энергию трехфазного тока. Почти все генераторы переменного тока, устанавливаемые на больших и малых электрических станциях, являются синхронными. Мощность этих генераторов может быть самая различная, начиная от нескольких киловольт-ампер (на передвижных электростанциях) и кончая несколькими сотнями тысяч киловольт-ампер (на мощных центральных электростанциях). В Советском Союзе создан самый большой в мире синхронный генератор мощностью 1200 тыс. кВ*А. Синхронные двигатели используют, главным образом, для мощных электрических приводов. Синхронные генераторы применяют на тепловозах с электрической передачей переменно-постоянного тока. На этих тепловозах напряжение, полученное от синхронного генератора, выпрямляется полупроводниковыми преобразователями и подается на тяговые двигатели постоянного тока.

Принцип действия. На статоре 2 синхронной машины располагается трехфазная обмотка 1 (рис. 283,а), а на роторе 4 — полюсы (электромагниты) с обмоткой, питаемой постоянным током через контактные кольца 3 и щетки. Обмотка 5 полюсов, создающая магнитный поток возбуждения машины, называется обмоткой

Рис. 283. Электромагнитная схема синхронной машины (а), и схемы ее включения (б и в): 1—трехфазная обмотка статора; 2— ротор; 3— обмотка возбуждения; 4, 5 — обмотки якоря

возбуждения. Статор синхронной машины ничем не отличается от статора асинхронной машины; его обмотка имеет три (в двухполюсной машине), шесть (в четырехполюсной) или большее число катушек, сдвинутых одна относительно другой на соответствующие углы (120° или 60° и т. д.). При вращении ротора 4 с некоторой частотой n поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную э. д. с. Е1, изменяющуюся с частотой

f1 = pn/60 (86)

Благодаря тому что обмотки трех фаз синхронного генератора сдвинуты в пространстве на угол 120°, индуцируемые в них э. д. с. будут сдвинуты одна относительно другой по фазе на 1/3 периода. Если к обмотке статора подключить какую-либо нагрузку, то протекающий по этой обмотке трехфазный ток создает вращающееся магнитное поле, частота вращения которого

n1 = 60f1/p (87)

Из формул (86) и (87) следует, что n = n1, т. е. ротор вращается с той же частотой, что и магнитное поле статора. По этой причине рассматриваемая машина называется синхронной. В такой машине результирующий магнитный поток Фрез создается совместным действием магнитодвижущих сил обмотки возбуждения и обмотки статора и вращается в пространстве с той же частотой вращения, что и ротор.

В синхронной машине обмотка 1 (рис. 283,б), в которой индуцируется э. д. с. и протекает ток нагрузки, называется обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в машине, выполненной по схеме, показанной на рис. 283, статор является якорем, а ротор — индуктором. С точки зрения принципа действия и теории работы машины безразлично — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной электромагнитной схемой: у них обмотка якоря, к которой подключается нагрузка, располагается на роторе, а обмотка возбуждения, питаемая постоянным током,— на статоре.

Обмотка якоря обычно имеет семь выводов: от начал А, В, С и концов X, Y, Z фаз и от нулевой точки 0. Это дает возможность соединять фазы и подключать к ним нагрузку по различным схемам: «звезда», «звезда с нулевым проводом» и «треугольник».

Таким образом, синхронная машина имеет следующие особенности: ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой вращения, равной частоте вращения вращающегося магнитного поля, т. е. n = n1; в обмотке ротора э. д. с. не индуцируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Синхронные генераторы тепловозов с электропередачей переменно-постоянного тока имеют две обмотки якоря 6 и 7 (рис. 283, в), фазы которых OA и О’А’, ОВ и О’В’ и ОС и О’С’ сдвинуты на 30°. Выводы обмоток якоря подключены к полупроводниковому выпрямителю. В результате сдвига фаз обмоток якоря существенно уменьшается пульсация напряжения и тока на выходе выпрямителя, что улучшает работу тяговых двигателей постоянного тока (см. главу III).

Возбуждение синхронной машины. В качестве источника постоянного тока для питания обмотки возбуждения 1 синхронной машины может служить генератор постоянного тока 4 (возбудитель), установленный на валу ротора синхронной машины (рис. 284, а), или полупроводниковый выпрямитель 5, присоединенный к обмотке якоря 2 (рис. 284,б). Питание обмотки возбуждения от полупроводникового выпрямителя все более широко применяется как в двигателях и генераторах небольшой и средней мощности, так и в мощных турбо- и гидрогенераторах. Регули-

Рис. 284. Схемы питания обмотки возбуждения от возбудителя (а) и от полупроводникового выпрямителя (б)

рование тока возбуждения осуществляется вручную регулировочным реостатом 3, включенным в цепь обмотки возбуждения, или автоматически специальными регуляторами. Мощность, необходимая для возбуждения, составляет 0,3—3 % мощности синхронной машины, поэтому возбудитель или выпрямитель имеет малые размеры по сравнению с синхронной машиной.

Синхронные машины

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Устройство синхронной машины

Статоры синхронной и асинхронной машин полностью одинаковы.

Статор синхронного генератора состоит из чугунной станины — корпуса, внутри которого находится сердеч­ник статора, собранный из отдельных листов электротех­нической стали, изолированной между собой лаком или тонкой бумагой. В пазы сердечника укладывают обмотку статора из медного изолированного провода (рис. 164).

Роторы синхронных генераторов бывают двух типов — явнополюсными и неявнополюсными (балванка).

Явнополюсными выполняют роторы синхронных гене­раторов с небольшим числом оборотов (от 125 об/мин до 1500 об/мин), обычно соединяемых с тихоходными гидротурбинами, и генераторов не­большой и средней мощности.

Роторы неявнополюсные применяют в генераторах с большим числом оборотов (3000 об/мин) и большой мощности, обычно соединяемых на одном валу с паровыми турбинами, называют эти генераторы турбогенераторами.

Сердечники полюсов большей частью изготовляют из литой стали, а башмаки — иногда из отдельных листов электротехнической стали. Обмотку полюсов выполняют из медных изолированных проводов. Для получения синусоидально изменяющейся э.д.с. необходимо иметь синусоидальное распределение магнитной индукции в воз­душном зазоре. Это достигается неравномерностью воз­душного зазора между наконечником полюса и сталью статора: по краям полюсов воздушный зазор больше, чем под серединой полюса (рис. 167).

На вал генератора надевают два кольца, изолирован­ных от него, к которым присоединяют выводы обмотки возбуждения ротора, их называют контактными кольцами. На контактные кольца устанавливают щетки, а к щеткам подводят постоянный ток от воз­будителя.

Чаще всего в качестве возбуди­теля применяют машину постоян­ного тока, которую называют машинным возбудителем, а в по­следнее время используют для возбуждения твердые или механи­ческие выпрямители. У большего количества син­хронных машин возбудитель рас­положен на одном валу с гене­ратором, а в последних конструкциях возбудитель распо­лагают сверху статора синхронной машины.

Принцип действия синхронного генератора

Синхронный генератор состоит из неподвижной — статора, в пазах которого помещается трехфазная обмотка перемен­ного тока, и вращающейся части — ротора, который пред­ставляет собой электромагнит.

Обмотки возбуждения ротора питаются через щетки и кольца постоянным током от возбудителя — машины постоянного тока или какого-нибудь выпрямителя.

Если предположить, что магнитная индукция распределяется в воз­душном зазоре синусоидально — , то ЭДС, индуктируемая в якорной обмотке генератора, будет иметь вид:

Под действием этой ЭДС в цепи генератора, замкнутой на нагрузку Z, появится переменный ток . Частота переменной ЭДС рассматриваемого ге­нератора определяется частотой вращения ротора: при одной паре полюсов поля возбуждения () одному обороту ротора соответствует один период переменного тока. В общем случае частота ЭДС синхронного генератора(Гц) прямо пропорциональна частоте вращения ротора [об/мин], т.е.

Обмотка, в которой индуктируется ЭДС, расположена на неподвижной части генератора — на статоре. При этом обмотку возбуждения располагают на роторе. Такая конструктивная схема наиболее рациональна в синхронных машинах большой мощности, так как при расположении рабочей обмотки на ро­торе пришлось бы передавать в рабочую об­мотку через контактные кольца значительные мощности при напряжении до 20 кВ. В этих ус­ловиях работа контактных колец и щеток стала бы весьма ненадежной, а потери энергии в ще­точном контакте — значительны. При распо­ложении рабочей обмотки на статоре выводы этой обмотки присоединяют непосредственно к электрической сети. Конечно, и в этом случае машина не избавляется от контактных колец и щеток, необходимых для соединения обмотки возбуждения с возбудителем. Но так как вели­чина тока возбуждения в десятки раз меньше рабочего (переменного) тока, а напряжение не превышает 450 В, то щеточный контакт работает более на­дежно, а потери энергии в нем невелики.

Исходя из перечисленных соображений синхронные машины, как правило, выполняют с рабочей обмоткой, располагаемой на статоре.

Обмотка статора синхронных машин обычно представляет собой трехфазную обмот­ку, соединяемую в звезду или треугольник.

На роторе расположена обмотка возбуждения, при подключении которой к источнику постоянного тока (возбудителю) возникает магнитное поле возбуждения. По­средством первичного двигателя ротор ге­нератора приводят во вращение со скоростью . При этом магнитное поле ротора вращаясь индуктирует в трехфазной обмотке статора ЭДС ,,, которые, буду­чи одинаковыми по величине и сдвинутыми по фазе относительно друг друга на 120, образуют трехфазную симметричную систему ЭДС.

Большинство синхронных генераторов проектируют на промышленную частоту 50 Гц. Для получения ЭДС такой частоты необходимо, чтобы частота вращения ротора была равна

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *