Оружие для электромагнитных импульсов (ЭМИ, EMP) своими руками
ЭМИ (электромагнитный импульс) довольно популярны в мире научной фантастики. Было бы здорово иметь свою собственную установку для ЭМИ пушки? Так и подумал, перед тем, как начал сборку электромагнитного излучателя своими руками.
Я хотел сделать ЭМИ генератор, который был бы портативным, и его можно было бы спрятать под рукавами. Если у вас есть правильные компоненты, вы можете собрать её в кратчайшие сроки.
ВНИМАНИЕ: Этот проект не для детей.
Если говорить серьезно, вы можете получишь шок. Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой.
Я не несу никакой ответственности, если вы что-то уничтожаете этим оружием.
Шаг 1: Абсолютно необходимые вещи
Схема старой камеры, независимо от того, является ли она одноразовой или нет, абсолютно необходима. Если у вас её нет, то её не так сложно сделать, но это займет много времени. Альтернативный способ — использовать схему с замком или отдельно продаваемую вспышку камеры.
Я использовал схему камеры 15-летней давности. Просто вынул её из корпуса. Схема работает от 3В аккумуляторной системы.
Причина, по которой я использовал обычную схему камеры вместо схем одноразовых камер, заключается в том, что конденсатор в обычной камере намного мощнее, чем в одноразовых. Если вы используете схему отдельной вспышки, она также намного мощнее, чем схемы обычных камер.
Пожалуйста, будьте осторожны при извлечении цепи. Конденсатор все еще может хранить заряд.
Шаг 2: Катушка

Я должен был сделать катушку, которая не занимает много места, потому что она будет фиксироваться в ладони. Если катушка будет слишком большая, я могу поучить шок только за счёт легкого движения ладони.
Итак, я вынул катушку из старой схемы SMPS. У меня были дополнительные медные провода. Поэтому я использовал их, чтобы сделать катушку более мощной.
Убедитесь, что обмотка медного провода тугая, иначе она будет неэффективной.
Шаг 3: Начинаем сборку, делаем каркас


Надо как-то зафиксировать катушку на уровне ладони. Также нужно быть уверенным в правильной изоляции, чтобы избежать ударов током.
Чтобы обеспечить изоляцию, я использовал металлическую полосу и толстый картон. После этого я нашел антенну рации, которую закрепил на ладони с помощью ленты.
Смысл крепления антенны — позволить ладони свободно двигаться. Она должна быть гибкой, чтобы вы могли правильно согнуть руку.
Шаг 4: Добавляем жизненно важные элементы

Теперь, когда каркас готов, мы должны прикрепить к нему самую важную часть — схему камеры. Чтобы прикрепить схему, я снова использовал картон. Также обратите внимание, что я не снял часть оболочки антенны — это позволит мне поворачивать ладонь вокруг запястья. Я прикрепил схему к этой черной изоляции.
Шаг 5: Дорабатываем каркас
Вся конструкция должна быть построена так, чтобы она оставалась на руке. Ранее мы прикрепили металлическую полосу, чтобы катушка оставалась на ладони. Теперь нам нужно прикрепить еще одну металлическую полоску, чтобы концевая часть оставалась неподвижной на предплечье.
Чтобы это стало возможным, я использовал увеличительное стекло.
Шаг 6: Источник энергии

Прикрепите держатель батарейки АА к цепи. Сначала выясните, где в цепи ранее находились точки, к которым были подключены провода от батареи. Припаяйте провода правильно.
Шаг 7: Подключаем катушку
Сначала правильно соедините провода с катушкой. Вы можете припаять их. Один провод должен быть прикреплен в начале катушки, другой провод — в конце катушки.
Эти два провода должны быть спаяны с двумя электродами конденсатора в цепи. Не забудьте прикрепить выключатель — это важно.
Шаг 8: Завершение
Чтобы прикрепить катушку к ладони, я использовал желтую изоленту. Держатель батареи крепится к предплечью с помощью ленты.
Теперь пришло время что-нибудь разрушить!
Электромагнитный импульс, уничтожающий цивилизации — Ядерная энергия — LiveJournal
В интернете можно регулярно встретить страшилки по поводу разрушительного действия электромагнитных импульсов (ЭМИ), особенно — от ядерного оружия.
Ядерный взрыв Kingfish, в ходе серии высотных подрывов Operation Fishbowl, в которой и были открыты необычно высокие уровни ЭМИ от высотных ядерных взрывов.
Что-то типа таких текстов:
“При высотном ядерном взрыве, возникает электромагнитный импульс огромной мощности, выводящий из строя электронное оборудование на расстоянии десятков километров. Т.е. все современное вооружение (кроме, конечно, автоматов Калашникова) в этой зоне превращается в хлам. Правильнее будет сказать — в хлам превращается вся их высокотехнологичная электронная начинка. Наша инфраструктура особенно городская настолько уязвима, что при ее крахе человеку в городе не выжить, во всяком случае большинству. Ведь город не производит продуктов, постоянно требует энергию как электрическую так и топливо, плюс непрерывная поставка воды обслуживание канализации. Отсутствие электричества и топлива приведет к остановке накачивающей гидросистемы, продукты будут портится и исчезнет водопровод. Осознав что положение безвыходно люди побегут из города, но уже будет поздно. Забастовки и митинги голодных людей. Погромы и грабежи магазинов, складов, богатых домов и началась анархия. Картина получается мрачная, но потенциальная возможность такого развития сюжета должна быть просчитана соответствующими ведомствами.”
Или вот
Однако даже если этого не произойдет, но ЭМИ-ракета упадет где-либо в США, это уничтожит до 90% американского населения. Бывший сотрудник ЦРУ пояснил, что в результате электромагнитного удара электроника будет выведена из строя, произойдут массовые аварии. Гражданские самолеты, которые одновременно находятся в небе и перевозят около 500 000 человек, упадут, приведя к смертям не только пассажиров, но и всех, кто пострадает от серии катастроф. Также такой импульс полностью уничтожает запасы продовольствия. В итоге через год лишь 10% от нынешней численности населения США выживет, отметил бывший сотрудник ЦРУ.
Давайте же сегодня посмотрим на дьявольское отродье — ядерное электромагнитное оружие, его физику и реальные возможности.
Этот взрыв не имеет отношения к сегодняшней теме, но мне просто очень нравятся различные фоточки ядерных испытаний, сохраненные с сайта LANL
Начать, пожалуй надо с того, что же это такое — ЭМИ. По сути это что-то сильной фотовспышки в радиодиапазоне. Но в отличии от аналогии в лоб ЭМИ опасен не только перегрузкой радиоприемников (что-то вроде “зайчиков в глазах”) но и свойством высаживать свою электромагнитную энергию на всем проводящем. В частности, в пострадавших оказываются длинные проводные линии — электропитания и связи, радиоэлектронные устройства, не готовые к заряду бодрости в антенну и в целом, вся электроника, не защищенная хоть какими-то инженерными ходами.
Физики высотного ядерного ЭМИ, к сожалению, несколько сложнее того, что можно изложить в посте, и имеет несколько различных компонентов. А целом амплитуда от времени (в логарифмических координатах, обратите внимание) выглядит как на картинке выше. Шикарное изложение физики явления можно подчерпнуть в статье человека, объяснившего это явление (в США) — Conrad Longmire.
Проблемой воздействия ЭМИ на электрику и электронику занимается целая отдельная наука и на деле вопрос этот весьма непрост и многогранен. При должном усердии очень нежный радиоприемный узел можно защитить так, что его будет проще уничтожить ядерным взрывом, чем электромагнитным импульсом ядерного взрыва. Эффекты зависят от всего — спектра конкретного ЭМИ, геометрии прибора, взаимного расположения, проводников вокруг, фазы луны и т.п. и т.д. Уже поэтому очень большим преувеличением является огульное утверждение, что какой-бы там не был ЭМИ способен уничтожить (локально) цивилизацию — результат будет, натурально, непредсказуем.
Самый подробный анализ воздействия ЭМИ, и не только высотных ядерных, на жизнь страны я нашел в документе FAS, хотя, как мне кажется, он слегка загнут в алармискую сторону.
Тем не менее кое какие оценки сделать можно и полезно. Основные две характеристики ЭМИ, которые нам понадобятся — это его протяженность во времени (длительность) и амплитуда, выражаемая обычно в напряженности электрической компоненты электромагнитного поля в вольтах на метр.
С амплитудой, надо думать, все более менее понятно — чем больше молоток, тем больше от него дыры в стене. Характерные значения напряженностей, которые что-то могут повредить начинаются с 5 кВ/м, 50 кВ/м считается пределом для ядерного ЭМИ (об этом ниже), ЭМИ-оружие (без ядерного заряда) способно создавать амплитуды до 200 кВ/м. Чем короче ЭМИ, тем серьезнее проблемы защищающейся стороны. Вызвано это как ростом мгновенной мощности при неизменной энергетике, так и тем, что коротковолновые составляющие лучше проникают в здания и корпуса приборов, лучше “осаживаются” на проводники.
На электронику и электрику ЭМИ воздействует несколькими способами. Во-первых на различных проводниках схемы возникают перенапряжения — от десятков вольт до киловольт, а для длинных, неудачно расположенных ЛЭП — до мегавольтов. Перенапряжения могут привести к пробою различных элементов схем/систем, особенно там, где нет схемотехнических защит специальными быстродействующими полупроводниковыми устройствами. Здесь опять важна краткость ЭМИ — чем он длиннее, тем больше энергии будет просто рассеяно в проводниках и меньше амплитуды перенапряжений.
И да, про энергию. ЭМИ переносят относительно небольшую энергию — от десятков миллиджоулей до десятков джоулей на метр квадратный. По сути, ничему, кроме как нежной электронике и неудачно спроектированным линиям электропитания (собирающим энергию с сотен тысяч квадратных метров) повредить ЭМИ не может. При этом закон обратных квадратов неумолим — взорвав 200 кг взрывчатого вещества в спецбоеприпасе и излучив 50 мегаджоулей электромагнитного излучения (такая цифра превосходит лабораторные рекорды) на расстоянии 300 метров мы получим всего ~40 Дж/м^2 и пару джоулей в приемном тракте условной носимой радиостанции, от которых можно защититься. В 3 км от точки подрыва речь уже пойдет о сотнях миллиджоулях на м^2.
Кочующее из публикации в публикацию изображение электромагнитного оружия. Здесь набор конденсаторов создает импульс тока во взрывомагнитном генераторе первой ступени, который создает импульс тока мегаамперного уровня во втором ВМГ, который в свою очередь создает мегаамперный импульс при сотнях киловольт в СВЧ генераторе-виркаторе
Прежде, чем перейти, наконец, к ядерным взрывам — несколько цифр:
ЭМИ от молний имеет длительность в районе 1 миллисекунды и амплитуду до 10 кВ/м в непосредственной близости от молнии и 1-2 кВ/м в сотне-другой метров. ЭМИ от оружия создает напряженность до 100 кВ/м (200, насколько я понимаю — все же лабораторный предел) в объеме нескольких метров и до 1 кВ/м в сотне метров от точки подрыва и может иметь длительность в 100-200 микросекунд.
Итак, высотный ядерный взрыв (ВЯВ) и его легендарный ЭМИ. Что мы могли бы ожидать изначально? Ядерный взрыв в плане энерговыделения гораздо быстрее любой взрывчатки примерно в 1000 раз. Ядерный взрыв мощнее любой взрывчатки в тысячи и миллионы раз. Означает ли это, что ЭМИ от ВЯВ — это просто дубина побольше?
Характеристики различных ЭМИ.
Вопреки первой интуитивной догадке, в высотном ядерной взрыве непосредственно не генерируется значительных электромагнитных всплесков. Немножко разлетающейся плазмы от бывшей бомбы, море рентгеновского излучения при остывании плазмы, и немножко первичного гамма-излучения от цепной ядерной энергии — вот и все, что по сути дает ядерный взрыв в космосе, над атмосферой.
Пшик? Ничего не вышло? Но обратите внимание за улетевшим жестким гамма-излучением, унесшим жалкие 0,1-0,2% от полной мощности взрыва.
Со скоростью света очень короткий (несколько наносекунд) и отсюда крайне мощный импульс гамма-излучения распространяется в сторону поверхности и на высоте ~30 км начинает активно поглощаться плотнеющей атмосферой. Гамма-кванты выбивают электроны из воздуха и разгоняют их до приличной энергии за счет эффекта Комптона. Электроны выбивают следующие, те — еще, и в итоге на всей засвеченной площади атмосферы за наносекунды возникает невероятное количество свободных электронов, в целом движущихся в том же направлении, что и исходное излучение.
Наверное впечатляющее зрелище.
Здесь в игру вступает магнитное поле Земли. Все наши новорожденные электрончики начинают синхронно заворачивать в магнитном поле и за счет эффекта циклотронного резонанса излучают импульс электромагнитного излучения. Его длительность — десяток наносекунд, а амплитуда — 20…50 кВ/м, но он излучается не в точке. Он излучается всем небом на тысячи километров вокруг эпицентра ВЯВ.
Моделирование распределения амплитуды ЭМИ от высотного ядерного взрыва (высота подрыва 100 км). Даже в ~700 км от эпицентра энерговыделение еще приличное. Взаимодействие с магнитным полем земли рисует этот своеобразный «смайлик».
Зависимость радиуса действия ЭМИ от высоты подрыва. Впрочем, как можно догадаться, чем выше подрыв — тем больше должна быть энергетика ядерного боеприпаса, что бы воздействовать с той же силой.
Именно этот факт, наряду с очень короткой протяженностью во времени делает ЭМИ ВЯВ столь значительным оружием. Плотность энергии мало меняется на протяжении сотен километров от эпицентра, засвечивая сразу миллионы километров квадратных. Именно в таких условиях ЛЭП могут набирать мегавольты перенапряжения, а трансформаторы на их концах получать пробои изоляции обмоток. Все остальные классы повреждений — пробои на терминалах проводной связи, сгорающие тракты радиолокаторов и радиостанций, зависшие цифровые устройства тоже возможны.
Моделирование импульса тока, вызванного ЭМИ в 100 метрах воздушной линии, лежащей в меридональном направлении.
Однако, подождите. Физика ВЯВ, подарившая оружейникам столько впечатляющую игрушку диктует и ее ограничения. Обладая импульсом гамма излучения с известной жесткостью и длительностью мы получаем логарифмическую зависимость амплитуды ЭМИ от мощности. Мегатонная бомба даст 20 кВ/м, специально подготовленная 20 мегатонная — 50 кВ/м, с 300 мегатонн, пожалуй можно выжать 80, а десяток гигатонн… Так, стоп. Видя такую зависимость, инженеры “обороны” прочертили линию в 50 кВ/м, и выпустили в рамках “библии электромагнитной совместимости” IEC 61000 главы, посвященные ЭМИ ВЯВ, с помощью которого вполне возможно создавать оборудование, которое переживет это деструктивное воздействие как ни в чем не бывало. Причем не обязательно проектировать каждый сервер или принтер устойчивым к ядерному оружию, защищать можно сразу здание, его сети питания или связи. Например, от поражения по сетям питания можно использовать различное оборудование защищающее IEEE 587 class B+ — например для защиты оборудования по линиям питания 1, 2, защиты коаксиальных линий и т.п.
Самое важное для нас в этой картинке с моделированием ВЯВ — амплитуда ЭМИ ВЯВ логарифмически зависит от мощности жесткого гамма-излучения
Насколько, в итоге может оказаться разрушительным ЭМИ ВЯВ? Существует довольно много отчетов по этой тематике [1 , 2, 3] Наиболее короткое резюме из них выглядит так: при должном внимании к проектированию силовых и коммуникационных устройств ущерб от ЭМИ ВЯВ будет минимален или вообще нулевым. При этом существующая инфраструктура в США, скажем, по мнению авторов реализована довольно пестро — где-то защита реализована, где-то нет. Наибольшей, фактически 100% стойкостью, обладает инфраструктура военных, затем идут высоковольтные ЛЭП, хорошо защищенные ограничителями перенапряжений, Tier 1 ЦОДы, ну а хуже всего защищено всякое рядовое оборудование — от магазинчиков до домашних телевизоров.
Воздействие эмитатором ЭМИ ВЯВ на телекоммуникационную плату (сама плата выключена) — виден пробой каких-то элементов возле розетки, куда приходят провода. Надо полагать, что массовой жертвой могут пасть трансформаторы в разъемах Ethernet.
Исследования американской лаборатории ORNL, например, показывают, что самыми уявзвимыми на высоковольтных подстанций оказываются не трансформаторы и ЛЭП (защищенные ограничителями перенапряжений), о которых много говорят в прессе, а измерительное оборудование и низковольтные кабели к системе управления.
Впрочем, судя по оговоркам вывод о слабости холодильников к поражению ядерными ЭМИ сделан прежде всего в силу невозможности нормального анализа по этому классу целей — еще раз напомню, что реальное поражение будет зависеть от всего на свете: как расположен прибор относительно точки подрыва, какой длины провода питания и проложены ли они под землей или в воздухе, есть ли грозозащитные устройства, из чего сооружен дом и т.п. и т.д. Невозможность расчета оставляет пространство для субьективности — если в отчете надо нагнать ужаса, пишем о критической незащищенности, надо добиться выделения денег — пишем о необходимости все посчитать, а если мы военные, то считаем что все граждане с неправильными холодильниками умрут и исходим из этого. Мы же военные.
Из чтения фактологии анализов устойчивости к ЭМИ можно сделать такой вывод — “противник” (ЭМИ ВЯВ) хорошо известен, методы защиты от него отработаны и внедрены как минимум на части критичной инфраструктуры, которая и переживет удар. Да, потери возможны, но шансы “отправиться в каменный век”, невысоки.
Интересный вывод можно сделать, рассматривая спектр ЭМИ ВЯВ. В районе 1 ГГц спектральная плотность падает к максимуму на 3 порядка, т.е. антенны всякой цифровой радиосвязи (начиная от 433 МГц) будут набирать вольты или десятки вольт непосредственно в тракт на частотах где есть хорошее согласование и низкий ксв и вполне возможно не пострадают совсем.
Но что, если все эти стандарты условий ЭМИ, для которых создано оборудование защиты недооценивают ЭМИ ВЯВ?
Вернемся к физике: для увеличения поражающего эффекта нужно либо усиливать выход жесткого гамма-излучения ядерного взрыва, либо укорачивать его импульс (не потеряв в мощности) — только так можно увеличить амплитуду ЭМИ, генерируемого атмосферой. Казалось бы, выход гамма-излучения, рождающегося в процессе деления ядер надкритичной системы жестко “запрограммирован” физикой явления. Любая другая энергия, которую мы можем взять от ядерного взрыва неизбежно релаксирует в материале бомбы и выделяется в виде жесткого рентгена — но эти “жесткие” 10 кЭв слишком мягкие на фоне 1,5 МэВ средней энергии гамма-излучения, чтобы родить достаточно электронов в атмосфере.
Любая другая, кроме термоядерных нейтронов, рожденных в реакции D+T->He4 + n. Нейтрон здесь имеет энергию 14,7 МэВ и имеет на порядки бОльший пробег в бомбе, чем любые другие частицы. Эффективно конвертировать эту энергию в гамма-излучение можно с помощью неупругого рассеяния — процесса кратковременного захвата нейтрона ядрами материи, после чего нейтрон переизлучается, а ядро остается в возбужденном состоянии, которое сбрасывается с помощью гамма-квантов. Если облучать потоком быстрых нейтронов относительно легкие ядра (например, углерод, кислород или азот), то часть энергии будет конвертироваться в поток жестких гамма-квантов. Наилучшие результаты даст жидкий или твердый кислород, но и гораздо более банальный углерод будет тоже ничего — 10-20% энергии нейтронов выделяться в виде гамма квантов с средней энергией в 4,2 МэВ. Да, выделение энергии будет идти не несколько наносекунд, а скорее несколько десятков наносекунд, но появляется возможность поднять кпд генерации гамма-излучения в ~100 раз.
1 мегатонна “стандартного” боеприпаса при высотном ядерном взрыве дает около 1 килотонны в виде гамма-излучения. В “нейтронно-углеродном” боеприпасе для генерации 1 кт гаммы нужно всего 12 кт термоядерной энергии, а с трех мегатонн можно снять до 250 кт гамма-излучения, втрое более жесткого, хоть и более растянутого во времени. Такое устройство может быть гораздо более разрушительно, чем то, что мы обсуждали выше — пускай амплитуда ЭМИ вырастет не кардинально выше (хотя, возможно, можно побороться и за 100 кВ/м), энергетика импульса, а значит и деструктивное воздействие на электронику изменится кардинально.
Впрочем, есть одно но. Описанный выше боеприпас должен работать на дейтерий-тритиевой смеси, и стандартный LiD не подойдет (т.к. LiD “горит” в виде цепочки, потребляющей собственные нейтроны и выход их наружу невелик по сравнению с общей мощностью). На 1 мегатонну нужно 24 кг трития, при том, что весь гражданский его запас в мире составляет около 30+ кг и, видимо, заметно превосходит запасы военных. Последний вывод можно сделать из сопоставления пары сотен мегаватт тяжеловодных реакторов на Маяке и сложной истории с получением трития из литиевых мишеней на реакторе Watts Bar-1 в США в сравнении с десятками гигаватт (тепловых) реакторов CANDU, на которых получается “гражданский” тритий.
Отсюда можно сделать вывод, что ЭМИ ВЯВ боеприпасы сделанные по принципу конверсии ТЯ-нейтронов вряд ли существуют в реальности, а значит разработчики стандарта IEC 61000 могут спать спокойно. Пока.
Некоторые полезные источники
High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the U.S. Power Grid https://www.eiscouncil.org/App_Data/Upload/9b03e596-19c8-49bd-8d4e-a8863b6ff9a0.pdf
High-Frequency Protection Concepts for the Electric Power Grid https://www.eiscouncil.org/App_Data/Upload/de2ca832-e989-49aa-a28e-b74e40d2638a.pdf
Michael Sirak, “U.S. vulnerable to EMP Attack,” http://www.janes.com/defence/news/jdw/jdw040726_1_n.shtml
(HEMP) and High Power Microwave (HPM) Devices: Threat Assessments https://fas.org/sgp/crs/natsec/RL32544.pdf
https://ak-12.livejournal.com/86608.html?thread=3501648#t3501648
Электромагнитное оружие — Википедия
Материал из Википедии — свободной энциклопедии
Электромагнитное оружие (ЭМИ) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.
В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника[1] или приводящих к небоеспособности живой силы противника[2].; относится к категории оружия нелетального действия.
Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea» в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.
Виды электромагнитного оружия
Видео по теме
Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

К ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида[3]:
Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно[4]. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.
Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.
Поражение ЭМИ-оружием средств ведения партизанских войн
ЭМИ эффективны против средств ведения партизанских войн, так как бытовая электроника не имеет защиты от ЭМИ.
Наиболее типичные объекты поражения ЭМИ:
- радиомины и мины с электронными взрывателями, включая традиционные любительские радиоустройства для террористических и диверсионных акций;
- незащищённые от ЭМИ портативные устройства радиосвязи пехоты;
- бытовые радиостанции, сотовые телефоны, планшеты, ноутбуки, электронные охотничьи прицелы и тому подобные электронные бытовые приборы.
Защита от ЭМИ оружия
Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.[5]
Меры применяются трех категорий:
- блокирование входа части энергии электромагнитного импульса
- подавление индукционных токов внутри электрических схем быстрым их размыканием
- использование электронных устройств нечувствительных к ЭМИ
Средства сброса части или всех энергии ЭМИ на входе в устройство
Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.
Кроме этого может быть использован разрядник
Средства размыкания цепей при возникновении сильных индукционных токов
Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ[5] используют
- стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
- варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.
Электронные устройства, нечувствительные к ЭМИ
Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:
- Использование оптического кабеля для передачи сигнала.
- Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически
См. также
Примечания
Литература
- Гуревич В. И. Уязвимости микропроцессорных реле защиты: проблемы и решения. — М.: Инфра-Инженерия., 2014. — 256 с. — ISBN 978-5-9729-0077-0
- Гуревич В. И. Защита оборудования подстанций от электромагнитного импульса. — М.: Инфра-Инженерия., 2016. — 302 с. — ISBN 978-5-9729-0104-3
- Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него, — М.: Инфра-Инженерия., 2018. — 508 с. — ISBN 978-5-9729-0273-6
Ссылки
Электромагнитная бомба — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 апреля 2018; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 апреля 2018; проверки требуют 5 правок.Относится к классу «оружие нелетального действия». По принципу разрушения техники разделяются на низкочастотные, использующие для доставки разрушающего напряжения наводку в линиях электропередачи, и высокочастотные, вызывающие наводку непосредственно в элементах электронных устройств и обладающие высокой проникающей способностью — достаточно мелких щелей и вентиляции для проникновения волн внутрь оборудования.
Впервые эффект электромагнитной бомбы был зафиксирован в 50-е годы XX века, когда проходили испытания американской водородной бомбы. Взрыв был произведён в атмосфере над Тихим океаном. Результатом было нарушение электроснабжения на Гавайях из-за воздействия электромагнитного импульса высотного ядерного взрыва.
Изучение показало, что взрыв имел непредвиденные последствия. Лучи достигли Гавайских островов, расположенных в сотнях километров от места испытания, и радиопередачи были нарушены до самой Австралии. Взрыв бомбы, помимо мгновенных физических результатов, воздействовал на электромагнитные поля на огромном расстоянии. Однако в дальнейшем взрыв ядерной бомбы как источник электромагнитной волны был признан неэффективным из-за малой точности, а также множества побочных эффектов и неприемлемости в политическом плане.
В качестве одного из вариантов генератора была предложена конструкция в форме цилиндра, в котором создаётся стоячая волна; в момент активации стенки цилиндра быстро сжимаются направленным взрывом и разрушаются на торцах, в результате чего создаётся волна очень малой длины. Поскольку энергия излучения обратно пропорциональна длине волны, в результате уменьшения объёма цилиндра мощность излучения резко возрастает.
Доставка этого устройства может быть произведена любым известным способом — от авиации до артиллерии. Применяются как и более мощные боеприпасы с использованием в боевой части ударно-волновых излучателей (УВИ), так и менее мощные с использованием пьезоэлектрических генераторов частоты (ПГЧ).
Защита электроники от электромагнитного импульса
Мощный электромагнитный импульс (ЭМИ) появляется вследствие всплеска энергии, которая излучается или проводится таким источником как солнце или взрывное устройство. Если в вашем арсенале выживальщика присутствуют электротехнические или электронные устройства, необходимо предусмотреть их защиту от ЭМИ, чтобы они смогли продолжать работать после начала боевых действий, природной или техногенной катастрофы.
Что такое электромагнитный импульс
Всякий раз, когда электрический ток проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока. Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса. Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.
При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.
Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.
Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ. Электростатический разряд от молнии может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается. Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.
Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.
Поражающие факторы электромагнитного импульса
Опасность ЭМИ заключается в том, что он поражает системы жизнеобеспечения и транспорта. Поэтому, например, при мощном воздействии электромагнитного импульса современная незащищенная автотехника выходит из строя. Особенно это касается автомобилей, произведенных после 1980 года. Поэтому в случае техногенной катастрофы, начала боевых действий или всплеска солнечной активности оптимально использовать автомашины старого образца.
Кроме того, электромагнитный импульс поражает:
• Компьютеры.
• Дисплеи.
• Принтеры.
• Маршрутизаторы.
• Трансформаторы.
• Генераторы.
• Источники питания.
• Стационарные телефоны.
• Любые электронные схемы.
• Телевизоры.
• Радио, DVD плееры.
• Игровые устройства.
• Медиа центры
• Усилители.
• Системы связи (передатчики, приемники)
• Кабели (передачи данных, телефонные, коаксиальные, USB и т.д.)
• Провода (особенно большой длины).
• Антенны (внешние и внутренние).
• Электрические шнуры питания.
• Системы зажигания (авто и самолетов).
• Электрические схемы СВЧ.
• Кондиционеры.
• Аккумуляторы (все виды).
• Фонарики.
• Реле.
• Системы сигнализации.
• Контроллеры заряда.
• Преобразователи.
• Калькуляторы.
• Электроинструменты.
• Электронные запчасти.
• Зарядные устройства.
• Устройства контроля (CO2, детекторы дыма и т.д.).
• Кардиостимуляторы.
• Слуховые аппараты.
• Устройства медицинского мониторинга и т.п.
Факторы, которые определяют урон от ЭМИ
• Сила входящего электромагнитного импульса.
• Расстояние до источника импульса.
• Угол линии удара от источника к вашему положению на вращающейся Земле.
• Размер и форма объектов, которые получают и собирают ЭМИ.
• Степень изоляции приборов и устройств от вещей, которые могут собирать и передавать энергию ЭМИ.
• Защита или экранирование приборов и устройств.
Как защититься от ЭМИ: первые действия
С большой долей вероятности небольшие системы не будут затронуты ЭМИ (англ. EMP), если они изолированы от сети питания. Поэтому при поступлении предупреждения о грядущем EMP отключите все подключенные к электрической розетке приборы и устройства. Не забудьте вентиляцию и термостаты. Отключите солнечные панели и весь дом от общей сети, откройте запорные переключатели между солнечными панелями и инвертором, и между преобразователем и распределительной панелью питания. При слаженных действиях это займет несколько минут.
Общая защита от электромагнитного излучения
Предлагаемые защитные действия:
• Отключайте электронные устройства, когда они не используется.
• Отключайте электроприборы, когда они не используются.
• Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
• Используйте короткие кабели для работы.
• Установите защитную индукцию вокруг компонентов.
• Используйте компоненты с автономными батареями.
• Используйте рамочные антенны.
• Подключите все провода заземления к одной общей точке заземления.
• По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
• Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
• Используйте ИБП для защиты электроники от всплеска EMP.
• Используйте блокирования устройства.
• Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
• Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
• Устанавливайте кабель под землей, в экранированных кабельных каналах.
• Постройте одну или несколько клеток Фарадея.
Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.
Как построить клетку Фарадея
Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.
Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.
Клетка Фарадея из мусорного бака
Клетка Фарадея из металлического ящика
Что поместить в клетку Фарадея
Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:
• Батарейки для радио.
• Портативные рации.
• Портативные телевизоры.
• Светодиодные фонарики.
• Солнечное зарядное устройство.
• Компьютер (ноутбук или планшет).
• Сотовые телефоны и смартфоны.
• Различные лампочки.
• Зарядные шнуры для мобильных телефонов, планшетов и т.п.
Как защитить важную информацию от ЭМИ
Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае Апокалипсиса – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.
Вместо послесловия
Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.
Будьте готовы, и будете в безопасности!
Источник: www.extreme-voyage.ru НАША СТРАНИЦА В ФЕЙСБУК: МЫ ВКОНТАКТЕ:Электромагнитное оружие Википедия
Электромагнитное оружие (ЭМИ) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.
В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника[1] или приводящих к небоеспособности живой силы противника[2].; относится к категории оружия нелетального действия.
Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea» в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.
Виды электромагнитного оружия
Поражение ЭМИ-оружием ракет и высокоточных боеприпасов
Принцип действия ЭМИ-гранатыК ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида[3]:
Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно[4]. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.
Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.
Поражение ЭМИ-оружием средств ведения партизанских войн
ЭМИ эффективны против средств ведения партизанских войн, так как бытовая электроника не имеет защиты от ЭМИ.
Наиболее типичные объекты поражения ЭМИ:
- радиомины и мины с электронными взрывателями, включая традиционные любительские радиоустройства для террористических и диверсионных акций;
- незащищённые от ЭМИ портативные устройства радиосвязи пехоты;
- бытовые радиостанции, сотовые телефоны, планшеты, ноутбуки, электронные охотничьи прицелы и тому подобные электронные бытовые приборы.
Защита от ЭМИ оружия
Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.[5]
Меры применяются трех категорий:
- блокирование входа части энергии электромагнитного импульса
- подавление индукционных токов внутри электрических схем быстрым их размыканием
- использование электронных устройств нечувствительных к ЭМИ
Средства сброса части или всех энергии ЭМИ на входе в устройство
Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.
Кроме этого может быть использован разрядник[6], как средство сброса энергии сразу за антенной.
Средства размыкания цепей при возникновении сильных индукционных токов
Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ[5] используют
- стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
- варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.
Электронные устройства, нечувствительные к ЭМИ
Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:
- Использование оптического кабеля для передачи сигнала.
- Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически[7]. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.
См. также
Примечания
Литература
- Гуревич В. И. Уязвимости микропроцессорных реле защиты: проблемы и решения. — М.: Инфра-Инженерия., 2014. — 256 с. — ISBN 978-5-9729-0077-0
- Гуревич В. И. Защита оборудования подстанций от электромагнитного импульса. — М.: Инфра-Инженерия., 2016. — 302 с. — ISBN 978-5-9729-0104-3
- Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него, — М.: Инфра-Инженерия., 2018. — 508 с. — ISBN 978-5-9729-0273-6
Ссылки
Только Россия имеет на вооружении электромагнитные боеприпасы
Предприятиями российского оборонно-промышленного комплекса создана мощная электромагнитная ракета «Алабуга», имеющая боевой блок с генератором электромагнитного поля высокой мощности. Сообщалось, что она способна одним ударом накрыть территорию 3,5 километров и вывести из строя всю электронику, превратив ее в «груду металлолома».
Михеев разъяснил, что «Алабуга» не является конкретным оружием: под этим шифром в 2011-2012 годах завершился целый комплекс научных исследований, в ходе которых были определены основные направления развития радиоэлектронного оружия будущего.
«Была проведена очень серьёзная теоретическая оценка и практическая работа на лабораторных макетах и специализированных полигонах, в ходе которой определена номенклатура радиоэлектронного оружия и степень его воздействия на технику», — рассказал Михеев.
Это воздействие может быть разным по интенсивности: «Начиная с обычного помехового влияния с временным выводом систем вооружения и военной техники противника из строя вплоть до её полного радиоэлектронного поражения, приводящего к энергетическому, деструктивному повреждению основных электронных элементов, плат, блоков и систем».
После окончания этой работы все данные о её результатах были закрыты, а сама тема СВЧ-оружия попала в разряд критических технологий с наивысшим грифом секретности, подчеркнул Михеев.
«Сегодня мы можем только сказать, что все эти наработки переведены в плоскость конкретных опытно-конструкторских работ по созданию электромагнитного оружия: снарядов, бомб, ракет, несущих на себе специальный взрывомагнитный генератор, в котором за счёт энергии взрыва создаётся так называемый СВЧ-электромагнитный импульс, выводящий из строя на определённом расстоянии всю технику противника», — отметил собеседник.
Подобные разработки ведут все ведущие мировые державы – в частности, США и Китай, заключил представитель КРЭТ.
Россия на сегодняшний день является единственной в мире страной, на вооружении которой стоят боеприпасы, оснащенные электромагнитными генераторами, заявил главный редактор журнала «Арсенал Отечества», член экспертного совета коллегии ВПК Виктор Мураховский.
Так он прокомментировал слова советника первого заместителя гендиректора концерна «Радиоэлектронные технологии» Владимира Михеева, заявившего, что в России создаются радиоэлектронные боеприпасы, способные вывести технику противника из строя за счет мощного СВЧ-импульса.
«Такие штатные боеприпасы у нас есть – например, такие генераторы есть в боевых частях зенитных ракет, также существуют выстрелы для ручных противотанковых гранатометов, оснащенные такими генераторами. По этому направлению мы находимся на передовых позициях в мире, аналогичных боеприпасов, насколько я знаю, пока на снабжении иностранных армий нет. В США и Китае такая техника сейчас находятся лишь на стадии испытаний», — цитирует В. Мураховского РИА Новости.
Эксперт отметил, что сегодня российская «оборонка» работает над увеличением эффективности таких боеприпасов, а также усилением электромагнитного импульса за счёт новых материалов и новых конструктивных схем. При этом Мураховский подчеркнул, что называть такое оружие «электромагнитными бомбами» не совсем корректно, поскольку на сегодняшний день на вооружении российской армии стоят только зенитные ракеты и гранатометные выстрелы, оснащенные такими генераторами.
Говоря о радиоэлектронном оружии будущего, разрабатываемом сегодня в России, собеседник привел в пример проект «СВЧ-пушки», находящийся сегодня на стадии научно-исследовательских работ.
«На стадии НИР есть новое изделие на гусеничном шасси, которое генерирует излучение, способное на большом расстоянии вывести из строя беспилотник. Это именно то, что в просторечии сейчас называют «СВЧ-пушкой», — рассказал Мураховский.
Впервые мир увидел реально действующий прототип электромагнитного оружия на выставке вооружений ЛИМА-2001 в Малайзии. Там был представлен экспортный вариант отечественного комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км. Несмотря на то, что первенец произвел настоящий фурор в мировых СМИ, спецалисты отметили ряд его недостатков. Во-первых, размер эффективно поражаемой цели не превышает 30 метров в диаметре, а во-вторых, оружие одноразовое — перезарядка занимает более 20 минут, за которые чудо-пушку уже раз 15 подстрелят с воздуха, а работать по целям она может только на открытой местности, без малейших визуальных преград. Наверное, именно по этим причинам американцы и отказались от создания подобного ЭМИ-оружия направленного действия, сконцентрировавшись на лазерных технологиях. Наши оружейники решили испытать судьбу и попытаться «довести до ума» технологию направленного ЭМИ-излучения.
По активному импульсному излучению получается подобие ядерного взрыва, только без радиоактивной компоненты. Полевые испытания показали высокую эффективность блока – не только радиоэлектронная, но и обычная электронная аппаратура проводной архитектуры, выходит из строя в радиусе 3,5 км. Т.е. не только выводит из штатной эксплуатации главные гарнитуры связи, ослепляя и оглушая противника, но и фактически оставляет целое подразделение без каких-либо локальных электронных систем управления, в том числе вооружением. Преимущества такого «нелетального» поражения очевидны – противнику останется только сдаться, а технику можно получить в качестве трофея. Проблема лишь в эффективных средствах доставки этого заряда – он обладает сравнительно большой массой и ракета должна быть достаточно большой, и, как следствие, весьма уязвимой для поражения средств ПВО/ПРО», — объяснил эксперт.
Интересны разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались. Согласованная работа источников СВЧ-излучения, позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды. К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО, основанной на этих принципах, на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program) — научно-исследовательский проект по изучению ионосферы и полярных сияний. Отметим, что тот мирный проект почему-то имеет финансирование агентства DARPA Пентагона.
Справка:
Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Низкочастотное ЭМО создает электромагнитное импульсное излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона – как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему. Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.
Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества. При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.
[источники]источники
https://ria.ru/defense_safety/20170928/1505719386.html
http://vpk-news.ru/news/39159
http://interpolit.ru/blog/ehlektromagnitnoe_oruzhie_v_chem_rossijskaja_armija_operedila_konkurentov/2014-09-28-2584
Для того, чтобы быть в курсе выходящих постов в этом блоге есть канал Telegram. Подписывайтесь, там будет интересная информация, которая не публикуется в блоге!