Устройство осциллографа и принцип работы: Принцип работы осфиллографа | Серния Инжиниринг

Содержание

Осциллограф. Устройство и принцип работы. Органы управления.

Назначение, устройство и описание осциллографа

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы.

Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель

. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

  • Синхронизация от исследуемого сигнала.

  • Синхронизация от сети.

  • Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

  • Ручка: «Фокус».

  • Ручка «Яркость».

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Кнопка «Сеть». Кнопка включения прибора.

  • Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.

  • Кнопка режима «Ждущ-Авт».

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

  • Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

  • Кнопка установки синхронизации «Внутр-Внешн».

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

  • Кнопка выбора «Открытого» и «Закрытого» входа.

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей.

    В большинстве случаев лучше выбирать «закрытый» вход (~). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

  • Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» — «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до

    металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

  • По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.

  • Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

  • Ручка «Перемещение луча по горизонтали».

    Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.

  • Также есть и ручка «Перемещение луча по вертикали».

    С помощью её можно отрегулировать положение развёртки на экране по вертикали.

    Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.

  • А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.

    Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.

  • Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.

    Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

назначение и принцип действия, классификация (цифровой, механический)

Развитие промышленности не стоит на месте. Разрабатываются новейшие приборы, призванные значительно сократить время исследований. Одним из самых популярных типов контрольно-измерительной техники, позволяющим производить научные и производственные изыскания, является осциллограф.

Понятие и история создания

Под осциллографом принято понимать специализированный прибор, созданный для точного измерения, наблюдения и последующей записи параметров и характеристик электрического сигнала: временных и амплитудных. Подобные сигналы могут как подаваться на вход, так и регистрироваться непосредственно на дисплее или фиксироваться на фотоленту. Скачок современной науки сделал возможным исследование сигнала гигагерцовых частот.

Первая фиксация электрического колебательного процесса делалась на бумаге в ручном режиме. Начальные попытки по автоматизированию записи велись Жюлем Франсуа Жубером. Учёный в 1880 году представил к использованию полуавтоматический пошаговый метод регистрирования сигнала. Следующим шагом в развитии метода стал однограф Госпиталье, который стал полностью автоматическим.

В начале 1885 года русским физиком Робертом Колли был спроектирован и создан осциллометр. Доработав творение Колли, французский физик А. Блондель изобрёл магнитно-электрический осциллоскоп, оснащённый бифилярным подвесом. Невозможность фиксировать процессы с высокой скоростью из-за подвижности регистрирующих частей с большой инерцией была устранена в 1897 году. Дадделл Уильям предложил использовать миниатюрное зеркальце в качестве измерительного элемента.

Во второй половине XX века появились ленточные многоканальные осциллографы с горизонтальной развёрткой. Цифровые модели пришли на смену устаревшим аналогам и заняли лидирующую позицию среди быстрейших аналого-цифровых преобразователей.

Развёрнутая классификация прибора

Современные осциллографы обладают весомым набором приложений для измерения, глубокой памятью, сенсорным ёмкостным дисплеем и способностью к скоростному обновлению сигналов на дисплее. Ознакомление с классификацией — неотъемлемый шаг в работе с техникой. Аппаратура подлежит внутреннему делению по назначению и логике работы:

  1. Стробирующий.
  2. Реального времени или аналоговый.
  3. Запоминающий: сходный с ЭЛТ аналоговый и цифровой.

В отдельную группу выделяются приборы с непрерывной развёрткой. Они позволяют регистрировать кривую на особой фотоленте. По числу лучей бывают двулучевые, однолучевые, трехлучевые и так далее. Вершиной автоматизации считается 16 лучей и более. Параметр влияет на синхронизацию данных.

Для техники с периодической развёрткой характерно следующее деление: стробоскопические, скоростные, обычные и универсальные, специальные запоминающие. Цифровым моделям свойственно сочетание нескольких параметров. Реже встречаются осциллографы, назначение которых совмещено с другим измерительным прибором. Их официальное название — скопметры.

Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Входной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Важной деталью являются сигнальные выходы. Многоканальная аппаратура предназначена измерять параметры и вести одновременное наблюдение за несколькими поступающими в систему сигналами. На вход Y поступает и усиливается входной сигнал от каждого из присутствующих каналов.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

  1. Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке.
  2. Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту. Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом.
  3. Автоматическое развёртывание. В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Синхронизация с наблюдаемым сигналом

Получить заданное неподвижное изображение на дисплее позволяет особая двигательная траектория луча на экране в процессе развёртывания. Он должен перемещаться по одной и той же кривой линии. Обеспечением этого процесса занимается схема синхронизации, дающая старт развёртке на одинаковом фронте и уровне исследуемых сигналов.

В качестве примера допустимо рассмотрение ситуации исследования синусоидального сигнала при такой настройке схемы, что запуск развёртывания в нарастании синусоидов будет иметь значение ноль. В момент запускания узкий луч обрисует несколько схожих или одну единую волну, на что будет влиять настроенная заранее скорость. Отсутствие повторного запуска заставит дождаться очередного прохождения волны с нулевым значением при нарастающем фронте.

Без синхронизации с изучаемым сигналом картинка на дисплее будет выглядеть нечёткой, размазанной. Это вызвано одновременным отображением различных участков исследуемого сигнала на экране. Базовые настройки, доступные каждому оператору: тип запуска и его уровень.

Специфика выбора товара

Приобретая такую узкоспециализированную технику, следует учитывать ряд важных параметров. В первую очередь следует обратить внимание на следующие:

  • Полосу пропускания. В среднем полоса должна быть на 5 пунктов выше значения частоты исследуемого сигнала. Для использования простого усилителя звуковых частот и цифровой схемы достаточным параметром будет 25 МГц. Научные изыскания и профессиональные исследования потребуют использование устройства с минимальной полосой пропускания около 150 МГц.
  • Тип питания. В случае проведения работ вдали от сети или на выезде рекомендуется приобрести модель с аккумулятором. В любой другой ситуации целесообразно использовать аппаратуру, работающую от сети.
  • Частота дискретизации. Пункт влияет на качество разрешения изображений на экранах, количество выборок сигнала за секунду. Для более точного изображения потребуется увеличение числа точек сигнала. Частота важна и для измерения однократных и переходных процессов.
  • Число каналов. Каналы влияют на количество отображаемых на дисплее независимых сигналов. Обеспечивают возможность анализировать и сравнивать несколько графиков одновременно. Работа с простыми техническими приборами не требует более 3 каналов. Более продвинутая аппаратура должна быть оснащена логическим анализатором и 16 каналами.

Применение и интересные факты

Являясь одним из важнейших аппаратов в радиоэлектронике и радиотехнике, он широко используется в лабораторных, прикладных и научно-исследовательских целях. Позволяет изучать, контролировать и измерять параметры электрических сигналов и радиоволн при воздействии разнообразных датчиков. Прибор позволяет:

  1. Определять частоту сигнала по измерению его временных характеристик.
  2. Измерять временные параметры для получения значения амплитуды напряжения.
  3. Выяснить постоянную и переменную классического сигнала.
  4. Изучать сдвиги фаз, происходящие при прохождении различных участков цепи.
  5. Исследовать внутренние механизмы, происходящие в электрической цепи.
  6. Наблюдать частоту колебания и особенности искажения сигнала.
  7. Вычислить соотношение шума и сигнала, стационарность шума и возможные изменения по временным параметрам.
  8. Наладить оперативный и периодический контроль качественных характеристик телевизионного тракта в системе телевещания.

Широко применение осциллографа в диагностике и ремонте автотранспорта. Благодаря своим характеристикам он способен выявить неисправные катализаторы, проверить функционирование исполнительных механизмов, кратко указать основные идентификационные сведения системы, считать код неисправностей, который сохраняет система, отследить изменения сигналов датчиков системы.

Учёными выделено несколько занимательных фактов работы и создания фиксирующего прибора, популярного в электромеханической сфере любого производства. К ним относят:

  • Именно экран одного из осциллографов был использован как дисплей первой видеоигры, визуализирующей игру в теннис. Игра Tennis For Two создавалась на работе аналоговых вычислительных машин. Управление основано на специальном игровом контроллере — Paddle.
  • Радиолюбителями используется тракт записи звука, установленный на звуковой карте компьютера в качестве прибора ввода измерения низких частот.
  • Часто встречается ошибочное написание прибора «осцелограф».
  • Квалифицированные любители радиоэлектроники, не являющиеся чайниками в мире электроники, занялись самостоятельным изготовлением приборов для процесса осциллографирования в качестве приставки к ПК или телевизору. Сейчас эта потребность не так актуальна. Освоенные технологии массового производства подобных товаров имеют низкую себестоимость.

Основа любой действующей научной лаборатории — качественная измерительная аппаратура и источники сигналов, токов, напряжений. Сегодня важнейшим контрольно-измерительным прибором для научных и производственных исследований является осциллограф.

Осциллографы.Виды и особенности.Устройство и работа.Применение

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, блок-схема типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно осциллографы в комплекте имеют

делители, в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель, раздваивается и приходит на переключатель синхронизации и линию задержки, которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:
  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Похожие темы:

Принцип действия цифрового осциллографа — Осциллографы

Цифровой осциллограф — это конструктивное объединение аналогового осциллографа и электронно-вычислительной машины. С его помощью можно не только отображать характеристику напряжения в реальном времени, но и выполнять различные математические операции: складывать и вычитать сигналы в разных каналах, растягивать во времени фрагменты записанного в память сигнала, определять частотный спектр сигнала путём применения быстрого преобразования Фурье и прочее.

Входной сигнал u(t) проходит через масштабирующее устройство (усилитель и делитель напряжения) и попадает в аналогово-цифровой преобразователь. Задача этого звена – это заменить полученную зависимость дискретной последовательностью кодовых слов Ni (мгновенных значений ui этого напряжения). Полученное кодовое слово записывается оперативным запоминающим устройством, при этом, все предыдущие записанные отсчёты сдвигаются на одну ячейку (регистр сдвига), а самый первый N1 исчезает, как бы «выталкивается». Если ОЗУ состоит из М ячеек, то в нём, постоянно обновляясь, содержится М последних, «свежих», кодовых слов. Так продолжается до тех пор, пока не будет выполнено некое заданное условие, например, когда какое-либо ui впервые превысит заданный оператором уровень. После этого, содержимое некоторого количества ячеек ОЗУ переписывается в запоминающее устройство, где каждой ячейке соответствует точка на экране, отличающаяся от фона. Координата Х определяется номером ячейки, а координата Y кодовым словом Ni, которое находится в этой ячейке.

В отличие от аналоговых осциллографов, цифровые осциллографы, позволяют запоминать в оперативном запоминающем устройстве много кодовых слов, а потом «вытягивать» их порциями, соответствующими ширине экрана.

Также ещё одно принципиальное отличие от аналоговых осциллографов состоит в том, что на цифровом осциллографе можно видеть предысторию сигнала, до появления импульса запуска, это называют «предварительным запуском». Кодовые слова переписываются из оперативного запоминающего устройство в запоминающее устройство так, что в момент появления импульса запуска первой ячейкой запоминающего устройства будет та, что даёт точку на вертикальной линии, проходящей через центр экрана, последующие точки располагаются направо от неё, предыдущие – налево. Положение первой ячейки можно смещать влево или вправо от центра и тем самым соответственно уменьшать или увеличивать видимый интервал предыстории.

Частоту дискретизации (частоту «выборок») можно изменять в широких пределах, что соответствует изменению масштаба по горизонтали и аналогично изменению скорости развёртки в аналоговых осциллографах.

Для изменения масштаба по вертикали, как и в аналоговых осциллографах, можно изменять коэффициенты усиления или деления соответственно входного усилителя или делителя напряжения.

Благодаря выше изложенным преимуществам цифровые осциллографы заняли прочные позиции в производстве контрольно – измерительных приборов и почти вытеснили из рынка аналоговые осциллографы. По данным компании Frost & Sullivan, доля продаж цифровых осциллографов на мировом рынке в 2007 году составляла 87,4%, в то время как для аналоговых приборов названа цифра 2,8%. На сегодняшний день в мире существует немало фирм, которые занимаются разработкой цифровых осциллографов достаточно давно и предлагают хорошую, сертифицированную, многофункциональную продукцию. Но с потребительской точки зрения весомым недостатком этих проборов является достаточно высокая их стоимость. В этом ракурсе вопроса потенциальные покупатели обращают внимание на, возможно, менее известные бренды, которые, тем не менее, могут предложить хорошее качество. Например, не так давно на мировой рынок вышла китайская компания по производству контрольно-измерительных приборов RIGOL. Именно эта компания, благодаря размещению в мировой зоне с низкими затратами на производство и хорошим идеям по поводу решения конструкторских задач, предлагает потребителям бюджетные цифровые осциллографы с отличным соотношением цена-качество.

Например, бюджетная серия RIGOL DS1000 цифровых запоминающих осциллографов предоставляет исключительные возможности для наблюдения и измерений параметров формы сигнала. Приборы серии компактны и легки. Осциллографы этой серии идеально подходят для: испытаний продукции, исследований и разработки, любых проверок и выявления неисправностей в аналоговых/цифровых схемах, а также для процесса обучения и практики.

Принцип работы цифрового осциллографа — Морской флот

Радиолюбительство, как хобби, занятие очень увлекательное, и, можно сказать, затягивающее. Многие вступают в него еще в чудесные школьные годы, а со временем это увлечение может стать профессией на всю жизнь. Даже, если не удается получить высшего радиотехнического образования, самостоятельное изучение электроники позволяет добиться весьма высоких результатов и успехов. В свое время журнал «Радио» называл таких специалистов инженерами без дипломов.

Первые опыты с электроникой начинаются, как правило, со сборки простейших схем, которые начинают работать сразу без наладки и настройки. Чаще всего это различные генераторы, звонки, простенькие блоки питания. Все это удается собрать, прочитав минимальное количество литературы, просто описания к повторяемым схемам. На этом этапе, как правило, удается обойтись минимальным набором инструмента: паяльник, бокорезы, нож и несколько отверток.

Постепенно конструкции усложняются, и рано или поздно выясняется, что без наладки и настройки работать они просто не будут. Поэтому приходится обзаводиться тонкими измерительными приборами, причем, чем раньше, тем лучше. У старшего поколения электронщиков таким прибором был стрелочный тестер.

В настоящее время на смену стрелочному тестеру, часто называемому авометром, пришел цифровой мультиметр. Об этом можно почитать в статье «Как пользоваться цифровым мультиметром». Хотя старый добрый стрелочный тестер своих позиций не сдает, а в некоторых случаях его использование предпочтительно в сравнении с цифровым прибором.

Оба этих прибора позволяют измерить постоянные и переменные напряжения, токи и сопротивления. Если постоянные напряжения измерить просто, достаточно узнать только величину, то с переменными напряжениями имеют место быть некоторые нюансы.

Дело в том, что как стрелочные, так и современные цифровые приборы рассчитаны на измерение синусоидального переменного напряжения, причем, в довольно ограниченном диапазоне частот: результатом измерения будет действующее значение переменного напряжения.

Если такими приборами измерять напряжения прямоугольной, треугольной или пилообразной формы, то показания на шкале прибора, конечно, будут, но за точность измерений ручаться не приходится. Ну, просто есть напряжение, а какое, точно неизвестно. И как в таких случаях быть, как продолжать ремонт и разработку новых, все более сложных электронных схем? Вот тут радиолюбитель и подходит к тому этапу, когда приходится приобретать осциллограф.

Немного истории

С помощью этого прибора можно воочию увидеть, что происходит в электронных схемах: какова форма сигнала, где он появился или пропал, временные и фазовые соотношения сигналов. Для наблюдения нескольких сигналов потребуется, как минимум, двухлучевой осциллограф.

Вот тут можно вспомнить уже далекую историю, когда 1969 году был создан аж пятилучевой осциллограф С1-33, серийно выпускавшийся Вильнюсским заводом. В приборе использовалась ЭЛТ 22ЛО1А, применявшаяся только в этой разработке. Заказчиком такого прибора являлся, конечно же, военно-промышленный комплекс.

Конструктивно этот аппарат был выполнен из двух блоков, помещенных на стойку с колесиками: собственно осциллограф и блок питания. Общий вес конструкции составлял 160 кг! В комплект осциллографа входила регистрирующая фотокамера РФК-5, прикрепленная к экрану, что обеспечивало съемку осциллограмм на фотопленку. Внешний вид пятилучевого осциллографа С1-33 с установленной фотокамерой показан на рисунке 1.

Рисунок 1. Пятилучевой осциллограф С1-33, 1969 год

Современная электроника позволяет создавать карманные цифровые осциллографы размером с мобильный телефон. Один из таких приборов показан на рисунке 2. Но об этом будет рассказано несколько позже.

Рисунок 2. Карманный цифровой осциллограф DS203

Осциллографы различных типов

До недавнего времени выпускалось несколько типов электронно-лучевых осциллографов. В первую очередь это осциллографы универсальные, которые чаще всего используются в практических целях. Кроме них выпускались также запоминающие осциллографы на базе запоминающих ЭЛТ, высокоскоростные, стробоскопические и специальные. Последние типы предназначались для различных специфических научных задач, с которыми в настоящее время успешно справляются современные цифровые осциллографы. Поэтому далее речь пойдет именно об универсальных электронных осциллографах общего назначения.

Устройство ЭЛТ

Основной частью электронного осциллографа, несомненно, является электронно-лучевая трубка – ЭЛТ. Ее устройство показано на рисунке 3.

Рисунок 3. Устройство ЭЛТ

Конструктивно ЭЛТ представляет собой длинный стеклянный баллон 10 цилиндрической формы с конусообразным расширением. Дно этого расширения, являющееся экраном ЭЛТ, покрыто люминофором, который излучает видимое свечение при попадании на него электронного луча 11. Многие ЭЛТ имеют прямоугольный экран с нанесенными прямо на стекло делениями. Именно этот экран и является индикатором осциллографа.

Электронный луч формируется электронной пушкой

Подогреватель 1 нагревает катод 2, который начинает излучать электроны. В физике это явление называется термоэлектронной эмиссией. Но электроны, излучаемые катодом, далеко не улетят, просто будут садиться обратно на катод. Чтобы из этих электронов получить луч, требуется еще несколько электродов.

Это фокусирующий электрод 4 и анод 5, соединенный с аквадагом 8. Под действием электрического поля этих электродов электроны отрываются от катода, ускоряются, фокусируются в тонкий луч и устремляются к экрану, покрытому люминофором, вызывая свечение люминофора. Все вместе эти электроды называются электронной пушкой.

Достигая поверхности экрана, электронный луч не только вызывает свечение, но еще и выбивает из люминофора вторичные электроны, которые вызывают расфокусировку луча. Для удаления этих вторичных электронов и служит упомянутый выше аквадаг, который представляет собой графитовое покрытие внутренней поверхности трубки. Кроме того, аквадаг в некоторой степени экранирует луч от внешних электростатических полей. Но такой защиты оказывается недостаточно, поэтому цилиндрическую часть ЭЛТ, где расположены электроды, помещают в металлический экран из электротехнической стали или пермаллоя.

Между катодом и фокусирующим электродом располагается модулятор 3. Его назначение управлять током луча, что позволяет гасить луч во время обратного хода развертки и подсвечивать во время прямого хода. В усилительных лампах этот электрод называется управляющей сеткой. Модулятор, фокусирующий электрод и анод имеют центральные отверстия, через которые и пролетает электронный луч.

Отклоняющие пластины ЭЛТ имеет две пары отклоняющих пластин. Это пластины вертикального отклонения луча 6 – пластины Y, на которые подается исследуемый сигнал, и пластины горизонтального отклонения 7 – пластины X, на них подается напряжение горизонтальной развертки. Если отклоняющие пластины никуда не подключены, то в центре экрана ЭЛТ должна появиться светящаяся точка. На рисунке это точка О2. Естественно, что на трубку должны быть поданы напряжения питания.

Вот тут следует сделать важное замечание. Когда точка стоит на месте, никуда не двигаясь, она может попросту прожечь люминофор, и на экране ЭЛТ навсегда останется черная точка. Подобное может случиться в процессе ремонта осциллографа или при самостоятельном изготовлении простенького любительского прибора. Поэтому в таком режиме следует снизить яркость до минимума и расфокусировать луч, – все равно можно увидеть есть луч или он отсутствует.

При подаче на отклоняющие пластины некоторого напряжения луч будет отклоняться от центра экрана. На рисунке 3 луч отклоняется в точку О3. Если напряжение будет изменяться, то луч прочертит на экране прямую линию. Именно это явление и используется для создания на экране изображения исследуемого сигнала. Для получения на экране двухмерного изображения необходимо подать два сигнала: исследуемый, – подается на пластины Y, и напряжение развертки, – подается на пластины X. Можно сказать, что на экране получается график с координатными осями X и Y.

Горизонтальная развертка

Именно горизонтальная развертка формирует на экране ось X графика.

Рисунок 4. Напряжение развертки

Как видно на рисунке горизонтальная развертка осуществляется пилообразным напряжением, которое можно разделить на две части: прямой и обратный ход (рис. 4а). Во время прямого хода луч равномерно перемещается по экрану слева направо, и по достижению правого края быстренько возвращается назад. Это называется обратным ходом. Во время прямого хода вырабатывается импульс подсветки, который подается на модулятор трубки, и на экране появляется светящаяся точка, рисующая горизонтальную линию (рис. 4б).

Напряжение прямого хода, как показано на рисунке 4, начинается с нуля (луч в центре экрана) и изменяется до напряжения Uмакс. Поэтому луч будет перемещаться от центра экрана до правого края, т.е. всего на половину экрана. Чтобы развертка начиналась с левого края экрана, луч смещается влево подачей на него напряжения смещения. Смещение луча регулируется ручкой, выведенной на лицевую панель.

Во время обратного хода импульс подсветки заканчивается, и луч гаснет. Взаимное расположение импульса подсветки и пилообразного напряжения развертки можно увидеть на функциональной схеме осциллографа, показанной на рисунке 5. Несмотря на разнообразие принципиальных схем осциллографов, их функциональные схемы примерно одинаковы, подобны показанной на рисунке.

Рисунок 5. Функциональная схема осциллографа

Чувствительность ЭЛТ

Определяется коэффициентом отклонения, показывающим, на сколько миллиметров отклонится луч при подаче на пластины напряжения постоянного напряжения в 1В. Для различных ЭЛТ эта величина находится в пределах 0,15…2 мм/В. Получается, что подавая на отклоняющие пластины напряжение 1В, луч можно переместить луч всего на 2 мм, и это в лучшем случае. Чтобы отклонить луч на один сантиметр (10 мм), потребуется напряжение 10/2=5В. При чувствительности 0,15 мм/В для такого же перемещения понадобится уже 10/0,15=66,666В.

Поэтому для того, чтобы получить заметное отклонение луча от центра экрана исследуемый сигнал усиливается усилителем вертикального канала до нескольких десятков вольт. Такие же выходные напряжения имеет и канал горизонтального усиления, с помощью которого осуществляется развертка.

Большинство универсальных осциллографов имеют максимальную чувствительность 5мВ/см. При использовании ЭЛТ типа 8ЛО6И при входном напряжении 5мВ на отклоняющие пластины для перемещения луча на 1 см потребуется подать напряжение 8,5В. Нетрудно подсчитать, что для этого понадобится усиление более, чем в 1500 раз.

Такое усиление необходимо получить во всей полосе пропускания, и чем выше частота, тем ниже усиление, что присуще любым усилителям. Полоса пропускания характеризуется верхней частотой fверх. При этой частоте усиление канала вертикального отклонения снижается в 1,4 раза или на 3дБ. Для большинства универсальных осциллографов эта полоса составляет 5МГц.

А что будет, если частота входного сигнала превысит верхнюю частоту, например, 8…10МГц? Удастся ли ее увидеть на экране? Да, видно ее будет, но амплитуду сигнала измерить не удастся. Можно лишь убедиться в том, есть сигнал или его нет. Иногда таких сведений бывает вполне достаточно.

Канал вертикального отклонения. Входной делитель

Исследуемый сигнал поступает на вход канала вертикального отклонения через входной делитель, показанный на рисунке 6. Часто входной делитель называют аттенюатором.

Рисунок 6. Входной делитель канала вертикального отклонения

С помощью входного делителя появляется возможность исследования входного сигнала от нескольких милливольт до нескольких десятков вольт. В случае, когда входной сигнал превышает возможности входного делителя, применяются входные щупы с коэффициентом деления 1:10 или 1:20. Тогда предел 5В/дел становится 50В/дел или 100В/дел, что дает возможности для исследования сигналов со значительными напряжениями.

Открытый и закрытый вход

Здесь же (рисунок 6) можно видеть переключатель В1, который дает возможность подавать сигнал через конденсатор (закрытый вход) или непосредственно на вход делителя (открытый вход). При пользовании в режиме «закрытый вход» возможно исследование переменной составляющей сигнала, игнорируя его постоянную составляющую. Пояснить сказанное поможет простая схема, показанная на рисунке 7. Схема создана в программе Multisim, так что все на этих рисунках хотя и виртуально, но достаточно справедливо.

Рисунок 7. Усилительный каскад на одном транзисторе

Входной сигнал амплитудой 10мВ через конденсатор C1 подается на базу транзистора Q1. Подбором резистора R2 напряжение на коллекторе транзистора устанавливается равным половине напряжения питания (в данном случае 6В), что позволяет транзистору работать в линейном (усилительном) режиме. Выходной сигнал контролируется осциллографом XSC1. На рисунке 8 показан результат измерения в режиме открытого входа, на осциллографе нажата кнопка DC (постоянный ток).

Рисунок 8. Измерения в режиме открытого входа (канал А)

Здесь можно увидеть (канал А) лишь напряжение на коллекторе транзистора, те самые 6В, о которых только что было упомянуто. Луч в канале A «взлетел» на 6В, а усиленной синусоиды на коллекторе как не бывало. Ее просто нельзя разглядеть при чувствительности канала 5V/Div. Луч канала A на рисунке показан красным цветом.

На вход B подан сигнал с генератора, на рисунке показан синим цветом. Это синусоида амплитудой 10 мВ.

Рисунок 9. Измерения в режиме закрытого входа

Теперь нажмем в канале A кнопку AC – переменный ток, это собственно и есть закрытый вход. Здесь можно увидеть усиленный сигнал – синусоиду амплитудой 87 милливольт. Получается, что каскад на одном транзисторе усилил сигнал амплитудой 10 мВ в 8,7 раз. Цифры в прямоугольном окошке под экраном показывают напряжения и времена в местах расположения маркеров T1, T2. Подобные маркеры имеются в современных цифровых осциллографах. Вот собственно и все, что можно сказать по поводу открытых и закрытых входов. А теперь продолжим рассказ об усилителе вертикального отклонения.

Предварительный усилитель

После входного делителя, исследуемый сигнал попадает на предварительный усилитель, и, пройдя через линию задержки, поступает на оконечный усилитель канала Y (рисунок 5). После необходимого усиления сигнал поступает на вертикальные отклоняющие пластины.

Предварительный усилитель расщепляет входной сигнал на парафазные составляющие для подачи его на оконечный усилитель Y. Кроме этого, входной сигнал из предварительного усилителя подается на формирователь импульсов запуска развертки, что обеспечивает получение синхронного изображения на экране во время прямого хода развертки.

Линия задержки задерживает входной сигнал относительно начала напряжения развертки, что дает возможность наблюдать передний фронт импульса, как показано на рисунке 5 б). Некоторые осциллографы линии задержки не имеют, что, в сущности, не мешает исследованию периодических сигналов.

Канал развертки

Входной сигнал из предварительного усилителя также поступает на вход формирователя импульсов запуска развертки. Сформированный импульс запускает генератор развертки, вырабатывающий плавно нарастающее пилообразное напряжение. Скорость нарастания и период напряжения развертки выбирается переключателем «Время/дел», что дает возможность исследования входных сигналов в широком диапазоне частот.

Такая развертка называется внутренней, т.е. запуск происходит от исследуемого сигнала. Обычно осциллографы имеют переключатель запуска развертки «Внутр./Внешн.», почему-то не показанный на функциональной схеме на рисунке 5. В режиме внешнего запуска развертку можно запустить не исследуемым сигналом, а каким-то другим, от которого зависит исследуемый сигнал.

Это может быть, например, импульс запуска линии задержки. Тогда, даже с помощью однолучевого осциллографа, можно измерить временное соотношение двух сигналов. Но лучше это делать с помощью двухлучевого осциллографа, если он, конечно, есть под рукой.

Длительность развертки следует выбирать исходя из частоты (периода) исследуемого сигнала. Предположим, что частота сигнала 1КГц, т.е. период сигнала 1мс. Изображение синусоиды при длительности развертки 1мс/дел показано на рисунке 10.

При длительности развертки 1мс/дел один период синусоиды частотой 1КГц занимает ровно одно деление шкалы по оси Y. Синхронизация развертки производится от луча A по восходящему фронту по уровню входного сигнала 0В. Поэтому синусоида на экране начинается с положительного полупериода.

Если длительность развертки изменить на 500мкс/дел (0,5мс/дел), то один период синусоиды займет на экране два деления, как показано на рисунке 11, что, безусловно, удобней для наблюдения сигнала.

Кроме собственно пилообразного напряжения генератор развертки вырабатывает также импульс подсвета, который подается на модулятор и «зажигает» электронный луч (рис. 5 г). Длительность импульса подсвета равна длительности прямого хода луча. Во время обратного хода импульс подсвета отсутствует и луч гаснет. Если гашение луча отсутствует, на экране получится нечто непонятное: обратный ход, да еще и модулированный входным сигналом, попросту перечеркивает все полезное содержимое осциллограммы.

Пилообразное напряжение развертки поступает на оконечный усилитель канала X, расщепляется в парафазный сигнал и подается на горизонтальные отклоняющие пластины, как показано на рисунке 5 д).

Внешний вход усилителя X

На оконечный усилитель X может подаваться не только напряжение с генератора развертки, но и внешнее напряжение, что дает возможность измерения частоты и фазы сигнала с использованием фигур Лиссажу.

Рисунок 12. Фигуры Лиссажу

Но на функциональной схеме по рисунку 5 не показан переключатель входа X, также как и переключатель рода работ развертки, о котором было сказано чуть выше.

Кроме каналов X и Y осциллограф, как и любое электронное устройство, имеет блок питания. Малогабаритные осциллографы, например, С1-73, С1-101 могут работать от автомобильного аккумулятора. Кстати, для своего времени эти осциллографы были очень хороши, да и до сих пор успешно используются.

Рисунок 13. Осциллограф С1-73

Рисунок 14. Осциллограф С1-101

Внешний вид осциллографов показан на рисунках 13 и 14. Самое удивительное в том, что их до сих пор предлагают купить в интернет магазинах. Но цена такая, что дешевле купить малогабаритные цифровые осциллографы на Алиэкспресс.

Дополнительными устройствами осциллографов являются встроенные калибраторы амплитуды и развертки. Это, как правило, достаточно стабильные генераторы прямоугольных импульсов, подключая которые на вход осциллографа, с помощью подстроечных элементов можно настроить усилители X и Y. Кстати, такие калибраторы есть и у современных цифровых осциллографов.

О том, как пользоваться осциллографом, о методах и способах измерения будет рассказано в следующей статье.

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители , в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель , раздваивается и приходит на переключатель синхронизации и линию задержки , которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:

  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Основной трудностью в создании аналоговых осциллографов является проек­тирование широкополосных и сверхширокополосных усилителей с высоким вы­ходным напряжением, достаточным для возбуждения отклоняющих систем ЭЛТ. Между тем, чтобы получить изображение формы сигнала вовсе не обязательно усиливать его до уровня возбуждения пластин ЭЛТ в десятки и сотни В. Одним из основных направлений совершенствования осциллографов является использование в их схемах микропроцессоров и цифровых методов обработки сигналов, что позволяет отображать информацию на плоских жидкокристаллических дисплеях.

Функциональная схема цифрового осциллографа упрощенно показана на (рис. 8.1). Исследуемый сигнал, пройдя делитель (Д) и аналоговый усилитель А с ма­лым выходным напряжением, поступает на схему выборки (СВ) и аналого-цифро­вой преобразователь (АЦП). Для этого сигнал y12. yN, которые представляются в цифровой форме и размещаются в устройстве памяти цифрового осциллографа. Это говорит о том, что такой осциллограф заодно является запоминающим. Такие приборы часто называют цифровыми запоминающими осциллографами (ЦЗО).

Рисунок 8.1 – Функциональная схема цифрового осциллографа

Новым важным параметром осциллографа является объем памяти (как общий, так и на канал или осциллограмму). Извлекаемые из памяти цифровые данные подаются на цифро-аналоговый преобразователь (ЦАП) и могут быть превращены вновь в аналоговый сигнал, но трансформированный во времени. Он отображается на ЭЛТ или ЖКИ. В случае применения цифрового ЖКИ, ЦАП может и не потребоваться. Для создания развертки обычно используется тактовый генератор и счетчик импульсов. Последний управляет адресами выборки цифровых данных из памяти.

Помимо объема памяти, другим важным параметром АЦП является частота работы или частота выборки. В случае сложных форм исследуемых сигналов она должна быть в десятки, а иногда и в сотни раз выше частоты повторения периодического сигнала. В случае регистрации однократных сигналов с длительностью tИ для его представления также надо иметь определенное число N отсчетов, так что период равномерного по времени квантования сигнала будет равен dt=tИ/N частота квантования fK= l/dt = N/tИ . Например, если сигнал с длительностью tИ = 0,1 мкс представить 100 отсчетами, то получим dt = 1нс и fк=1 ГГц. Чтобы иск­лючить путаницу между обычной граничной частотой и частотой выборок последнюю обычно указывают в числе выборок в секунду, например, Мвыб/с или Мв/с. Этот пример наглядно иллюстрирует основную проблему в построении цифро­вых осциллографов, работающих в реальном масштабе времени, – необходимость в быстродействующих АЦП. Частота квантования сигналов АЦП должна хотя бы на порядок превышать максимальную частоту наблюдаемого сигнала, с тем, чтобы на самый короткий сигнал пришлось бы хотя бы десять отчетов. При этом воз­можно исследование как однократных, так и периодических сигналов. В случае периодических сигналов возможна статистическая обработка отсчетов, например усреднением тем или иным способом и построение усредненной осциллограммы, Промышленность выпускает множество АЦП и наиболее скоростные из них могут использоваться для создания цифровых осциллографов с эффективной по­лосой тракта Y до 50—100 МГц. Это означает, что АЦП для таких осциллографов должны иметь частоты дискретизации до 0,5 – 1 ГГц. Однако для получения более высоких частот нужны специализированные АЦП. Бесспорным лидером в разработке скоростных АЦП для цифро­вых осциллографов является корпорация Tektronix – мировой лидер в разработке осциллографических измерительных приборов. Она имеет свои уникальные АЦП с частотой квантования до 10—20 ГГц.

Другим важным параметром АЦП является их разрядность – число уровней квантования сигнала в двоичной форме. Подавляющее большинство АЦП для стробоскопических осциллографов имеет стандартную разрядность, равную 8. Это значит, что число различимых уровней сигнала составляет 28 = 256. Однако при этом ступенчатость осциллограмм обычно заметна на глаз. Поэтому некоторые АЦП для цифровых осциллог­рафов могут иметь большую разрядность. Эту разрядность не надо путать с разрядностью встроенного в осциллограф управляющего микропроцессора – она обычно равна 16 или даже 32 битам.

В конечной разрядности квантования (как по уровню, так и по времени) кроется «ахиллесова пята» цифровой осциллографии. Например, если в осциллограмме сложного сигнала присутствуют мелкие детали, то цифровой осциллограф их может просто не заметить. Между тем аналоговый осциллограф с помощью растяжки изображения по вертикали и по горизонтали вполне в состоянии развернуть изображение детали на весь экран.

Наконец, третьим специфическим параметром цифровых осциллографов является объем памяти — общий и на одну осциллограмму. Большинство современных цифровых осциллографов способно хранить в памяти несколько осциллограмм и выводить их на экран своего дисплея.

Не следует забывать, что три перечисленные выше параметра являются хотя и важными, но дополнительными. Кроме них цифровой осциллограф характеризуется рядом тех же параметров, что и аналоговые осциллографы. Прежде всего это относится к ширине полосы частот и времени нарастания капала Y, чувствитель­ности и диапазона длительностей развертки.

Первые осциллографы с оцифровкой сигналов были построены па основе обычных аналоговых осциллографов с обычной ЭЛТ. Они обладали всеми пара­метрами, характерными для аналоговых осциллографов, Вначале цифровые мето­ды использовались лишь для измерения параметров исследуемых сигналов с выво­дом их значений на экран дисплея или на отдельный светодиодный или жидкокри­сталлический индикатор. Затем стала использоваться трансформация высокоскоростных сигналов в низкоскоростные, отображаемые обычной ЭЛТ.

Такие приборы обычно называются аналого-цифровыми осциллографами, поско­льку они содержат аналоговый тракт, задающий частотно-временные параметры осциллографа и цифровую часть. Они выпускаются и поныне, но этот выпуск по­степенно сокращается из-за дороговизны таких приборов, их больших размеров и массы. В тоже время выпуск чисто цифровых приборов постоянно растет. Это связано с применением в новых моделях цифровых осциллографов малогабарит­ных плоских ЖК-дисплеев (нередко цветных), расширенными средствами циф­ровой обработки осциллограмм и возможностью уменьшения габаритов и веса приборов. Но цифровые осциллографы среднего класса стоят намного дороже аналоговых приборов, так что к числу общедоступных их не отнесешь.

Несколько слов следует сказать о стробоскопических осциллографах. Они похожи на цифровые (наличием блока выборки с запоминанием), но для построения их трансформируемого по времени (растянутого) изображения используют от­веты от разных периодов исследуемого сигнала, со сдвигом отсчетов от периода периоду. Это означает, что такие осциллографы могут отображать только периодические сигналы с множеством повторяющихся периодов. Это крупный недостаток стробоскопических осциллографов. Исследовать однократные и редко повторяющиеся процессы они не могут. Кроме того, преобразований выборок в числа у таких осциллографов нет, так что к цифровым они не относятся. Основной областью их применения является исследование сверхскоростных процессов с частотами выше 10-20 ГГц.

Современные цифровые осциллографы в реальном масштабе времени способны отображать даже однократные сигналы с частотами их спектра до 10-20 ГГц, при этом максимальная фиксированная частота выборок достигает 50 ГГц.

Теорема Котельникова

Принципиально важным теоретически и практически является вопрос о выборе числа отсчетов сигнала для его преобразования в цифровую форму и дальнейшего восстановления сигнала по его отсчетам. Как часто надо делать равномерные выборки произвольного сигнала, чтобы после преобразования в цифровую форму, а затем снова в аналоговую была сохранена форма сигнала? Ответ на этот важный вопрос дает теорема об отсчетах или теорема Котельникова (за рубежом именуе­мая также теоремой Найквиста, теоремой об отсчетах и т. д.): «Если спектр сигна­ла eB, то он без потери информации может быть представлен дискретными отсчетами с числом, равным 2fB ». При этом сигнал восстанавливается по его отсчетам e(kdt), следующим с интервалом времени dt=1/fB, с помощью фильтра, реализующего восстановление по формуле:

(8.1)

Для восстановления непрерывного сигнала по его выборкам достаточно распо­лагать функцией sinc(t)=sin(t)/t с учетом ее особого значения sinc(t)=l при x = 0.

Чтобы восстановить исходный сигнал по его отсчетам надо иметь численные значения их и значение интервала дискретизации dt. Все эти данные нетрудно хранить в запоминающем устройстве. Если увеличить dt при восстановлении сиг­нала по формуле (8.1) в к раз, то восстановленный сигнал без изменения формы будет растянут в к раз и его можно отобразить на экране достаточно низкочастот­ной ЭЛТ с простым низкочастотным усилителем.

Для восстановления сигнала не обязательно пользоваться фильтром на основе базиса Котельникова. Возможно применение и более простых фильтров, вплоть до обычного конденсатора или RС-фильтров нижних частот. Правда, при этом нужно несколько увеличивать частоту выборок.

Обычно низкочастотные сигналы воспроизводятся с тем же шагом, что и при их дискретизации. Это означает работу в реальном масштабе времени. Однако высокочастотные сигналы обычно воспроизводятся при умножении периода дискретизации. Этот переход иногда заметен и бросается в глаза.

Однако увеличение частоты работы АЦП является не единственным путем по­вышения временной разрешающей способности современных цифровых и аналогово-цифровых осциллографов. У некоторых моделей осциллографов для повы­шения разрешающей способности вместо равномерно распределенных отсчетов используются неравномерно распределенные отсчеты с периодом, уменьшающим­ся при высокой крутизне изменения входного сигнала. Другой путь – выполнение дискретизации при случайном положении отсчетов. Для высокочастотных пе­риодических сигналов такая мера вместе со статистической обработкой (накопле­нием, усреднением и сглаживанием) нередко позволяет резко повысить разрешающую способность осциллографа во времени, упростить построение осциллографов и сделать их цену более доступной.

Итак, специфика цифровых осциллографов заключается в представлении реальных процессов их отдельными отсчетами. Для того чтобы получить изображение процесса не в виде отдельных точек, а непрерывных линий, нужно использовать тот или иной вид интерполяции. Напомним, что математически интерполяция является вычислением значений некоторой функции, заданной отдельными узловыми точками, в промежутках между узлами.

Простейшей является линейная интерполяция, которая сводится к соединению узловых точек отрезками прямых. Однако при изображении даже простых плавных процессов, например, синусоидальных, получаемая из отрезков прямых осциллограмма выглядит очень грубой, если число отсчетов менее 10. при большем числе отсчетов, порядка 100 и более, результат оказывается намного лучше.

В большинстве случаев (но вовсе не всегда) желательно применять более тонкую интерполяцию, обеспечивающую плавность осциллограмм. Наиболее распространенной является интерполяция вида sin(t)/t. Однако панацеей всех бед и эта интерполяция служить не может. На самом деле точная зависимость сигнала в промежутках между узлами неизвестна, поэтому любая зависимость не может быть точной или предпочтительной для любой формы сигнала.

Бюджетные стационарные ЦЗО

Уровень финансирования бюджетной сферы у нас настолько низок, что приобретение современных цифровых осциллографов для научных и учебных

лабораторий стало довольно затруднительным делом. В связи с этим возник термин «бюджетные приборы», т. е, приборы с достаточно низкой ценой, но, тем менее, имеющие характерные признаки типовых рыночных моделей той или иной фирмы. К «бюджетным» цифровым осциллографам относятся приборы, стоимость которых не превышает 1000—1500 $.

В последнее время даже такие известные производители рынка осциллографов как Tektronix и Agilent Technologies, сочли нужным дополнить ряды своей продук­ции «бюджетными» моделями, спрос на которые намного превышает спрос на куда более дорогие обычные модели. Отнесение приборов к категории «бюджет­ных» достаточно условное. Некоторые типы «обычных» цифровых осциллографов, рассмотренные выше (например, приборы фирмы Good Will) по своим возможно­стям и стоимости уже приближаются к «бюджетным» моделям, Этому способству­ет разработка типовой унифицированной элементной базы для массовых иифро-вых осциллографов.

Цифровые осциллографы этого класса характеризуются прежде всего частотой выборок или числом выборок сигналов в единицу времени (Мв/с или Гв/с). Такие приборы делятся на два обширных класса:

1. Приборы с частотой выборки, изменяющейся по случайному закону со сред­
ней величиной, близкой к максимальной частоте исследуемых сигналов.

2. Приборы с высокой неизменной частотой выборки, которая примерно на по­
рядок превышает максимальную частоту исследуемого сигнала.

Большинство «бюджетных» цифровых осциллографов сейчас относятся к 1 типу или к комбинированному типу (для периодических высокочастотных сигналов используется высокая частота выборки). Лишь осциллографы корпорации Tektro­nix относятся ко 2 типу и обеспечивают наблюдение сигналов в реальном времени, без частых срывов в стробоскопический режим, характерный для наиболее высо­коскоростных стробоскопических осциллографов. Все цифровые приборы имеют память для хранения осциллограмм и являются, как правило, запоминающими осциллографами. Многие приборы имеют возможности автоматического измерения ряда (до 10—20) параметров сигналов и обычные для цифровых приборов и интерфейсы: USB, GPIB и RS-232.

Осциллографы фирмы Tektronix, даже низшей категории, можно сразу узнать по их характерному прямоугольному корпусу и строгому виду в стиле «ретро». Это относится и к самым дешевым приборам серии TDS-1000 этой фирмы (рис.8.2). В приборах используются кнопки с плавными обводами и круглые ручки, по виду напоминающие ручки в старых радиоприемниках. Экран занимает значительную часть площади передней панели и позволяет отображать осциллограммы и результаты измерений.

Цифровые осциллографы серии TDS-1000 фирмы Tektonix пока единственные приборы этой фирмы, которые можно действительно отнести к «бюджетным». Так, осциллографы с полосой 60 МГц имеют стоимость около 1000 $. Однако по мере увеличения полосы частот стоимость приборов фирмы TEKTRONIX быстро возрастает.

Рисунок 8.2 – «Бюджетный» двухканальный цифровой осциллограф TDS-I012 фирмы Tektronix с монохромным дисплеем

В последнее время даже фирма Agilent Technologies, известная своими уникаль­ными и дорогими приборами, реализует программу выпуска относительно деше­вых осциллографов.

Новая серия Agilent 3000 это осциллографы низшего ценового диапазона — от 1000 $ для прибора с полосой частот до 60 МГц и 1895 $ для осциллог­рафа с полосой частот до 200 МГц. Частота выборок у этих приборов 1 бит/с, предусмотрено автоматическое измерение 20 параметров и задание 4 ма­тематических функций, включая быстрое преобразование Фурье. Возможны обычные для цифровых приборов интерфейсы: USB, GPIB и RS-232.

EZ Digital — южно-корейский производитель измерительной техники высокой надежности и качества, отличающейся вполне умеренной ценой. Фирма выпускает как аналоговые, так и цифровые осциллографы с полосой пропускания до 250МГц.

Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

принципы действия, отличия, сферы применения

Осциллографы предназначены для измерения параметров электрических и оптических сигналов — напряжения, частоты, сдвига фаз, отношения сигнала к шуму и других. Эти приборы незаменимы при проектировании, тестировании и ремонте интегральных схем, полупроводниковых и других устройств.

За десятилетия совершенствования осциллографов их характеристики существенно улучшились, а возможности применения — расширились. Производители разработали разные типы осциллографов. В наши дни широкое распространение получили цифровые приборы двух типов — стробоскопические и реального времени. Перед тем, как выбрать и купить осциллограф, нужно изучить сходства и различия устройств разных типов. В этом вам поможет настоящий обзор.


Содержание

  • Немного истории
  • Стробоскопические осциллографы
  • Осциллографы реального времени
  • Сравнение осциллографов разных типов
  • Сферы применения осциллографов разных типов
  • Тенденции совершенствования осциллографов
  • Выводы

Немного истории

История осциллографов началась в далёком 1893 году, когда учёный Андре Блондель из Франции создал магнитоэлектрический прибор для регистрации характеристик сигналов. Этот первый осциллограф, крайне примитивный по сегодняшним меркам, выводил результаты измерений на движущуюся ленту с помощью маятника с чернилами. Большое количество трущихся деталей значительно снижало точность устройства. Полоса его пропускания также была небольшой — всего 10-19 кГц.


Блондель Андре-Эжен, физик, специалист в области электротехники, изобретатель электромеханического осциллографа

1897 год был ознаменован изобретением электронно-лучевой трубки — устройства, давшего осциллографам новую жизнь. Первую модель прибора, оснащённого ЭЛТ, в 1932 году продемонстрировала английская компания A. C. Cossor.

Вторая мировая война затормозила развитие измерительной техники. После её окончания началось стремительное распространение осциллографов во многих странах мира, в первую очередь — в Америке и Европе.

В 1946 году был изобретён первый в мире осциллограф с ждущей развёрткой — такой, которая срабатывает только тогда, когда присутствует исследуемый электрический сигнал.

Из года в год улучшались характеристики осциллографов — повышалась их точность, расширялась полоса пропускания. Тем не менее, всё это время неизменным оставалось одно — все измерительные приборы были аналоговыми. Революционным событием стало создание в 1985 году первых цифровых осциллографов, предназначенных для научного центра CERN. Их разработала компания LeCroy, которая в последующие годы получала огромное количество заказов на свои устройства.

Появлению и бурному развитию цифровых осциллографов поспособствовало создание таких устройств, как:

  • гибридные аналого-цифровые преобразователи, позволяющие точно и быстро переводить электрические и оптические сигналы в цифровую форму;
  • компактных, информативных и энергоэффективных дисплеев, на которые выводится информация о результатах измерений;
  • запоминающих модулей, позволяющих фиксировать выборки сигнала в памяти.

Аналоговые осциллографы, оснащённые электронно-лучевыми трубками, ушли на второй план далеко не сразу — слишком сильны были привычки и предпочтения учёных и исследователей второй половины XX века. Такие приборы отображали сигнал в режиме реального времени, они не позволяли масштабировать его и сохранять данные в памяти, поэтому со временем закономерно уступили свои позиции. Цифровые осциллографы оказались гораздо более функциональными, поэтому именно они в итоге завоевали рынок измерительного оборудования.

Совершенствуя цифровые приборы, разработчики создали несколько типов осциллографов — в частности, стробоскопические и реального времени. Модели, входящие в каждую из этих групп, имеют разные, хоть и частично пересекающиеся, сферы применения (подробнее об этом будет рассказано далее).

Стробоскопические осциллографы и устройства, работающие в реальном времени, имеют сходство, и оно — в тракте дискретизации (оцифровки) исследуемого сигнала. Последний подаётся на входной интерфейс прибора и переводится в цифровую форму в цепи предварительной обработки. Трансформированный таким образом сигнал отображается на экране осциллографа и сохраняется в его памяти. На этом сходства приборов разных типов заканчиваются, и начинаются принципиальные различия.

Стробоскопические осциллографы

У этих приборов есть другое название — осциллографы DCA (Digital Communication Analyzer, цифровые коммуникационные анализаторы). Их используют для изучения временных и амплитудных характеристик периодических сигналов, визуализации их формы.


Стробоскопический осциллограф N1092D серии DCA-M обладает высочайшей чувствительностью
благодаря уровню собственных шумов менее 5 мкВт

Принцип действия осциллографов DCA основывается на стробоскопическом эффекте. Анализ сигналов с их помощью производится в несколько этапов:

  • исследуемый сигнал подаётся на стробоскопический смеситель, в который входят запоминающий модуль и диодная ключевая схема;
  • при первом выполнении условий старта прибор захватывает группу выборок, разнесённых по времени;
  • далее осциллограф смещает точку запуска и захватывает очередной набор выборок, которые отображаются на экране совместно с первой группой. Смещение происходит с помощью коротких строб-импульсов, создаваемых специальной схемой. Последняя обеспечивает фиксированный шаг считывания, на который и происходит сдвиг точки захвата;
  • процесс повторяется, в результате чего строится осциллограмма с бесконечным послесвечением, сформированная по данным многочисленных считываний исследуемого сигнала.

Описанный принцип действия стробоскопических осциллографов обеспечивает высокую чувствительность и широкую полосу пропускания этих приборов. В настоящее время они являются наиболее чувствительными широкополосными устройствами.

Ключевое значение для работы стробоскопического осциллографа имеет шаг сдвига точки захвата сигнала. Частота дискретизации несущественна, объём памяти также не имеет большого значения, поскольку прибору при каждом запуске приходится захватывать и обрабатывать лишь несколько выборок.

Исследуемый сигнал можно не только наблюдать на экране осциллографа, но и подавать на компьютер или двухкоординатный самописец — для этого предназначен специальный низкочастотный выход.

Осциллографы реального времени

У этих устройств есть альтернативные названия — цифровые осциллографы DSO или MSO (Digital Storage Oscilloscope, Mixed Signal Oscilloscope, то есть цифровые запоминающие или предназначенные для работы со смешанным сигналом осциллографы.


Осциллограф реального времени MXR608A серии Infiniium MXR от Keysight Technologies

Исследование сигнала с помощью цифрового осциллографа реального времени проходит в несколько этапов:

  • дискретизированный сигнал подаётся на вход прибора;
  • интегральная схема, отвечающая за запуск осциллографа, ожидает наступления предварительно заданного события — той или иной кодовой последовательности, перепада напряжения или другого. После его наступления ИС запускает прибор;
  • осциллограф в режиме реального времени захватывает непрерывную последовательность выборок изучаемого сигнала и выводит собранные данные на экран вместе с выборками, захваченными до запуска. Кроме того, эта информация сохраняется в памяти устройства.

Осциллограф DSO можно использовать в одном из двух режимов:

  • периодическом (непрерывном). Прибор с определённой периодичностью захватывает и выводит на экран исследуемый сигнал, если выполняются заданные условия запуска. Появляется возможность «живого» изучения входящего сигнала, весьма ценная для специалистов, и именно поэтому периодический режим используют чаще всего;
  • режиме однократного захвата. При работе в нём цифровой осциллограф однократно захватывает группу последовательных выборок и отображает собранные данные на экране. Пользователь получает возможность детально изучить интересующее его событие, в том числе растягивая изображение, измерить длительность импульса или его фронта, выполнить быстрое преобразование Фурье или математический анализ.

Для цифровых осциллографов реального времени критичен такой параметр, как объём памяти. Чем он больше, тем более широкое окно захвата сигнала есть в распоряжении пользователя. Это, в свою очередь, позволяет выявлять события, происходящие сравнительно редко. Кроме того, большой объём памяти прибора даёт возможность повысить точность измерений и математических расчётов. Это достигается путём увеличения частоты дискретизации и одновременного замедления развёртки.

Сравнение осциллографов разных типов

Перед тем, как выбрать и купить осциллограф, примите во внимание различия между приборами разных типов.


Выбирая осциллограф обращайте внимание на уровень шумов,
способ восстановления тактовой частоты и амплитудно-частотную характеристику

Отношение сигнал/шум

Рассматривая этот критерий, нужно учесть разрядность аналого-цифровых преобразователей и связанный с ней динамический диапазон осциллографов. Модели, работающие в реальном времени, имеют 8-разрядный АЦП (фактическое разрешение при этом нередко составляет всего 6 разрядов). Это сужает динамический диапазон таких осциллографов, повышает уровень шума и заставляет использовать аттенюаторы, чтобы изучаемые сигналы отображались корректно.

Стробоскопические устройства превосходят осциллографы DSO тем, что имеют на борту 14-разрядные АЦП. Это расширяет динамический диапазон приборов и снижает уровень шума. Появляется возможность исследовать сигналы, амплитуда которых варьируется от милливольт до единиц вольт, причём без применения аттенюатора.

Низкий уровень шумов позволил стробоскопическим осциллографам завоевать титул «золотого стандарта» в сфере измерений. Устройства реального времени, однако, не намерены уступать — их характеристики с каждым годом улучшаются, а отставание от стробоскопических осциллографов по такому критерию, как уровень шума, сокращается.

Технология восстановления тактовой частоты

Чтобы измерять джиттер, декодировать 10-битное кодирование и строить так называемые глазковые диаграммы, осциллографы должны восстанавливать тактовую частоту, примешанную к исследуемому сигналу. Восстановленная тактовая частота, по сути, играет для осциллографа роль опорной, поэтому технология её восстановления имеет большое значение. В прошлом использовалось только аппаратное восстановление, и эта система не была застрахована от ошибок — вне зависимости от того, какая (внутренняя или внешняя) тактовая частота использовалась.

Сравнительно недавно разработчики реализовали программную технологию восстановления тактовой частоты. Пионером в этом направлении стала американская компания Agilent Technologies (Keysight Technologies). Внедрение программных методов стало важным шагом на пути развития измерительной техники — ошибки исчезли, а качество работы цифровых осциллографов значительно повысилось.

Нужно принимать во внимание не только технологию восстановления тактовой частоты, но и алгоритм, по которому она выполняется. Используются алгоритмы JTF и OJTF, причём первый чаще всего реализован в стробоскопических осциллографах, а второй — в моделях реального времени. Алгоритм OJTF в значительной степени подавляет низкочастотный джиттер, и это нужно учитывать при использовании измерительного оборудования.


Стробоскопические осциллографы и осциллографы реального времени
могут строить глазковые диаграммы, гистограммы и измерять джиттер

Амплитудно-частотная характеристика

Результаты исследования сигнала напрямую зависят от частотных характеристик осциллографа, с помощью которого оно выполняется. Способность корректировать амплитудно-частотную характеристику — ещё одна особенность, которой отличаются друг от друга приборы разных типов:

  • стробоскопические осциллографы, как правило, не корректируют АЧХ, поэтому имеют медленно снижающуюся частотную характеристику, напоминающую гауссову кривую;
  • во многих осциллографах реального времени реализована технология цифровой коррекции на основе DSP (Digital Signal Processor, цифрового сигнального процессора). В отдельных моделях предусмотрено несколько отличающихся параметрами частотных характеристик. Замечено, что плоская АЧХ при чрезмерных для прибора скоростях спада и нарастания импульса может при измерениях давать подобие звона. Гауссова АЧХ в некоторых случаях порождает межсимвольные помехи, также искажающие результаты измерений. Исследователь, использующий цифровой осциллограф DSO, должен учитывать эти особенности и в каждом случае выбирать оптимальную частотную характеристику.
Цена

При схожих технических характеристиках цена осциллографов разных типов может существенно отличаться. Так, модель реального времени, имеющая полосу пропускания 50 ГГц, может стоить 300-400 тыс. долларов, тогда как полнофункциональный стробоскопический осциллограф с аналогичной полосой пропускания вполне реально приобрести меньше, чем за 150 тыс. долларов. Ответьте на вопрос о том, нужна ли высокая гибкость осциллографов DSO в вашем случае, и вы избежите неоправданных расходов.

Расширяемость

И стробоскопические, и DSO осциллографы отличаются друг от друга возможностями расширения. Современные модели позволяют:

  • добавлять специализированные функции измерения;
  • работать с программным обеспечением сторонних производителей, установленным на компьютере;
  • увеличивать объём памяти для того, чтобы создавать более длительные записи;
  • использовать большую номенклатуру дополнительных модулей и пробников;
  • применять вспомогательные приспособления — комплекты для установки осциллографа в стойку, аккумуляторные батареи для автономной работы прибора и другие.

Базовый блок N1000A DCA-X с прецизионным анализатором формы сигналов N1060A

Выбирая осциллограф по такому критерию, как степень расширяемости, учитывайте не только существующие потребности, но и те, которые могут возникнуть в будущем.

Лёгкость изучения

Это — ещё одно отличие разных моделей осциллографов (как стробоскопических, так и реального времени). Студенты и начинающие пользователи быстрее начинают эффективное использование измерительного прибора, если он:

  • имеет интуитивно понятный интерфейс;
  • комплектуется учебными материалами;
  • позволяет использовать встроенные обучающие сигналы;
  • даёт доступ к презентациям, лабораторным работам и другим материалам, разработанным фирмой-производителем.

Сферы применения осциллографов разных типов

Если исследуемый сигнал периодически повторяется, и его можно захватить в определённом интервале реального времени, оптимально подойдёт стробоскопический осциллограф. Важную роль в данном случае играют такие особенности прибора, как широкий динамический диапазон и незначительный джиттер. Не менее важны модульная конструкция осциллографов стробоскопического типа и их сравнительно небольшая стоимость. Эти высокочувствительные приборы позволяют:

  • исследовать временные и амплитудные характеристики сигналов пико- и наносекундного диапазонов, которые периодически повторяются;
  • работать с уровнями сигналов, варьирующимися от милливольт до единиц вольт;
  • изучать параметры импульсных и интегральных схем;
  • строить глазковые диаграммы;
  • измерять джиттер;
  • исследовать переходные процессы, происходящие в быстродействующих приборах;
  • решать некоторые другие задачи.

Чтобы наблюдать за слабыми импульсами, длительность которых измеряется наносекундами, понадобились бы широкополосные трубки и усилители сигнала, работающие на высоких частотах. Стробоскопические осциллографы сделали ненужным комбинирование этих приборов, которые с трудом совмещаются друг с другом. Они позволили масштабировать время изучаемого импульса без изменения его формы — а значит, многократно увеличить эквивалентную полосу пропускания.


При выборе осциллографа реального времени обязательно обращайте внимание на объём памяти

Можно сделать вывод: стробоскопические осциллографы, как правило, лучше других отвечают требованиям, действующим при производственном тестировании.

Если пользователю, выполняющему отладку оборудования, нужно организовать запуск прибора по сложно обнаруживаемым событиям, ему подойдёт осциллограф DSO, работающий в реальном времени. Такие приборы отличаются гораздо более высокой гибкостью, чем стробоскопические модели. Они позволяют:

  • декодировать сигналы, закодированные по многим протоколам;
  • начинать анализ по этим сигналам;
  • тестировать оборудование по многочисленным стандартам;
  • исследовать джиттер в расширенном режиме, причём по единственному захвату;
  • в итоге — быстро и эффективно выявлять и устранять возникшие неисправности оборудования.

В недалёком прошлом стробоскопические осциллографы на несколько порядков превосходили устройства реального времени по собственному джиттеру и полосе пропускания. За последнее десятилетие осциллографы DSO, однако, значительно сократили этот разрыв. Грань между приборами разных типов, таким образом, оказалась почти стёртой.


Современные осциллографы реального времени имеют широкую полосу пропускания,
могут проводить расширенный анализ джиттера и практически не уступают стробоскопическим осциллографам

Тенденции совершенствования осциллографов

Одна из главных тенденций совершенствования цифровых осциллографов — расширение их полосы пропускания и повышение их быстродействия. По первому критерию предел современных устройств составляет 6-7 ГГц, время нарастания при этом составляет порядка 50-70 пикосекунд.

Ещё одна тенденция — расширение ассортимента портативных (мобильных) осциллографов. Внешне такие устройства очень напоминают сотовые телефоны. Портативные осциллографы, как правило, уступают стационарным лабораторным моделям по характеристикам, но превосходят их по удобству транспортировки и использования в полевых условиях. Портативными осциллографами управляют с помощью компьютера, на нём же выполняется обработка сигнала. Результаты наблюдений отрисовываются на мониторе ПК. Кроме того, появляется возможность сохранить результаты исследований на жёстком диске, поделиться ими по электронной почте или распечатать на принтере.

Свои тенденции развития господствуют в сегменте цифровых осциллографов класса Hi-End. Они оснащаются аналого-цифровыми преобразователями, работающими с чрезвычайно высокой (достигающей 10 гигавыборок в секунду) скоростью. Такие устройства отличаются очень малым временем, проходящим между записью сегментов. Благодаря этому осциллографы класса Hi-End обеспечивают высокую скорость сбора данных и их фиксации в памяти.

Выводы

Итак, если вы изучаете периодически повторяющиеся сигналы в большом динамическом диапазоне, имеющие малый джиттер, вам подойдёт стробоскопический осциллограф. В будущем вы с большой вероятностью сможете расширять его функциональность, обновляя и дополняя модули прибора. Вас порадует цена этого устройства — она будет гораздо более доступной, чем цена цифрового осциллографа реального времени.

Если вам нужно выполнять высокочастотные измерения и регистрировать параметры однократных и повторяющихся сигналов, исследовать джиттер, запускать осциллограф по редким и сложно выявляемым событиям, ваш выбор — модель, работающая в реальном времени. При схожих характеристиках она будет дороже, чем стробоскопическое устройство, но обеспечит вам максимальную гибкость её эксплуатации.

Возникают сложности при выборе того или иного типа осциллографа? Воспользуйтесь профессиональной помощью специалистов компании «Диполь». Мы изучим ваши потребности и порекомендуем модели, которые оптимально подойдут именно вам.

Принцип работы осциллографа — Docsity

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ОСЦИЛЛОГРАФА Осциллограф является прибором для визуального наблюде- ния электрических сигналов. Наблюдаемые сигналы представ- ляются на экране осциллографа в определенном масштабе, что позволяет определять их параметры (например, амплитуду, пе- риод) путем непосредственного измерения. В осциллографе предусмотрены два основных вида представления сигналов – зависимости сигнала от времени, т.е. y(t) и зависимости одного изменяющегося со временем сигнала y(t) от другого – x(t), т.е. y(x). Рис. 1. 1 ному сигналу, масштаб (вольт/деление) для которого устанавли- Структурная схема осциллографа приведена на рис. 1. Изо- бражение сигнала создается на флюоресцирующем экране элек- тронно-лучевой трубки ускоренным и сфокусированным пучком электронов. Смещение пучка по вертикали и горизонтали обес- печивают две пары отклоняющих пластин – Y и X. При наблю- дении временной зависимости сигнала на отклоняющие пласти- ны Y подается разность потенциалов, пропорциональная вход- 2 име временной раз- вер на пластины Y подан, например, си чивой картинки нужно, что- бы вается выбором коэффициента усиления, а на пластины X пода- ется сигнал временной развертки от генератора пилообразного напряжения. Генератор пилообразного напряжения вырабатыва- ет линейно изменяющееся со временем периодическое напря- жение, причем время нарастания сигнала существенно превы- шает время убывания (см. вид сигнала временной развертки на рис. 1). При наблюдении зависимости вида y(x) сигнал на откло- няющие пластины X подается аналогично пластинам Y. Началь- ное положение пучка на экране может быть установлено пода- чей на пластины X и Y постоянных разностей потенциалов (“Смещение X” и “Смещение Y” на рис. 1). Рассмотрим работу осциллографа в реж тки. Если на входе Y сигнал отсутствует, то пилообразное напряжение, подаваемое на пластины X, приведет, к перемеще- нию луча вправо-влево, причем в одну сторону (прямой ход) луч будет двигаться сравнительно медленно, а возвращаться в ис- ходную точку (обратный ход) – быстро. При этом на экране бу- дет наблюдаться горизонтальная линия. Скорость прямого хода регулируется органами управления осциллографа, позволяя вы- бирать величину смещения луча в единицу времени, т.е. мас- штаб время/деление. Во время обратного хода луч гасится и следа на экране не оставляет. Теперь предположим, что нусоидальный сигнал y(t)=sinωt. Тогда луч будет переме- щаться одновременно как по горизонтали, так и по вертикали, Сначала ограничимся рассмотрением одного периода развертки. Поскольку пилообразное напряжение линейно, то при прямом ходе луча координата x будет возрастать со временем по линей- ному закону x(t)=kt. При этом в момент времени t = x /k коорди- ната y примет значение y(x/k)=sin(ωx/k). Таким образом, траек- тория y(x) точки падения пучка электронов на экран, будет пред- ставлять собой фрагмент синусоиды, соответствующий дли- тельности прямого хода развертки. Для наблюдения на экране устой фрагменты периодического сигнала, накладывающиеся друг на друга при последовательных прямых ходах развертки, были одинаковыми. Однако за время обратного хода развертки вход- @ЫН е ‘8 ге ге» мазкюл ПП мавгол : № р Е И | ао шоб м. © | ве ‘0 ‘Вет ы | @ 6 Клавишей 8 производится переключение между режимом не- прерывной развертки (AUTO) и ждущей (NORM). Кнопки управления синхронизацией временной развертки расположены на панели TRIGGER. При нажатии кнопки 16 (CH 1) синхрони- зация выполняется относительно сигнала в канале 1, при нажа- тии кнопки 17 (CH 2) – относительно сигнала в канале 2. Уро- вень сигнала, при котором запускается развертка, устанавлива- ется ручкой 10 (TRIGGER LEVEL). Кнопка 9 (SLOPE) устанав- ливает запуск по превышению уровня на фронте возрастания либо убывания сигнала. Подробное описание осциллографа HM400, где указаны так- же функции всех органов управления, в том числе не упомяну- тых выше, можно взять в Интернете по адресу http://www.iatephysics.narod.ru/HM400.pdf

Что такое цифровой запоминающий осциллограф и принцип работы цифрового запоминающего осциллографа?

Что такое цифровой запоминающий осциллограф

?

Осциллограф, который используется для цифрового хранения и анализа вместо использования аналоговых методов, называется цифровым запоминающим осциллографом .

Сложное электронное устройство, состоящее из различных электронных аппаратных программ и модулей. Известно, что они работают как единое целое для сбора, обработки, хранения и отображения данных, которые представляют собой сигнал интереса, которым обладает оператор.

Также называемый цифровым осциллографом или цифровым стробоскопическим осциллографом, это наиболее часто используемый тип осциллографа. Он используется для различных целей, таких как функции измерения, хранения, отображения и расширенного запуска, которые он, как известно, предоставляет своим пользователям.

Входные аналоговые сигналы являются выборками и далее преобразуются в цифровую запись. Эти цифровые записи представляют собой амплитуду сигнала в течение каждого времени выборки. Стоимость этих цифровых запоминающих осциллографов варьируется и представлена ​​в разных размерах, включая карманные и небольшие модели.

Существует множество подтипов цифровых запоминающих осциллографов, которые вошли в обиход после появления цифровых технологий. Обычно все эти типы называются самим термином «цифровой осциллограф». Остальные термины используются только тогда, когда на них есть особая ссылка.

Обычно он известен как цифровой осциллограф и осциллограф с цифровым люминофором или DPO. Цифровой запоминающий осциллограф — этот термин появился после появления цифровых осциллографов.Название указывает на то, что у него есть память, которую можно использовать для хранения. В этих хранилищах могут использоваться формы сигналов, которые могут быть видны в течение длительного периода.

Одним из типов осциллографов является осциллограф с цифровым люминофором, в котором может использоваться архитектура параллельной обработки. Это термин, который в основном используется сегодня для описания типа осциллографа. Он известен тем, что в его основе используется технология цифровой обработки сигналов, даже несмотря на то, что он имеет аналоговую входную схему.

Доступно множество осциллографов, в том числе осциллограф смешанных сигналов, осциллограф смешанной области, цифровой стробоскопический осциллограф и осциллограф USB. Это наиболее распространенные типы осциллографов, хотя некоторые из них используются чаще, чем другие, тем не менее, все они используются часто по сравнению с аналоговыми осциллографами.

Цифровой запоминающий осциллограф известен тем, что не только сохраняет, но и оцифровывает поступающие входные сигналы. Он очень полезен и используется в различных приложениях и отраслях для выполнения различных задач.

Режимы работы цифрового запоминающего осциллографа

Известно, что цифровой запоминающий осциллограф работает в трех рабочих режимах: режим прокрутки, режим сохранения и режим удержания или сохранения. Режимы крена используются для четкого отображения быстро меняющихся сигналов на экране. Входные сигналы вообще не запускаются в этом типе рабочего режима DSO.

Считается, что это один из самых основных режимов работы, когда речь идет о работе цифрового запоминающего осциллографа .Этот режим работы имеет цель, аналогичную общей процедуре CRO. Как только ввод будет сделан, на экране появится кривая. Этот режим используется для контроля формы сигнала и характеристик, которыми он обладает.

Режим сохранения используется для сохранения сигналов в памяти, а режим удержания или сохранения позволяет пользователю удерживать данные в течение некоторого времени, пока они не будут сохранены в памяти. Есть и другие режимы работы цифрового запоминающего осциллографа.

Это режим обновления, однократный режим и режим эквивалентного времени. Режим обновления используется, когда частота дискретизации сигнала становится очень высокой. Другой раз, когда используется этот режим, — когда интересующий сигнал повторяется или почти похож на него. Цифровой запоминающий осциллограф известен тем, что выводит на дисплей сработавшее изображение, которое устарело и имеет более длительное время развертки.

Вы также можете прочитать: Что такое гидравлическая система и как она работает?

Обнаружено, что DSO находится в неактивном состоянии в режиме одиночной съемки и отображает только последнюю записанную им трассу.Это продолжается до тех пор, пока не произойдет последовательность событий. Режим эквивалентного времени известен для настройки АЦП, который работает в ограниченном режиме развертки.

В этом временном режиме это происходит для того, чтобы отдельные сигналы могли синхронизироваться надлежащим образом и отображать более четкую трассировку. В дополнение к вышеупомянутым режимам он также имеет три режима сбора данных: выборка, пик обнаруживает средний режим сбора данных.

Принцип работы цифрового запоминающего осциллографа

Цифровой запоминающий осциллограф используется для хранения и оцифровки входных сигналов.Это делается с использованием электронно-лучевой трубки или ЭЛТ и с помощью цифровой памяти. Оцифровка обычно выполняется с использованием входных выборок сигналов с различной периодической формой волны.

Теперь максимальная частота сигнала, измеренная с помощью DSO, в основном зависит от двух факторов. Этими факторами являются частота дискретизации и характер преобразователя. Что касается частоты дискретизации, безопасный анализ входного сигнала выполняется с помощью теории дискретизации.

Эта теория утверждает, что критически важно, чтобы частота дискретизации сигналов была вдвое выше, чем самая высокая частота принимаемых входных сигналов.Частота дискретизации означает, что скорость аналого-цифрового преобразования высока и высока.

В работе цифрового запоминающего осциллографа преобразователь работает с использованием дорогостоящей вспышки, разрешение которой уменьшается с увеличением частоты дискретизации. Полоса пропускания и разрешение осциллографа ограничены из-за частоты дискретизации.

Потребность в преобразователях аналогового сигнала в цифровой можно легко преодолеть с помощью сдвигового регистра.Регистр сдвига используется для выборки и хранения входных сигналов. Сигналы считываются медленно и сохраняются в цифровом виде из регистра сдвига.

При использовании этого метода можно заметить огромное снижение стоимости преобразователя. Он известен тем, что работает со скоростью до 100 мегасэмплов в секунду. DSO не принимает данные, вводимые во время оцифровки, что является недостатком цифрового запоминающего осциллографа.

Известно, что для визуализации последней волны в осциллографах используется метод межполяризации.Этот метод представляет собой процесс, который приводит к созданию новых точек данных с использованием переменных точек данных. Точки соединяются вместе с помощью двух процессов: линейной интерполяции и синусоидальной интерполяции.

Во время интерполяции линии используются для соединения точек. Он используется для создания прямоугольной формы волны или импульса. В случае синусоидального сигнала в DSO используется синусоидальная интерполяция.

Цифровой осциллограф состоит из дигитайзера, усилителя, схемы анализатора, памяти, восстановления формы сигнала, горизонтальных пластин, вертикальных пластин, электронно-лучевой трубки или ЭЛТ, триггера, часов, схемы временной развертки, часов и горизонтального усилителя.

DSO оцифровывает аналоговый входной сигнал, после чего эти сигналы усиливаются, если обнаруживается слабость. Как только происходит усиление, сигналы оцифровываются, которые затем сохраняются в памяти. Эти цифровые сигналы обрабатываются схемой анализатора после восстановления формы волны.

Применения цифрового запоминающего осциллографа

Цифровой запоминающий осциллограф известен не только тем, что сохраняет, но и преобразует в цифровую форму сигналы, принимаемые им в качестве входных.Он широко применяется для испытаний на соответствие, испытаний протоколов, анализа сигналов, предварительного соответствия EMI, автомобильных испытаний, измерения мощности и многих других. Осциллограф в основном оснащен различными опциями и пробниками.

Цифровой осциллограф используется в различных отраслях и приложениях. Области, в которых он применяется, включают анализ джиттера, анализ последовательных данных, анализ мощности, рефлектометрию во временной области и тестирование устройств хранения данных. Он используется для анализа и измерения рабочих характеристик нескольких устройств преобразования энергии.

Проще говоря, осциллограф используется для устранения дрожания сигнала, анализа и синхронизации приложения синхронизации. Существуют и другие приложения, такие как рефлектометрия во временной области или TDR, который является частью измерения изменений и значений импеданса. Вариации и значения, такие как неисправности, могут дополнительно включать кабельные соединители, кабели передачи или микрополоски на борту.

Некоторые из других областей применения цифрового запоминающего осциллографа включают испытания во время производства, проектирования, аудио- и видеозаписывающего оборудования, в области исследований и для тестирования сигналов напряжения в радиовещательном оборудовании.

Цифровой запоминающий осциллограф известен своими возможностями и прост в использовании. Он имеет гибкость отображения и неограниченное время хранения. Количество трассировок может быть легко вызвано и сохранено в зависимости от размера памяти.

Он имеет возможность измерения курсором с отображением символов на экране в дополнение к осциллограммам. Он может отображать такую ​​информацию, как частота, минимум, амплитуда и максимум. Он имеет функцию просмотра перед запуском, которая позволяет отображать форму волны перед запускающим импульсом.

Можно вести записи путем передачи данных в компьютерную систему, где имеется объем для обработки. При цифровом хранении также возможна обработка сигналов осциллографа, заключающаяся в преобразовании необработанных данных в готовую информацию.

Использование цифрового запоминающего осциллографа

DSO имеет множество применений, давайте узнаем о применениях цифрового запоминающего осциллографа . Одно из его применений — визуальное представление цели радара, такой как самолет, корабль и т. Д.Цифровой запоминающий осциллограф используется для проверки неисправных компонентов в различных схемах и в медицинской сфере.

Этот осциллограф используется для измерения переменного, постоянного и напряжения. Другое его использование включает анализ сигналов телевизионного сигнала и наблюдение за диаграммой направленности излучения, генерируемой передающей антенной цифрового осциллографа.

DSO также может использоваться для сохранения сигналов, чтобы их можно было сравнивать или обрабатывать. Он используется для измерения индуктивности, конденсатора, временного интервала и периода времени между сигналами.Он также используется для наблюдения за ВАХ диодов и транзисторов.

Цифровой осциллограф используется для цифрового анализа и хранения в виде 1 или 0. Сигналы далее сохраняются как аналоговые сигналы. Он известен тем, что принимает входной сигнал, отображает и сохраняет экран. Расширенные функции, которые он имеет, включают запуск, хранение и измерение. Он также отображает сигналы в цифровом и виртуальном виде.

Это жизненно важный прибор, используемый для измерения электроники, имеющей переменное напряжение и ток.Он помогает человеку получить электронное изображение формы волны переменного тока и известен тем, что значительно улучшает предоставление и производительность хостов с новыми возможностями, присутствующими в тестовых приборах.

Вы также можете прочитать: Что такое макетная плата и как она работает?

Его верхние частоты увеличиваются до такой степени, что можно использовать для различных приложений проектирования RF. Это происходит в дополнение к тестовым приложениям и общей разработке электронных схем, где это часто используется.

DSO использует внутренние часы, с помощью которых он разделяет входные сигналы на разные точки. Затем он квантует мгновенные значения амплитуды в этих точках, что приводит к цифровому представлению, которое сохраняется в цифровой памяти.

Различия между цифровым запоминающим осциллографом

и обычным запоминающим осциллографом

Между цифровым запоминающим осциллографом и обычным или аналоговым запоминающим осциллографом есть существенные различия.В то время как цифровой запоминающий осциллограф всегда собирает данные, в последнем они собираются только после запуска.

В DSO лампа дешевле, чем в обычном запоминающем осциллографе. Цифровой осциллограф известен тем, что дает яркие изображения для сигналов с более высокой частотой. В обычном осциллографе невозможно получить яркие изображения для получения более высокочастотных сигналов.

DSO имеет более высокое разрешение, тогда как разрешение у обычного запоминающего осциллографа ниже.Основные принципы работы обоих осциллографов в чем-то схожи, как и используемые внутренние компоненты. Вы можете обнаружить, что даже дисплей будет таким же, поэтому, если вы когда-нибудь захотите переключиться с ASO на DSO, вы сможете быстро справиться с этим изменением.

Оба этих осциллографа используются для измерения переменных сигналов, основанных на времени. Время — это один из параметров, который используется в них для анализа формы волны. Известно, что сигналы, полученные пользователем в определенное время, различаются.Это изменение во времени измеряется осциллографом с целью обнаружения аномалий, шумов и характеристик.

Купить цифровые запоминающие осциллографы

Цифровые и аналоговые осциллографы отличаются друг от друга, так как в ASO форма сигнала отображается в исходной форме, в то время как в DSO исходные аналоговые формы сигналов преобразуются посредством дискретизации в цифровые числа, которые затем сохраняются в цифровом виде. формат.

Аналоговые запоминающие сигналы имеют более высокую полосу пропускания и скорость записи по сравнению с DSO, который имеет более низкую полосу пропускания и скорость записи.В аналоговом запоминающем осциллографе нет цифровой памяти, однако DSO может сохранять в цифровом виде и имеет неограниченное время хранения.

Аналоговый запоминающий осциллограф не может работать с постоянным временем обновления ЭЛТ. Однако им может управлять DSO. ASO известен тем, что дает более низкое разрешение по сравнению с DSO. Первый не может работать в обратном режиме, в то время как цифровой осциллограф может работать в обратном режиме.

Преимущества и недостатки DSO

Каждый осциллограф имеет как достоинства, так и недостатки. Вот некоторые из них цифрового запоминающего осциллографа.Во-первых, давайте узнаем о преимуществах, которые он предлагает.

Преимущества DSO

DSO доступен по более низкой цене, что упрощает покупку. Сохраненные в нем формы сигналов можно использовать для отображения в течение большего периода. Это может быть сделано путем подачи питания на память. Давайте подробнее рассмотрим преимуществ DSO.

Цифровой осциллограф сохраняет сигнал в цифровом формате, что предотвращает его ухудшение. Его можно использовать для хранения более одной формы сигнала, облегчает обнаружение пиков и запуск.Он прост в использовании и позволяет записывать медленные следы, такие как изменение температуры за день. Он также может обеспечить скорость записи, обеспечиваемую обычной ЭЛТ или электронно-лучевой трубкой.

Это очень распространенный тип осциллографов, который известен наличием шести основных элементов. Эти элементы включают аналоговые усилители с вертикальным входом, светодиодный или ЖК-экран, аналого-цифровой преобразователь и цифровую память формы сигнала, схемы для отображения и восстановления формы сигнала, временную развертку с функцией запуска и синхронизации, а также источник питания.

DSO работает быстро благодаря использованию схемы и кнопки быстрого аналого-цифрового преобразователя (АЦП) с высоким разрешением, а также микроконтроллера, который может управлять функциями дисплея. Микроконтроллеры создают опору, которая делает сигналы, принимаемые со входа, с высоким разрешением и быстротой.

Сигналы, которые контролируются цифровыми осциллографами, могут быть остановлены в любое время, а

запущен на уровне, необходимом для записи. DSO считается идеальным из-за его функции отображения сложных форм сигналов, которые требуют вычислений и измерений для получения формы сигнала и экрана числового вывода, который отражает выбранные параметры сигналов.

Помимо вышеперечисленного, цифровой запоминающий осциллограф обладает замечательным удобством, так как одной из его характеристик является исследование оцифрованной информации. Эта информация хранится в его памяти, и он имеет возможность создавать автоматические измерения, основанные на параметрах, выбранных пользователем. Это частота, время нарастания и отклонение напряжения.

Он может анализировать не только сигналы в реальном времени, но и большие выборки входных данных, собранные с помощью запоминающей памяти.Он анализирует высокочастотные переходные процессы в результате доступных передовых алгоритмов DSP.

Он очень маленький по размеру, работает с низким энергопотреблением для отображения точных и высококачественных данных измерений. Более быстрые процессоры можно легко убедить с помощью DSO. Известно, что современные цифровые запоминающие осциллографы работают с использованием передовых возможностей анализа сигналов. Все эти функции делают цифровой осциллограф очень мощным и востребованным.

Недостатки DSO

Хотя они могут хранить изображения в течение определенного периода времени, они имеют тенденцию теряться через определенный период времени.Электронно-лучевая трубка или ЭЛТ должны иметь надлежащий запас на время хранения. Кривые, полученные с помощью цифрового осциллографа, не такие четкие, как у обычных электронно-лучевых трубок, и их стоимость также выше. Вот еще несколько недостатков DSO .

Цифровой запоминающий осциллограф требует памяти для сбора данных, АЦП и микропроцессора для измерения. Это очень дорого, в зависимости от поддерживаемых функций; кроме цифровых запоминающих осциллографов доступны различные модели, такие как цифровой люминофорный осциллограф и цифровой стробоскопический осциллограф.

Почему Tesca Technology — лучший цифровой запоминающий осциллограф

Производитель, поставщики и экспортеры?

Tesca Technologies — производитель и экспортер испытательного, измерительного и технического оборудования для обучения. Мы предлагаем предприятия, сертифицированные по стандарту ISO 9001: 2015, и являемся членом Совета по продвижению экспорта, Нью-Дели, Индия. Мы продаем нашу продукцию в 85 странах мира и располагаем производственной площадью 23000 квадратных футов.

У нас 3000 инновационных продуктов и возможности для реализации проектов под ключ для международных тендеров.У нас отличная техническая и маркетинговая поддержка, и мы всегда готовы выполнить ваши требования. Мы являемся единым поставщиком всех образовательных и дидактических решений и предлагаем контроль качества на нескольких этапах.

У нас есть огромное количество высококачественных цифровых осциллографов, которые перед доставкой проходят тщательную проверку качества. Мы объединили отгрузку, отгрузку и доставку с предварительным отбором лучших товаров из ассортимента производителя.

Наши кадры — наша сила; у нас есть высококвалифицированная команда, которая специализируется на планировании, проектировании и выполнении проектов, относящихся к различным отраслям, таким как сельское хозяйство, строительство, образование, здравоохранение, экология и другие.

Мы всегда рады выполнить требования наших клиентов, предоставив им наши качественные цифровые запоминающие осциллографы . Если вам нужны цифровые осциллографы, сразу же свяжитесь с нами, и мы предоставим лучшее, что у нас есть.

Работа и применение электронно-лучевого осциллографа

CRO — это электронно-лучевой осциллограф. Обычно он делится на четыре раздела: дисплей, вертикальные контроллеры, горизонтальные контроллеры и триггеры. В большинстве осциллографов используются пробники, и они используются для ввода любого инструмента. Мы можем проанализировать форму волны, построив график амплитуды вместе с осью x и осью y. Приложения CRO в основном используются в радио, ТВ-приемниках, а также в лабораторных работах, связанных с исследованиями и проектированием.В современной электронике CRO играет важную роль в электронных схемах.


Что такое CRO?

Электронно-лучевой осциллограф — это электронный испытательный прибор , который используется для получения форм сигналов при подаче различных входных сигналов. Раньше его называли осциллографом. Осциллограф наблюдает за изменениями электрических сигналов во времени, таким образом, напряжение и время описывают форму, и она непрерывно отображается рядом со шкалой.Наблюдая за формой сигнала, мы можем анализировать некоторые свойства, такие как амплитуда, частота, время нарастания, искажение, временной интервал и т. Д.

Электронно-лучевой осциллограф

Блок-схема CRO

На следующей блок-схеме показано сокращение CRO общего назначения. CRO задействует электронно-лучевую трубку и действует как тепло осциллографа. В осциллографе ЭЛТ генерирует электронный луч, который ускоряется до высокой скорости и попадает в точку фокуса на флуоресцентном экране.

Таким образом, на экране появляется видимое пятно, куда попадает электронный луч. Обнаруживая луч над экраном в ответ на электрический сигнал, электроны могут действовать как электрический световой карандаш, который производит свет там, где он падает.

Блок-схема CRO

Для выполнения этой задачи нам потребуются различные электрические сигналы и напряжения. Этим обеспечивается цепь питания осциллографа. Здесь мы будем использовать высокое и низкое напряжение. Низкое напряжение используется нагревателем электронной пушки для генерации электронного луча.Для ускорения пучка электронно-лучевой трубки требуется высокое напряжение. Нормальное напряжение питания необходимо для других блоков управления осциллографа.

Горизонтальная и вертикальная пластины размещаются между электронной пушкой и экраном, поэтому она может обнаруживать луч в соответствии с входным сигналом. Непосредственно перед обнаружением электронного луча на экране в горизонтальном направлении, которое по оси X является постоянной зависящей от времени скоростью, осциллятором задается генератор временной развертки.Сигналы проходят от вертикальной отклоняющей пластины через вертикальный усилитель. Таким образом, можно усилить сигнал до уровня, при котором будет обеспечиваться отклонение электронного луча.

Если электронный луч обнаруживается по оси X и оси Y, дается схема запуска для синхронизации этих двух типов обнаружения. Следовательно, горизонтальное отклонение начинается в той же точке, что и входной сигнал.

Принцип работы

Принцип работы CRO зависит от движения электронных лучей из-за электростатической силы.Как только электронный луч попадает на поверхность люминофора, он оставляет на ней яркое пятно. Электронно-лучевой осциллограф применяет электростатическую энергию к электронному лучу двумя вертикальными способами. Пятно на люминофорном мониторе поворачивается под действием этих двух взаимно перпендикулярных электростатических сил. Он перемещается, чтобы сформировать необходимую форму входного сигнала.

Конструкция электронно-лучевого осциллографа

Построение CRO включает следующее.

  • Электронно-лучевая трубка
  • Сборка электронного пистолета
  • Отклоняющая пластина
  • Флуоресцентный экран для ЭЛТ
  • Стеклянный конверт
Электронно-лучевая трубка

CRO — это электронная лампа, основная функция которой — изменение сигнала с электрического на визуальный.Эта трубка включает в себя электронную пушку, а также пластины электростатического отклонения. Основная функция этой электронной пушки — генерировать сфокусированный электронный луч, который разгоняется до высокой частоты.

Вертикальная отклоняющая пластина поворачивает луч вверх и вниз, в то время как горизонтальный луч перемещает пучки электронов с левой стороны на правую. Эти действия независимы друг от друга, поэтому луч может располагаться в любом месте на мониторе.

Сборка электронного пистолета

Основная функция электронной пушки — испускать электроны, превращая их в луч.Этот пистолет в основном включает в себя нагреватель, сетку, катод и аноды, такие как ускорение, предварительное ускорение и фокусировка. На конце катода осаждаются слои стронция и бария для получения высокой эмиссии электронов при умеренной температуре, слои бария осаждаются на конце катода.

После того, как электроны генерируются катодной сеткой, они проходят через управляющую сетку, которая обычно представляет собой никелевый цилиндр, через расположенный в центре коаксиально оси ЭЛТ.Таким образом, он контролирует силу генерируемых электронов от катода.

Когда электроны проходят через управляющую сетку, они ускоряются с помощью высокого положительного потенциала, который прикладывается к узлам предварительного ускорения или ускорения. Электронный луч концентрируется на электродах, проходит через отклоняющие пластины, как горизонтальные, так и вертикальные, и попадает в люминесцентную лампу.

Аноды, такие как ускоряющие и ускоряющие, подключены к 1500 В, а фокусирующий электрод можно подключить к 500 В.Электронный луч можно сфокусировать с помощью двух методов, таких как электростатическая и электромагнитная фокусировка. Здесь электронно-лучевой осциллограф использует электростатическую фокусирующую трубку.

Отклоняющая пластина

Как только электронный луч покидает электронную пушку, этот луч проходит через два набора отклоняющих пластин. Этот набор будет создавать вертикальное отклонение, известное как Y-образная отклоняющая пластина в противном случае. Набор пластин используется для горизонтального отклонения, известного как горизонтальное отклонение пластины X.

Флуоресцентный экран ЭЛТ

В ЭЛТ лицевая панель называется лицевой панелью. У ЭЛТ-экрана она плоская и имеет размер около 100 мм × 100 мм. Экран ЭЛТ несколько изогнут для отображения на больших дисплеях, и формирование лицевой панели может быть выполнено путем придания расплавленному стеклу формы и последующего его нагревания.

Внутренняя поверхность лицевой панели покрыта кристаллом люминофора для изменения энергии с электрической на световую. Как только луч электроники попадает в кристалл люминофора, уровень энергии может быть увеличен, и, таким образом, свет генерируется во время кристаллизации фосфора, поэтому это явление известно как флуоресценция.

Стеклянный конверт

Это конструкция конической формы с высокой степенью вакуумирования. Внутренние грани ЭЛТ среди шеи, а также дисплей закрыты аквадагом. Это проводящий материал, который действует как высоковольтный электрод. Поверхность покрытия электрически соединена с ускоряющим анодом, чтобы помочь электрону быть центром.

Работа CRO

На следующей принципиальной схеме показана базовая схема электронно-лучевого осциллографа .Здесь мы обсудим важные части осциллографа.

Работа системы вертикального отклонения CRO

Основная функция этого усилителя заключается в усилении слабого сигнала, чтобы усиленный сигнал мог производить полезный сигнал. Для проверки входные сигналы проникают на вертикальные отклоняющие пластины через входной аттенюатор и ряд каскадов усилителя.

Система горизонтального отклонения

Вертикальная и горизонтальная система состоит из горизонтальных усилителей для усиления слабых входных сигналов, но отличается от системы вертикального отклонения.Горизонтальные отклоняющие пластины проходят через колебательное напряжение, которое дает временную развертку. Видя принципиальную схему, генератор пилообразной развертки запускается синхронизирующим усилителем, в то время как селектор развертки переключается во внутреннее положение. Таким образом, триггерный генератор зубьев пилы подает сигнал на усилитель горизонтальной развертки, следуя механизму. Здесь мы обсудим четыре типа разверток.

Рекуррентное сканирование

Само название говорит о том, что зубец соответствующей пилы, то есть новая развертка начинается нескромно в конце предыдущей развертки.

Запуск развертки

Иногда следует наблюдать за формой волны, которая не может быть предсказана, поэтому желательно, чтобы схема развертки оставалась неработающей, а развертка должна инициироваться исследуемой формой волны. В этих случаях мы будем использовать развертку по триггеру.

Подметально-уборочная машина

Как правило, развертка возбуждения используется, когда развертка является автономной, но запускается тестируемым сигналом.

Инструмент для зачистки зубьев без пилы

Эта развертка используется для определения разницы между двумя напряжениями.Используя непиловидную развертку, мы можем сравнить частоту входных напряжений.

Синхронизация

Синхронизация выполняется для получения стационарного шаблона. Синхронизация происходит между разверткой и сигналом, который должен измеряться. Есть несколько источников синхронизации, которые можно выбрать с помощью селектора синхронизации. Что обсуждается ниже.

Внутренний

В этом случае сигнал измеряется вертикальным усилителем, а сигнал триггера воздерживается.

Внешний

Во внешнем триггере должен присутствовать внешний триггер.

Линия

Линейный триггер вырабатывается источником питания.

Модуляция интенсивности

Эта модуляция создается путем вставки сигнала между землей и катодом. Эта модуляция вызывается увеличением яркости дисплея.

Управление позиционированием

Подавая небольшой независимый внутренний источник постоянного напряжения на детектирующие пластины через потенциометр, можно контролировать положение, а также можно контролировать положение сигнала.

Контроль интенсивности

Интенсивность меняется за счет изменения потенциала сетки по отношению к катоду.

Измерения электрических величин

Измерения электрических величин с помощью CRO могут выполняться, например, амплитуды, периода времени и частоты.

  • Измерение амплитуды
  • Измерение периода времени
  • Измерение частоты

Измерение амплитуды

Дисплеи, такие как CRO, используются для отображения сигнала напряжения в виде функции времени на своем дисплее.Амплитуда этого сигнала стабильна; однако мы можем изменить количество разделов, которые перекрывают сигнал напряжения по вертикали, изменяя кнопку напряжения / деления на верхней части платы CRO. Итак, мы получим амплитуду сигнала, которая отображается на экране CRO, с помощью следующей формулы.

A = j * nv

Где,

‘A’ — амплитуда

‘j’ — значение вольта на деление

‘NV’ — это нет. разделов, закрывающих сигнал по вертикали.

Измерение периода времени

CRO отображает сигнал напряжения как функцию времени на своем экране. Период времени этого периодического сигнала напряжения постоянен, но мы можем изменять количество делений, которые покрывают один полный цикл сигнала напряжения в горизонтальном направлении, изменяя ручку времени / деления на панели CRO.

Следовательно, мы получим Временной период сигнала, который присутствует на экране CRO, по следующей формуле.

T = k * nh

Где,

‘T’ — период времени

‘j’ — значение времени / деления

‘nv’ — количество разделов, которые покрывают один полный цикл периодического сигнала по горизонтали.

Измерение частоты

На экране CRO измерение плитки и частоты может быть выполнено очень просто с помощью горизонтальной шкалы. Если вы хотите обеспечить точность при измерении частоты, это поможет увеличить площадь сигнала на вашем CRO-дисплее, чтобы мы могли более просто преобразовать форму волны.

Изначально время можно измерить с помощью горизонтальной шкалы на CRO и подсчета количества плоских разделов от одного конца сигнала до другого, где бы он ни пересекал плоскую линию.После этого мы можем разработать количество плоских разделов по времени или делению, чтобы определить период времени сигнала. Математически измерение частоты можно обозначить как частота = 1 / период.

f = 1 / T

Основные элементы управления CRO

Основные элементы управления CRO включают в себя в основном положение, яркость, фокус, астигматизм, гашение и калибровку.

Позиция

В осциллографе ручка управления положением в основном используется для управления положением интенсивного пятна с левой стороны на правую.Регулируя ручку, можно просто управлять пятном слева направо.

Яркость

Яркость луча в основном зависит от интенсивности электрона. Сетки управления учитывают интенсивность электронов в электронном луче. Таким образом, напряжением сетки можно управлять, регулируя яркость электронного луча.

Фокус

Управление фокусировкой может быть достигнуто путем регулирования приложенного напряжения к центральному аноду CRO.Средний и другие аноды в его области могут образовывать электростатическую линзу. Следовательно, основную длину линзы можно изменить, управляя напряжением на центральном аноде.

Астигматизм

В CRO это дополнительный элемент управления фокусировкой, аналогичный астигматизму в оптических линзах. Луч, сфокусированный в середине монитора, будет расфокусирован на краях экрана, поскольку длины путей электронов различны для центра и краев.

Цепь гашения

Генератор временной развертки, присутствующий в осциллографе, генерировал запирающее напряжение.

Калибровочная цепь

Генератор необходим для калибровки осциллографа. Однако используемый генератор должен генерировать прямоугольный сигнал для заданного напряжения.

Приложения

  • CRO используются в огромных приложениях, таких как радиостанции, для наблюдения за свойствами передачи и приема сигнала.
  • CRO используется для измерения напряжения, тока, частоты, индуктивности, проводимости, сопротивления и коэффициента мощности.
  • Это устройство также используется для проверки характеристик цепей AM и FM
  • Это устройство используется для контроля свойств сигнала, а также его характеристик, а также для управления аналоговыми сигналами.
  • CRO используется через резонансный контур для просмотра формы сигнала, полосы пропускания и т. Д.
  • Форму сигнала напряжения и тока может наблюдать специалист по техническим вопросам, который помогает принять необходимое решение на радиостанции или станции связи.
  • Используется в лабораториях с целью исследования.После того, как исследователи спроектировали новую схему, они использовали CRO для проверки формы сигналов напряжения и тока каждого элемента схемы.
  • Используется для сравнения фазы и частоты
  • Используется в ТВ, радарах и при анализе давления в двигателе
  • Для проверки нервных реакций и сердцебиения.
  • В петле гистерезиса он используется для нахождения кривых BH
  • Транзисторные кривые можно проследить.

Преимущества

К преимуществам CRO относятся следующие.

  • Стоимость и сроки
  • Требования к обучению
  • Последовательность и качество
  • Эффективность по времени
  • Компетенция и опыт
  • Способность решать проблемы
  • Беспроблемный
  • Гарантия соответствия нормативным требованиям
  • Измерение напряжения
  • Измерение тока
  • Исследование формы сигнала
  • Измерение фазы и частоты

Недостатки

К недостаткам CRO можно отнести следующее.

  • Эти осциллографы дороги по сравнению с другими измерительными приборами, такими как мультиметры.
  • При повреждении их сложно ремонтировать.
  • Эти устройства нуждаются в полной изоляции
  • Они большие, тяжелые и потребляют больше энергии
  • Много клемм управления
Использование CRO

В лаборатории CRO может использоваться как

  • Он может отображать различные типы сигналов
  • Может измерять короткие промежутки времени
  • В вольтметре он может измерять разность потенциалов

В этой статье мы обсудили работу CRO и ее применение.Прочитав эту статью, вы получили некоторые базовые знания о работе и приложениях CRO. Если у вас есть какие-либо вопросы относительно этой статьи или реализации проектов ECE и EEE, прокомментируйте их в разделе ниже. Вот вам вопрос, каковы функции CRO?

Фото:

Как пользоваться осциллографом

Введение

Вы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить такую ​​информацию, как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф!

О-образные диафрагмы

— важный инструмент в лаборатории любого инженера-электрика.Они позволяют видеть электрические сигналы , поскольку они меняются во времени, что может иметь решающее значение для диагностики, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимальных уровней раздражения.

Цифровое аналоговое открытие 2

В наличии TOL-13929

Digilent Analog Discovery 2 — это USB-осциллограф и многофункциональный прибор, который позволяет пользователям измерять, контролировать…

14

HAMlab — 160-6 10 Вт

Осталось всего 3! WRL-15001

HAMlab — это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab…

рассматривается в этом учебном пособии

Целью данного руководства является ознакомление с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:

  • Основы O-Scopes — Введение в осциллографы, что они измеряют и почему мы их используем.
  • Oscilloscope Lexicon — Глоссарий, охватывающий некоторые из наиболее распространенных характеристик осциллографов.
  • Анатомия осциллографа — Обзор наиболее важных систем осциллографа — экрана, элементов управления по горизонтали и вертикали, триггеров и пробников.
  • Использование осциллографа — Советы и рекомендации для тех, кто впервые использует осциллограф.

Мы будем использовать Gratten GA1102CAL — удобный цифровой осциллограф среднего уровня — в качестве основы для обсуждения осциллографа. Другие o-области могут выглядеть иначе, но все они должны иметь одинаковый набор механизмов управления и интерфейса.

Рекомендуемая литература

Прежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше!

Видео


Основы O-Scopes

Основное назначение осциллографа — графическое изображение электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двумерный график с временем по оси x и напряжением по оси y .

Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения.

Элементы управления, окружающие экран осциллографа, позволяют регулировать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Также имеются элементы управления для установки триггера на прицеле, который помогает сфокусироваться и стабилизировать изображение.

Что могут измерить Scopes

В дополнение к этим основным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:

  • Временные характеристики :
    • Частота и период — Частота определяется как количество повторений сигнала в секунду.И период является обратной величиной (количество секунд, которое занимает каждый повторяющийся сигнал). Максимальная частота, которую может измерить осциллограф, варьируется, но часто она находится в диапазоне 100 МГц (1E6 Гц).
    • Рабочий цикл — Процент периода, в течение которого волна является либо положительной, либо отрицательной (есть как положительные, так и отрицательные рабочие циклы). Рабочий цикл — это соотношение, которое показывает, как долго сигнал «включен» по сравнению с тем, как долго он «выключен» в каждом периоде.
    • Время нарастания и спада — Сигналы не могут мгновенно переходить от 0 В до 5 В, они должны плавно нарастать.Продолжительность волны, идущей от нижней точки к верхней точке, называется временем нарастания, а время спада измеряет обратное. Эти характеристики важны при рассмотрении того, насколько быстро цепь может реагировать на сигналы.
  • Характеристики напряжения :
    • Амплитуда — Амплитуда — это мера величины сигнала. Существует множество измерений амплитуды, включая размах амплитуды, который измеряет абсолютную разницу между точкой высокого и низкого напряжения сигнала.Пиковая амплитуда, с другой стороны, измеряет только то, насколько высокий или низкий сигнал превышает 0 В.
    • Максимальное и минимальное напряжение — осциллограф может точно сказать вам, насколько высоким и низким становится напряжение вашего сигнала.
    • Среднее и среднее напряжение — Осциллографы могут вычислять среднее или среднее значение вашего сигнала, а также могут сообщать вам среднее значение минимального и максимального напряжения вашего сигнала.

Когда использовать O-Scope

o-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:

  • Определение частоты и амплитуды сигнала, что может иметь решающее значение при отладке входа, выхода схемы или внутренних систем.По этому вы можете определить, неисправен ли какой-либо компонент в вашей цепи.
  • Определение уровня шума в вашей цепи.
  • Определение формы волны — синус, квадрат, треугольник, пилообразная, сложная и т. Д.
  • Количественное определение разности фаз между двумя разными сигналами.

Осциллограф Lexicon

Научиться пользоваться осциллографом — значит познакомиться с целым словарем терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вам следует ознакомиться, прежде чем включать его.

Основные характеристики осциллографа

Некоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:

  • Полоса пропускания — Осциллографы чаще всего используются для измерения сигналов определенной частоты. Однако ни один прицел не идеален: у всех есть пределы того, насколько быстро они могут видеть изменение сигнала.Полоса пропускания осциллографа определяет диапазон частот , который он может надежно измерить.
  • Сравнение цифровых и аналоговых — Как и большинство других электронных устройств, осциллографы могут быть аналоговыми или цифровыми. Аналоговые осциллографы используют электронный луч для прямого отображения входного напряжения на дисплей. Цифровые осциллографы включают микроконтроллеры, которые дискретизируют входной сигнал с помощью аналого-цифрового преобразователя и отображают это показание на дисплее. Как правило, аналоговые осциллографы старше, имеют меньшую полосу пропускания и меньше функций, но они могут иметь более быстрый отклик (и выглядеть намного круче).
  • Количество каналов — Многие осциллографы могут считывать более одного сигнала одновременно, отображая их все на экране одновременно. Каждый сигнал, считанный осциллографом, подается в отдельный канал. Очень распространены осциллографы от двух до четырех каналов.
  • Частота дискретизации — Эта характеристика уникальна для цифровых осциллографов, она определяет, сколько раз в секунду считывается сигнал. Для осциллографов с более чем одним каналом это значение может уменьшиться, если используется несколько каналов.
  • Rise Time — Указанное время нарастания осциллографа определяет самый быстрый нарастающий импульс, который он может измерить. Время нарастания осциллографа очень тесно связано с полосой пропускания. Его можно рассчитать как Время нарастания = 0,35 / Пропускная способность .
  • Максимальное входное напряжение — Каждая электроника имеет свои пределы, когда дело касается высокого напряжения. Все осциллографы должны быть рассчитаны на максимальное входное напряжение. Если ваш сигнал превышает это напряжение, есть большая вероятность, что прицел будет поврежден.
  • Разрешение — Разрешение осциллографа показывает, насколько точно он может измерять входное напряжение. Это значение может изменяться при настройке вертикального масштаба.
  • Вертикальная чувствительность — Это значение представляет минимальное и максимальное значения вертикальной шкалы напряжения. Это значение указано в вольтах на деление.
  • База времени — База времени обычно указывает диапазон чувствительности на горизонтальной оси времени. Это значение указывается в секундах на каждый div.
  • Входное сопротивление — Когда частота сигнала становится очень высокой, даже небольшой импеданс (сопротивление, емкость или индуктивность), добавленный к цепи, может повлиять на сигнал. Каждый осциллограф добавляет к цепи, которую он считывает, определенное сопротивление, называемое входным сопротивлением. Входные импедансы обычно представлены в виде большого резистивного сопротивления (> 1 МОм), подключенного параллельно (||), с малой емкостью (в диапазоне пФ). Влияние входного импеданса более очевидно при измерении очень высокочастотных сигналов, и используемый пробник может помочь его компенсировать.

На примере GA1102CAL приведены характеристики, которые можно ожидать от прицела среднего класса:

907 907 делений — 50713 2 с
Характеристика Значение
Полоса пропускания 100 МГц
Частота дискретизации 1 Гвыб. / С (1E9 выборок в секунду)
Время нарастания 14
Максимальное входное напряжение 400 В
Разрешение 8-битный
Вертикальная чувствительность 2 мВ / дел — 5 В / дел
Временная развертка
Входное сопротивление 1 МОм ± 3% || 16 пФ ± 3 пФ

Понимая эти характеристики, вы сможете выбрать осциллограф, который наилучшим образом соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться … на следующей странице!


Анатомия O-Scope

Хотя никакие осциллографы не создаются абсолютно равными, все они должны иметь некоторые общие черты, которые заставляют их функционировать одинаково. На этой странице мы обсудим некоторые из наиболее распространенных систем осциллографа: дисплей, горизонтальную, вертикальную, триггер и входы.

Дисплей

Осциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа.

Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная — в «секундах на деление». Как правило, прицелы имеют 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд).

Старые осциллографы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые очень помогают отображать более одной формы сигнала за раз.

Многие дисплеи осциллографа расположены рядом с набором из пяти кнопок — сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа.

Вертикальная система

Вертикальная секция осциллографа управляет шкалой напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют индивидуально управлять вертикальным положением и вольт / дел.

Более критическая ручка вольт на деление позволяет вам установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки — увеличивает. Меньший масштаб — меньшее количество вольт на деление экрана — означает, что вы в большей степени «увеличиваете масштаб» формы волны.

Например, дисплей GA1102 имеет 8 делений по вертикали, а ручка вольт / дел может выбирать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.)

Положение Ручка управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки — вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана.

Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вам больше всего важна.Если бы у вас был прямоугольный сигнал 5 В, но вы заботились только о том, насколько он звенел по краям, вы могли бы увеличить нарастающий фронт, используя обе ручки.

Горизонтальная система

Горизонтальная часть осциллографа контролирует шкалу времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел.

Регулятор секунд на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы вращаете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится — вы «увеличите масштаб» временной шкалы. Поверните против часовой стрелки, чтобы увеличить шкалу времени и отобразить на экране большее количество времени.

Если снова использовать GA1102 в качестве примера, дисплей имеет 14 горизонтальных делений и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтали осциллограф может отображать 28 нс формы волны, а при увеличении масштаба он может отображать сигнал, когда он изменяется в течение 700 секунд.

Ручка положения может перемещать форму сигнала вправо или влево от дисплея, регулируя горизонтальное смещение .

Используя горизонтальную систему, вы можете настроить , сколько периодов сигнала вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала:

Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны:

Система запуска

Раздел запуска посвящен стабилизации и фокусировке осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался неизменным, и неизменным. Плохо сработавшая волна будет давать такие широкие волны, как это:

, вызывающие судороги.

Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Регулятор уровня можно повернуть для установки триггера на определенную точку напряжения.

Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение — выбор источника и режима запуска. Существует множество типов триггеров , которые управляют тем, как триггер активируется:

  • Спусковой механизм Edge — это самая простая форма спускового крючка. Он заставит осциллограф начать измерение, когда напряжение сигнала перейдет на определенный уровень. Триггер по фронту может быть настроен на захват нарастающего или спадающего фронта (или обоих).
  • Запуск по импульсу сообщает осциллографу, что необходимо ввести заданный «импульс» напряжения. Вы можете указать длительность и направление импульса. Например, это может быть крошечный скачок 0 В -> 5 В -> 0 В, или это может быть секундный провал с 5 В на 0 В, обратно на 5 В.
  • Триггер с наклоном может быть настроен для запуска осциллографа по положительному или отрицательному наклону в течение определенного периода времени.
  • Существуют более сложные триггеры для фокусировки на стандартизованных формах сигналов, передающих видеоданные, например NTSC или PAL .Эти волны используют уникальный шаблон синхронизации в начале каждого кадра.

Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к триггеру. В режиме автоматического запуска осциллограф может попытаться нарисовать сигнал, даже если он не запускается. Нормальный режим будет рисовать вашу волну только в том случае, если видит указанный триггер. И single mode ищет указанный вами триггер, когда он его видит, он рисует вашу волну, а затем останавливается.

Зонды

Осциллограф хорош, только если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Зонды — это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает зажим заземления , который следует надежно прикрепить к общей точке заземления на тестируемой цепи.

Хотя пробники могут показаться простыми устройствами, которые просто подключаются к вашей цепи и передают сигнал в осциллограф, на самом деле есть много вещей, которые нужно учитывать при проектировании и выборе пробника.

В оптимальном случае зонд должен быть невидимым — он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах).

Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «стандартных» пассивных зондов — это аттенуированных . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает минимизировать влияние длинного кабеля на нагрузку вашей цепи. В сочетании с входным сопротивлением осциллографа этот ослабленный пробник будет создавать делитель напряжения между вашим сигналом и входом осциллографа.

Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называются 10X аттенуированными зондами . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания).

Аттенюированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, вам, возможно, придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем осциллографе, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически.

Помимо пассивного ослабленного пробника, существует множество других пробников. Активные пробники — это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники, предназначенные для измерения переменного или постоянного тока. Токовые пробники уникальны, потому что они часто зажимают провод, никогда не контактируя с цепью.


Использование осциллографа

Бесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда тестируете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения.

Выбор и настройка датчика

Во-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально.

Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X — наиболее распространенный коэффициент затухания — обычно является наиболее всесторонним выбором. Однако, если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться использовать 1X.

Подключите зонд и включите осциллограф

Подключите пробник к первому каналу осциллографа и включите его. Наберитесь здесь терпения, некоторые осциллографы загружаются так же долго, как и старый компьютер.

При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию формы волны.

На экране также должны отображаться ранее установленные значения для времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти корректировки, чтобы поместить ваш прицел в стандартную настройку :

  • Включите канал 1 и выключите канал 2.
  • Установите канал 1 на Соединение по постоянному току .
  • Установите источник запуска на канал 1 — без внешнего источника или срабатывания по альтернативному каналу.
  • Установите тип запуска на нарастающий фронт и режим запуска на автоматический (в отличие от одиночного).
  • Убедитесь, что ослабление пробника на вашем прицеле соответствует настройке на вашем пробнике (например, 1X, 10X).

Для получения помощи по настройке этих параметров обратитесь к руководству пользователя осциллографа (например, к руководству GA1102CAL).

Проверка датчика

Давайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный частотный генератор , который излучает надежную волну заданной частоты — на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный выходной сигнал частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника — один для сигнала и один для заземления. Подключите зажим заземления пробника к земле, а наконечник пробника к выходу сигнала.

Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает плясать по вашему экрану. Попробуйте поиграть с горизонтальной и вертикальной системными ручками , чтобы перемещать осциллограмму по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки — уменьшает.Вы также можете использовать ручку положения для дальнейшего определения вашего сигнала.

Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн.

Попробуйте повозиться с этими ручками, чтобы отобразить на экране один период вашей волны.

Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов.

Компенсация ослабленного пробника

Если ваш пробник настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться для компенсации вашего пробника . Большинство пробников имеют утопленную головку винта, которую можно повернуть, чтобы отрегулировать шунтирующую емкость пробника.

Попробуйте использовать небольшую отвертку, чтобы повернуть этот триммер, и посмотрите, что происходит с осциллограммой.

Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получился прямоугольный сигнал с прямым краем .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно если вы не знаете, кто использовал ваш осциллограф последним!).

Советы по измерению, срабатыванию и масштабированию

После того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты ?, Террор-Мин?) И возвращайся.

Первый ключ к зондированию сигнала — найти прочную и надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей цепи.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах — подпружиненный зажим, острие, крючки и т. Д. — постарайтесь найти тот, который не требует от вас постоянного удерживания его на месте.

⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, заземленной на сетевую землю, обязательно подключите заземляющий зажим к стороне цепи , подключенной к сетевой земле .Это почти всегда отрицательная сторона цепи / земля, но иногда это может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключайте его к источнику питания через изолирующий трансформатор.

Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтального и вертикального масштабов, по крайней мере, так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В на 1 кГц, вам, вероятно, понадобится значение вольт / дел где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут примерно полтора периода).

Если часть вашей волны поднимается или опускается на экране, вы можете отрегулировать вертикальное положение , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным током, вы можете настроить уровень 0 В в нижней части дисплея.

После того, как вы настроите весы, возможно, потребуется запуск вашей формы волны. Запуск по фронту — когда осциллограф пытается начать сканирование, когда обнаруживает повышение (или падение) напряжения выше заданного значения, — это самый простой в использовании тип. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме сигнала, которая видит только нарастающий фронт один раз за период .

Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не получите именно то, что вам нужно.

Отмерь дважды, отрежь один раз

При наличии сигнала с определенным диапазоном, запуском и масштабированием пора измерять переходные процессы, периоды и другие свойства формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они, по крайней мере, будут иметь деления, по которым вы сможете по крайней мере оценить амплитуду и частоту.

Многие осциллографы поддерживают различные инструменты автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области действия, вам нужно изучить все функции измерения , которые поддерживает . Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и ряд других волновых характеристик.

Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл.

Третий измерительный инструмент, предоставляемый многими осциллографами, — это курсора . Курсоры — это подвижные маркеры на экране, которые можно размещать либо на оси времени, либо на оси напряжения. Курсоры обычно бывают парами, поэтому вы можете измерить разницу между ними.

Измерение звона прямоугольной волны курсорами.

После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают с сохранением , с сохранением или с сохранением осциллограммы, так что вы можете вспомнить его и вспомнить те старые добрые времена, когда вы оценивали этот сигнал.

Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя!


Принцип работы осциллографа


Осциллограф — это оборудование для непосредственного наблюдения за изменением напряжения сигнала. В принципе, удобно наблюдать периодически повторяющийся сигнал. Сигнал с нерегулярным периодом сложно увидеть или возникает однократно. Есть оборудование, которое имеет память для наблюдения сигнала, который также возникает только один раз.
Здесь я представляю основной принцип работы осциллографа (или синхроскопа).


Принцип отображения экрана осциллографа

Осциллограф показывает время по горизонтальной оси (ось X) и показывает напряжение по вертикальной оси (ось Y).
Что касается экрана, часто используется ЭЛТ (электронно-лучевая трубка). Он отображает по принципу тот же, что и телевизор. То есть он отображает форму волны сигнала с отклонением электронного луча (он перемещается вверх и вниз в обе стороны).




Управление электронным лучом

Наблюдаемое напряжение добавляется к верхней и нижней отклоняющим катушкам. При этом электронный луч перемещается вверх и вниз в зависимости от наблюдаемого напряжения сигнала.
Напряжение для сканирования добавляется к отклоняющим катушкам справа и слева. Для этого напряжения используется пилообразная волна. Электронный луч движется от левого края экрана к правому с постоянной скоростью. При движении от правого конца к левому, он заставляет двигаться быстро.Линия, которая движется от правого конца к левому концу (обратная линия), не должна быть видна. Это зависит от типа осциллографа, но в части обратной линии электронный луч обычно останавливается.




Управление осью Y

Наблюдаемое напряжение сигнала. Эффективность усилителя сигнала важна.
Когда в усилителе есть искажения, на экране появляется форма волны, которая отличается от фактического сигнала.В общем, что касается классной машины, высокочастотная характеристика становится хорошей.




Управление осью X

Заставляет электронный луч перемещаться слева направо с постоянной скоростью во времени. Даже если он двигался без синхронизации с сигналом, форма волны, которая была стационарной, не может быть отображена на экране. Необходимо сделать ход с периодом, который совпадает с периодом входного сигнала или его целочисленным двойным периодом.

В Японии иногда используется название, которое называется осциллограф и синхроскоп из-за разницы в работе.
Как на осциллографе, так и на синхроскопе горизонтальная ось показывает время, а вертикальная ось показывает напряжение.
Отличие заключается в работе горизонтальной оси (оси времени).
Чтобы сделать форму входного сигнала на осциллографе стационарной, необходимо синхронизировать период развертки горизонтальной оси с входным сигналом. Следовательно, становится необходимым способ синхронизации периода сканирования с входным сигналом.

    Управление сканированием с помощью осциллографа
    Сканирование горизонтальной оси осциллографа выполняется всегда.То, что электронный луч движется слева направо, называется сканированием. Он обнаруживает (триггер) подъем (напряжение, которое было изменено в направлении положительного) входного сигнала или падение стоя (напряжение, которое было изменено в направлении отрицательного), и устанавливает период развертка по горизонтальной оси близко к периоду.
    Период сканирования, который синхронизируется с наблюдаемым сигналом, должен быть отрегулирован.
    Осциллограф не может наблюдать сигнал с нерегулярным периодом.
    Также не может наблюдаться сигнал с периодом менее 1 периода.



    Управление сканированием с помощью синхроскопа
    Горизонтальная ось синхроскопа также сканируется. Точка, которая отличается от осциллографа, заключается в том, что начало сканирования (позиция слева на экране) выполняется при стоянии входного сигнала или стоячем падении. Он отличается от осциллографа и период сканирования не меняется. Поскольку это так, сигнал с нерегулярным периодом может наблюдаться в форме волны в стационарном состоянии.

    Поскольку может наблюдаться сигнал с периодом менее одного периода, может наблюдаться перерегулирование или недовыработка прямоугольной волны.


Что такое цифровой запоминающий осциллограф? — Определение, принцип работы и реконструкция формы сигнала

Определение: Цифровой запоминающий осциллограф определяется как осциллограф, который сохраняет и анализирует сигнал в цифровом виде , то есть в форме 1 или 0, предпочтительно сохраняя их как аналоговых сигналов .Цифровой осциллограф принимает входной сигнал, сохраняет его и затем отображает на экране. Цифровой осциллограф имеет расширенные функции хранения, запуска и измерения. Кроме того, отображает , сигнал визуально, , а также численно.

Принцип работы цифрового запоминающего осциллографа

Цифровой осциллограф оцифровывает и сохраняет входной сигнал. Это можно сделать с помощью CRT (электронно-лучевая трубка) и цифровой памяти .Блок-схема базового цифрового осциллографа показана на рисунке ниже. Оцифровку можно выполнить, взяв образцы входных сигналов в виде периодических сигналов.

Максимальная частота сигнала, измеряемого цифровым осциллографом, зависит от двух факторов. Этими факторами являются

  1. Частота дискретизации
  2. Тип преобразователя.

Частота дискретизации — Для безопасного анализа входного сигнала используется теория дискретизации.Теория дискретизации утверждает, что частота дискретизации сигнала должна быть в два раза выше максимальной частоты входного сигнала. Частота дискретизации означает, что аналого-цифровой преобразователь имеет высокую скорость преобразования.

Конвертер — Конвертер использует дорогую вспышку, разрешение которой уменьшается с увеличением частоты дискретизации. Из-за частоты дискретизации полоса пропускания и разрешение осциллографа ограничены.

Потребность в преобразователях аналого-цифрового сигнала также может быть устранена с помощью сдвигового регистра.Входной сигнал дискретизируется и сохраняется в регистре сдвига. Из сдвигового регистра сигнал медленно считывается и сохраняется в цифровом виде. Этот метод снижает стоимость преобразователя и работает со скоростью до 100 мегабайт в секунду.

Единственным недостатком цифрового осциллографа является то, что он не принимает данные во время оцифровки, поэтому в то время у него была слепая зона.

Реконструкция формы сигнала

Для визуализации финальной волны в осциллографах используется метод интерполяризации.Интерполяризация — это процесс создания новых точек данных с помощью известных переменных точек данных. Линейная интерполяция и синусоидальная интерполяция — это два процесса соединения точек.

При интерполяции линии используются для соединения точек. Линейная интерполяция также используется для создания импульсной или прямоугольной формы волны. Для синусоидального сигнала в осциллографе используется синусоидальная интерполяция.

Что такое осциллограф? Почему это важно?

Во-первых, краткое и приятное руководство по осциллографу.

Осциллограф — это устройство, которое позволяет вам видеть, как напряжение изменяется во времени, отображая форму электронных сигналов.

Почему это важно?

Электроника, такая как осветительные приборы, телевизоры, кондиционеры, нуждается в электроэнергии, доставляемой по цепям .

Цепь — это путь между двумя или более точками, через который проходит ток .

Напряжение — это электрическая сила, которая перемещает ток между двумя точками.

Иногда напряжение работает некорректно, и вам нужно найти , а где , чтобы исправить это.

Пытаться найти эту проблему без осциллографа — все равно что вести машину с повязками на глаза .

Теперь, что касается подробного руководства, мы рассмотрим следующие темы.

  • Что такое осциллограф?
  • Краткая история осциллографа
  • Что такое аналоговый осциллограф?
  • Что такое цифровой осциллограф?
  • Что делают системы на осциллографе?
  • Терминология осциллографа

Итак, приступим!

Что такое осциллограф?

Когда у вас есть цепи с постоянным напряжением, мультиметр — это инструмент, который можно использовать для измерения одного числа для напряжения.Это становится излишним, когда вы начинаете строить более сложные схемы. Вот тут-то и пригодится осциллограф.

Осциллограф позволяет увидеть, как напряжение изменяется с течением времени. Эти напряжения называются сигналами, которые используются для передачи информации, такой как аудиосигнал, воспроизводящий музыку на громкоговорителе.

На экране дисплея осциллографа отображается измеренный сигнал напряжения в виде графика. Напряжение представлено на вертикальной оси, а время — на горизонтальной оси.

Этот дисплей позволит вам определить, правильно ли работает поведение ваших цепей. Это также позволит вам обнаружить любые проблемы в вашей цепи, такие как нежелательные сигналы, называемые шумом.

Есть два типа осциллографов; аналоговый и цифровой. Подробнее об этом позже, потому что сейчас мы кратко рассмотрим историю осциллографа.

Краткая история осциллографа

Осциллограф был изобретен французским физиком Андре Блонделем в 1893 году.Его устройство могло регистрировать значения электрических величин, таких как сила переменного тока. Маятник чернил, прикрепленный к катушке, записывал информацию на движущейся бумажной ленте. Первые осциллографы имели очень небольшую полосу пропускания от 10 до 19 кГц.

Мы поговорим подробнее о пропускной способности позже, но давайте сначала подведем итоги урока истории.

Большие события произошли в 1897 году, когда немецкий физик Карл Фердинанд Браун изобрел электронно-лучевую трубку (ЭЛТ).Развитие осциллографов начало расти после Второй мировой войны.

В 1946 году двое мужчин по имени Ховард Воллум и Мелвин Джек Мердок основали компанию Tektronix, которая сегодня является одним из мировых лидеров по производству осциллографов. В том же году они изобрели свой первый осциллограф, модель 511, с синхронизацией развертки и полосой пропускания 10 МГц. Развертка по триггеру позволяла стационарно отображать повторяющуюся форму волны.

Теперь поговорим о разнице между аналоговым и цифровым осциллографами.


Что такое аналоговый осциллограф? Tektronix 2245A Аналоговый осциллограф


Аналоговые осциллографы используют усилители с высоким коэффициентом усиления для отображения формы сигнала на зеленом экране электронно-лучевой трубки (ЭЛТ). Проще говоря, аналоговые осциллографы — это более старая версия осциллографов, которые были впервые разработаны в 1940-х годах.

Аналоговый осциллограф оснащен одним из нескольких вертикальных каналов, горизонтальным каналом, системой запуска, временной разверткой и модулем ЭЛТ.

Вертикальный канал включает в себя аттенюатор, предусилитель, аналоговую линию задержки и вертикальный усилитель, который усиливает сигнал до уровня, необходимого для модели ЭЛТ.

Горизонтальные каналы могут работать в двух режимах: внутреннем и внешнем. Системы триггеров имеют регулировки уровня, которые переключаются между повышающимися и понижающимися уровнями.

Что такое цифровой осциллограф?

В цифровом осциллографе используется современный ЖК-экран. Практически все новые осциллографы, выпускаемые сегодня, являются цифровыми.

В цифровом осциллографе перед отображением сигнала на экране используется дополнительный шаг. Дополнительный шаг преобразует сигнал в цифровой поток с помощью аналого-цифрового преобразователя, что устраняет необходимость в экранах типа ЭЛТ.

Это упрощает дизайн и оставляет место для большего количества функций.

Примером может служить добавление обработки сигналов и сложных математических операций, которые теперь являются стандартными функциями для большинства цифровых осциллографов.

А теперь поговорим о системах на осциллографе.

Что делают системы на осциллографе?


Базовый осциллограф имеет четыре различных системы: вертикальную, горизонтальную, систему запуска и систему отображения. Каждая из этих систем позволяет измерять конкретные вещи

Элементы управления вертикальной системой можно использовать для позиционирования и масштабирования формы сигнала по вертикали. Его также можно использовать для настройки входной связи, ограничения полосы пропускания и увеличения полосы пропускания.

Горизонтальная система может использоваться для определения частоты дискретизации и длины записи, а также для позиционирования и масштабирования формы сигнала по горизонтали.

Система запуска позволяет стабилизировать повторяющиеся сигналы и, по сути, делать снимки этих сигналов. Существуют различные типы систем запуска, такие как запуск по фронту, запуск по порогу, которые реагируют на определенные условия входящего сигнала.

Для сбора данных, считываемых осциллографом, вам понадобится пробник.

Пробник состоит из двух основных частей: зажима заземления и наконечника пробника. Вы должны прикрепить зажим заземления к заземлению для вашей схемы, а затем использовать наконечник пробника, чтобы тыкать и измерять напряжения в различных точках по всей цепи.

Джордж Леже, наш гуру технической поддержки на сайте CircuitSpecialists.com , рассказывает о том, как он использует третий пробник осциллографа при тестировании одного из своих проектов.

Это базовый обзор каждой системы, так как есть еще много вещей, о которых мы могли бы поговорить, но это руководство было бы еще длиннее, если бы мы сделали это!

Мы надеемся, что это руководство «Что такое осциллограф?» До сих пор было полезным. Изучение нового может быть трудным, но при этом очень полезным!

Пока вы читали это руководство, вы могли встретить некоторые термины из словаря, такие как полоса пропускания и частота дискретизации. Что это вообще значит?

Чтобы узнать что-то новое, необходимо выучить новый словарный запас, поэтому ниже приведен список терминов, которые помогут, так что следите за ним!

Терминология осциллографа

Ширина полосы определяет способность осциллографа измерять сигнал.По мере увеличения частоты сигнала способность осциллографа точно отображать сигнал уменьшается. Без адекватной полосы пропускания все остальные функции осциллографа ничего не значат.

Время нарастания описывает частотный диапазон осциллографа. Осциллограф с более коротким временем нарастания точно улавливает детали быстрых переходов.

Частота дискретизации указывается в отсчетах в секунду или S / s и указывает, как часто осциллограф делает снимок сигнала.Чем выше частота дискретизации, тем детальнее отображаемый сигнал.

Скорость захвата осциллограммы выражается в виде сигналов в секунду (осциллограмм / с), что указывает на то, как быстро осциллограф получает сигналы.

Circuitspecialists.com показывает, как нарисовать сигнал произвольной формы с помощью генератора функций от Siglent, SDG1050, в нем мы рисуем две формы сигнала, которые имеют форму индейки.

Глубина памяти, выраженная в Mpts, определяет объем данных, которые могут быть захвачены каждым каналом.Количество выборок, которые может хранить осциллограф, ограничено, поэтому длительность сигнала будет обратно пропорциональна частоте дискретизации осциллографа.

Хотя есть еще несколько терминов, это основные, о которых вам следует знать при покупке осциллографа. Вы можете ознакомиться с нашим руководством по лучшим осциллографам для любителей для получения дополнительной информации.

Заключение

Таким образом, осциллограф — это мощный инструмент, позволяющий увидеть, как напряжение изменяется во времени, путем отображения формы электронных сигналов.

Мы в компании Circuit Specialists надеемся, что это длинное (и краткое руководство) помогло ответить на ваши вопросы об осциллографах.

Для получения дополнительной информации об осциллографах и обзорах посетите блог специалиста по схемам!

Вопросы? Комментарии? Пожалуйста, разместите ниже!

Электронно-лучевой осциллограф »Примечания по электронике

Несмотря на то, что практически все новые осциллографы являются цифровыми, аналоговый или аналоговый осциллограф, также называемый электронно-лучевым осциллографом, все еще можно найти во многих лабораториях и других областях и может хорошо работать.


Типы осциллографов:
Аналоговые осциллографы Объем аналогового хранилища Цифровой люминофор Цифровой прицел Объем USB / ПК Осциллограф смешанных сигналов MSO Объем выборки

Осциллограф Учебное пособие включает:
Осциллограф, основы Сводка типов осциллографов Характеристики Как пользоваться осциллографом Запуск области видимости Пробники осциллографа Технические характеристики пробника осциллографа


Несмотря на преобладание цифровых технологий, многие аналоговые или аналоговые осциллографы все еще используются в повседневной жизни, обеспечивая отличные характеристики.

Аналоговые осциллографы также часто называют электронно-лучевыми осциллографами, сокращенно CRO. Эти аналоговые или электронно-лучевые осциллографы могут не обладать всеми функциональными возможностями своих цифровых собратьев, но они все же могут обеспечивать возможности, необходимые для большинства лабораторных и общих тестовых приложений.

Часто аналоговые прицелы могут быть отложены в сторону в запасе лабораторного испытательного оборудования. Тем не менее, эти испытательные инструменты все еще можно использовать с хорошими результатами во многих ситуациях, некоторые люди предпочитают использовать их против более продвинутых цифровых осциллографов.В некоторых случаях аналоговые прицелы все еще можно купить новыми, хотя количество и выбор этих испытательных приборов быстро сокращается.

Старинный аналоговый или аналоговый осциллограф

Основы аналогового осциллографа

Ключом к работе аналогового осциллографа является его дисплей. Он использует электронно-лучевую трубку или ЭЛТ. Эта форма отображения в течение многих лет была единственной жизнеспособной формой отображения, которая могла использоваться для отображения изображений. Соответственно, он использовался в телевизорах в течение многих лет, хотя сейчас используются другие формы дисплеев, включая ЖК-дисплеи, светодиоды и многие другие форматы, но все они требуют ввода цифрового сигнала на дисплей.

Электронно-лучевая трубка, используемая в аналоговом осциллографе

В форме электронно-лучевой трубки, используемой в осциллографах, используется электростатическое, а не магнитное отклонение электронного потока. Это обеспечивало гораздо более быстрое управление потоком электронов, позволяя аналоговым осциллографам работать на очень высоких частотах. Используемая в телевизорах схема отклонения магнитного луча не обеспечивала достаточно высокочастотной работы.

Если посмотреть на работу аналогового осциллографа более подробно, то он использует электронно-лучевую трубку для отображения сигналов как по оси X (по горизонтали), так и по оси Y (по вертикали).Обычно по оси Y отображается мгновенное значение входящего напряжения, а по оси X — линейно нарастающий сигнал.

По мере увеличения напряжения линейно нарастающего сигнала кривая перемещается по экрану в горизонтальном направлении. Когда он достигает конца экрана, форма сигнала возвращается к нулю, а кривая возвращается к началу.

Базовая блок-схема аналогового осциллографа

Используя этот подход, можно увидеть, что ось X соответствует времени, а ось Y — амплитуде. Таким образом, на электронно-лучевой трубке можно отобразить знакомые графики осциллограмм.

Работа аналогового осциллографа

Аналоговый осциллограф имеет большое количество схемных блоков и может обеспечивать стабильные изображения входящих сигналов. Аналоговый осциллограф использовался много лет, и его схема была хорошо испытана и протестирована.

Если посмотреть более подробно на внутреннее устройство аналогового осциллографа, можно увидеть множество различных схемных блоков, которые позволяют выполнять операцию.

Более подробную блок-схему прицела можно увидеть на диаграмме ниже.

Блок-схема основного аналогового осциллографа
  • Выбор переменного / постоянного тока Во многих случаях сигналы будут наложены смещением постоянного тока. При просмотре сигнала часто интерес представляют только элементы переменного тока. В этих случаях можно подключить конденсатор последовательно ко входу, чтобы гарантировать блокировку постоянного тока. Это позволяет усилителю сигнала видеть больше деталей, не будучи перегруженным содержимым постоянного тока. Поскольку используется конденсатор, выбор варианта переменного тока будет означать, что низкочастотные сигналы могут быть ограничены.Проверьте технические характеристики прицела на предмет низких характеристик.
  • Аттенюатор Y: Чтобы гарантировать, что сигналы подаются на усилитель Y на требуемом уровне, сигналы проходят в аттенюатор Y.
  • Y-усилитель: Базовый Y-усилитель обеспечивает усиление для обеспечения выходного сигнала для пены драйвера электронно-лучевой трубки. Важно, чтобы этот усилитель был особенно линейным, так как это будет определять точность осциллографа.
  • Цепь отклонения Y: После усиления сигнал передается в цепь отклонения Y. Он использует усиленный сигнал и передает его на пластины электронно-лучевой трубки на необходимом уровне. На ЭЛТ используется электростатическое отклонение, так как это обеспечивает высокую скорость отклонения, необходимую для осциллографа.
  • Схема запуска Система запуска состоит из ряда блоков на принципиальной схеме аналогового осциллографа.Чтобы гарантировать, что на дисплее отображается стабильная форма волны, необходимо настроить линейную форму волны так, чтобы она начиналась в одной и той же точке в каждом цикле входящего сигнала, подлежащего мониторингу. Таким образом, одна и та же точка на осциллограмме будет отображаться в том же месте на дисплее.

    Для этого используется цепь триггера для запуска рампы. Триггер выбирает сигнал из входящего сигнала и, когда достигается определенный уровень напряжения, запускает линейное изменение. Эта точка запуска регулируется на большинстве осциллографов.

    С точки зрения блок-схемы аналогового осциллографа, сигнал снимается с выхода усилителя Y и подается в другой усилитель согласования. Затем он проходит через схему триггера Шмитта, которая обеспечивает отдельные точки переключения при нарастании и падении формы сигнала. Требуемое значение триггера выбирается таким образом, чтобы точка триггера могла возникать либо на нарастающем, либо на спадающем фронтах формы волны, чтобы можно было выбрать его перед подачей в схему линейного нарастания, где сигнал запуска обеспечивает начальную точку для линейного нарастания.

    Также возможно использование сигнала от внешнего источника. Это может быть очень удобной функцией, поскольку может потребоваться использовать триггер от другого источника, кроме входящего сигнала.

  • Усилитель гашения Требуется форма гашения, чтобы гарантировать, что когда линейная нарастание или схема временной развертки возвращается в исходное положение для повторного перезапуска кривой, это не вызывает подсветки на экране. Чтобы предотвратить это, используется усилитель гашения для гашения экрана во время фазы обратного хода.Достаточно просто использовать элемент сброса рампы для генерации импульса, который подается на сетку электронно-лучевой трубки. Это препятствует прохождению потока электронов и эффективно закрывает экран на этот период.

Аналоговые средства управления осциллографом

На аналоговом осциллографе имеется очень много элементов управления, позволяющих измерительному прибору отображать форму сигнала в точности требуемым образом.

Хотя большинство элементов управления знакомы пользователям цифровых прицелов, некоторые из них могут сильно отличаться.

Электронно-лучевой аналоговый осциллограф Tektronix 2245

Некоторые из основных элементов управления подробно описаны ниже:

  • Управление фокусировкой: Управление фокусировкой не требуется на современных испытательных приборах, но оно было ключевым элементом старых электронно-лучевых осциллографов. Благодаря фокусировке точка, сканирующая экран, остается максимально резкой и, таким образом, дает четкий след. Видно, что по мере настройки элемента управления точка или след становятся более четкими и менее размытыми.
  • Контроль интенсивности: Регулировка интенсивности требуется на аналоговых осциллографах, поскольку интенсивность точки или следа изменяется в зависимости от скорости, с которой выполняется сканирование. Регулировка интенсивности позволяет четко определить требуемую интенсивность.

    Регулятор интенсивности может часто использоваться, поскольку обнаруживается, что по мере увеличения скорости записи след становится все более тусклым и, в конечном итоге, становится трудноразличимым, несмотря на регулировку интенсивности.Для сигналов с более высокой частотой требуется более высокая скорость записи, и в результате аналоговые осциллографы имеют ограниченный частотный диапазон. Обычно максимальная частота, которую можно увидеть на аналоговом осциллографе, составляет около 1 ГГц. Кроме того, требуются осциллографы других типов.

  • Входы сигналов: Существует множество элементов управления, связанных с входом сигнала или осью Y на электронно-лучевом осциллографе.
    • Вертикальное усиление: Регулировка вертикального усиления в электронно-лучевом осциллографе / аналоговом осциллографе такая же, как и в цифровых.Он эффективно изменяет чувствительность, позволяя расширять или сжимать форму волны для заполнения экрана. Иногда может быть переменный контроль, чтобы обеспечить ограниченное количество дополнительных вариаций, но имейте в виду, что калибровка не будет правильной, если она будет задействована. Всегда лучше оставить его в выключенном положении, если калибровка верна.
    • Вертикальное положение: Регулятор вертикального положения используется для переноса кривой в правую часть экрана.
    • AC / DC / Gnd: Этот элемент управления используется для выбора входной связи, необходимой для осциллографа. Связь по постоянному току будет передавать полное постоянное напряжение на вход усилителя Y. Небольшие колебания уровня постоянного тока могут смещать кривую, или, если есть высокий уровень постоянного тока, может быть невозможно увидеть мелкие детали пульсации ионной формы волны, если она имеет высокое напряжение постоянного тока. Выбор AC позволяет передавать только сигнальные элементы. Однако помните, что будет отсечка низких частот, поскольку он связан с конденсатором.На некоторых прицелах также может быть наземное положение.
    Многие аналоговые осциллографы имеют более одного канала, что позволяет им сравнивать сигналы. Многие прицелы имеют два канала, а некоторые, особенно более поздние, могут иметь четыре. Более четырех каналов можно увидеть очень редко, если вообще.
  • Развертка времени: Одним из центральных элементов управления на осциллографе будет управление разверткой времени. Это будет иметь широкий разброс по скорости и будет калиброваться по времени для каждого деления на электронно-лучевой трубке осциллографа.Это может варьироваться от очень медленных сканирований секунды и более на сантиметр до микросекунд и меньше на сантиметр. Необходимо выбрать правильную скорость развертки для отображения нужной формы сигнала.
  • Триггер: Триггер — это один из основных элементов управления аналоговым осциллографом. Триггер позволяет видеть на экране стабильный сигнал. Элементы управления обычно аналогичны тем, которые используются в осциллографах любого типа, хотя, естественно, адаптированы для работы и методов, используемых в аналоговых осциллографах.
    • Уровень триггера: Как и следовало ожидать, уровень триггера устанавливает уровень, на котором начинается форма волны, т. Е. Срабатывает триггер. В случае аналогового осциллографа он фактически запускает генератор пилообразного изменения в осциллографе и в результате напрямую отображает форму волны, видимую с этой точки, в отличие от современных цифровых осциллографов, которые, как правило, захватывают цифровые данные и могут обрабатывать их соответствующим образом, часто имея « триггер »в центре экрана.
    • Задержка: Этот элемент управления задерживает повторное срабатывание на короткое время.Таким образом, он предотвращает слишком быстрый повторный запуск и может обеспечить более стабильное отображение некоторых сигналов, особенно если уровень запуска превышается более одного раза при повторении сложной формы сигнала.
    • Alt / Chop: Этот режим присутствует на двух- или многоканальных осциллографах. При попытке отобразить форму волны электронно-лучевой осциллограф имеет две альтернативы. Один состоит в том, чтобы поочередно отображать одну форму волны, а затем другую, или он может «разрезать» сигнал, отображая небольшой бит одного сигнала, затем небольшой бит второго и т. Д.Поскольку частота прерывания намного превышает частоту сигнала, и поэтому формы волны выглядят как два отдельных сигнала. Часто можно увидеть прерывание, если развертка сильно ускорена.

Это некоторые из наиболее широко используемых элементов управления, которые используются в электронно-лучевых осциллографах / аналоговых осциллографах. Могут быть включены другие элементы управления в зависимости от конкретного тестового прибора.

Преимущества и недостатки аналогового осциллографа

Несмотря на то, что технологии развиваются и цифровые осциллографы имеют тенденцию доминировать на рынке, все еще существует множество областей, в которых аналоговые осциллографы могут предоставить очень ценную услугу.

Преимущества использования аналогового осциллографа или электронно-лучевого осциллографа:

  • Стоимость: Аналоговые осциллографы обычно намного дешевле своих цифровых аналогов. Эта технология хорошо зарекомендовала себя и, следовательно, дешевле, чем передовые технологии, в которых необходимо возмещать большие затраты на разработку в дополнение к более высоким затратам на компоненты и производство
  • Производительность: Аналоговые осциллографы способны обеспечить хороший уровень производительности, более чем достаточный для многих лабораторных и сервисных ситуаций.
  • Наличие в компании: Часто бывает, что аналоговые осциллографы могут быть доступны в магазине оборудования, когда используются все другие цифровые осциллографы. При условии, что их характеристики удовлетворительны, аналоговый вариант может обеспечить идеальный путь вперед.

Недостатки использования аналогового осциллографа:

  • Высококачественные характеристики: Ввиду того, что они работают с использованием аналоговой технологии, эти осциллографы не могут обеспечить все возможности многих высокопроизводительных цифровых осциллографов.
  • Доступные диапазоны: Принимая во внимание склонность к цифровым осциллографам, производители и поставщики осциллографов сосредоточили свое внимание на новых цифровых осциллографах. Соответственно, диапазон доступных аналоговых прицелов намного меньше, чем несколько лет назад. Тем не менее, некоторые из них все еще доступны в новых, а другие от поставщиков бывшего в употреблении испытательного оборудования. Часто можно получить очень выгодные предложения от поставщиков бывшего в употреблении испытательного оборудования при условии, что используются утвержденные или заслуживающие доверия поставщики и имеются надлежащие меры безопасности.

Несмотря на свои недостатки и тот факт, что цифровая технология берет верх, аналоговые осциллографы или электронно-лучевые осциллографы по-прежнему могут работать хорошо. Эти испытательные инструменты могут не иметь всех наворотов, присущих цифровым осциллографам, но более старые аналоговые версии могут обеспечить хорошее надежное обслуживание.

В настоящее время для покупки доступно сравнительно немного аналоговых осциллографов, но многие из них все еще доступны на вторичном рынке, или эти испытательные приборы можно найти в лабораториях, где они не были заменены более новыми моделями.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG Получение данных
Вернуться в меню тестирования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *